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Abstract: As China’s second largest energy-use sector, residential consumption has a great potential
for carbon dioxide (CO2) reduction and energy saving or transition. Thus, here, using the methods
of social network analysis (SNA) and geographically weighted regression (GWR), we investigated
the spatiotemporal evolution characteristics of China’s residential CO2 emissions (RCEs) from direct
energy use and proposed some policy suggestions for regional energy transition. (1) From 2000
to 2019, the total direct RCEs rose from 396.32 Mt to 1411.69 Mt; the consumption of electricity
and coal were the primary sources. Controlling coal consumption and increasing the proportion of
electricity generated from renewable energy should be the effective way of energy transition. (2) The
spatial associations of direct RCEs show an obvious spatial network structure and the number of
associations is increasing. Provinces with a higher level of economic development (Beijing, Shanghai,
and Jiangsu) were at the center of the network and classified as the net beneficiary cluster in 2019.
These provinces should be the priority areas of energy transition. (3) The net spillover cluster (Yunnan,
Shanxi, Xinjiang, Gansu, Qinghai, Guizhou) is an important area to develop clean energy. People
in this cluster should be encouraged to use more renewable energy. (4) GDP and per capita energy
consumption had a significant positive influence on the growth of direct RCEs. Therefore, the national
economy should grow healthily and sustainably to provide a favorable economic environment for
energy transition. Meanwhile, residential consumption patterns should be greener to promote the
use of clean energy.

Keywords: energy transition; residential CO2 emissions (RCEs); social network analysis; geographically
weighted regression; spatial association network

1. Introduction

With the growth of the world’s population and economy, global energy consumption
has increased dramatically since the industrial revolution [1]. Much energy consumption
can inevitably emit a large number of greenhouse gases (GHGs), especially carbon dioxide
(CO2). Thus, global climate change (warming) has almost become an undeniable fact [2,3].
At present, the adverse effects of climate change are becoming increasingly apparent [4].
How to deal with climate change is the issue of our time. China is the biggest energy
user and the largest CO2 emitter, its CO2 emissions accounted for 27.8% of total CO2
worldwide in 2018 [5]. The total CO2 emissions of China will keep growing under the
influence of continued economic growth [6,7]. Therefore, a series of targets and policies
were formulated by China to mitigate emissions under huge pressure and in the context of
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low-carbon socio-ecological transition. Currently, China aims to have peak CO2 emissions
by 2030 and work towards carbon neutrality by 2060 [8]. To ensure that the goal of carbon
peaking by 2030 will be met on schedule, a plan for carbon peaking by 2030 was issued. It
proposed that the proportion of non-fossil energy consumption should reach about 20% by
2025 and about 25% by 2030. The plan also focused on the implementation of emissions
mitigation and energy transition, even elevating it to a national action [9].

Energy consumption is closely related to CO2 emissions [10,11]. From 2000 to 2019,
the difference in total energy consumption between the residential sector and industrial
sector is huge. The industry sector has been the largest energy consumption sector; the
residential sector has been the second largest energy consumption sector (Figure 1). The
residential sector is the non-negligible source of CO2 emissions [12]. Some studies found
that CO2 emissions from residential energy consumption even surpassed the CO2 emissions
of industry in some developed countries [13,14]. Additionally, the rising disposable income
of China’s residents [15] and acceleration of urbanization [16,17] have made residents’
lifestyles higher in carbonization [18–20], which inevitably increased the amount of CO2
emissions from residential energy consumption (RCEs). Consequently, RCEs have attracted
scholars’ extensive attention. Wei et al. quantified the direct and indirect impact of lifestyle
on China’s energy use and the related CO2 emissions [21]. Li et al. investigated the impact of
social awareness on China’s residential carbon emissions [22]. Ma et al. calculated carbon
emissions from residential energy consumption in China and the USA [23]. However,
consideration of spatial effects for RCEs in these studies was insufficient. With the depth
of research on RCEs and the development of spatial measurement techniques, the spatial
effect of RCEs is gaining attention. Zhou et al. used spatial autocorrelation analysis to
analyze changes in the spatial pattern of residential carbon emissions [24]. Long et al.
also used spatial autocorrelation analysis and investigated the spatiotemporal variation
of CO2 emissions generated by household private cars [25]. Using spatial autocorrelation
analysis, Rong et al. investigated the spatial autocorrelation of RCEs in Kaifeng [26].
However, there are limitations in the previous studies on spatial effects in that these studies
just considered an attribute rather than a relationship and believed only geographically
adjacent areas to be correlated; the spatial association is always regarded as geographic
adjacency. Therefore, social network analysis (SNA) was proposed to quantify network
actors and their connections using relational data instead of traditional attribute data.
Moreover, it also describes the characteristics of network associations and interactions
between actors. SNA has been widely used to study public opinion [27], population
migration [28], and tourism activities [29]. It has also recently begun to receive attention in
the energy consumption field and CO2 emissions. Bu et al. innovatively used SNA to reveal
the network characteristics and spatial patterns of interprovincial natural gas consumption
in China [30]. He et al. and Bai et al. used SNA, respectively, to explore the spatial
association network characteristics of China’s electricity sector [31] and transportation
sector [32]. Shen et al. combined disparity analysis and SNA to investigate the synergistic
emissions reduction effect of urban agglomerations [33]. However, SNA has rarely been
applied in the study of RCEs.

The RCEs can be divided into direct and indirect emissions [21]. Direct RCEs are the
CO2 emissions that come directly from residents consuming fossil energy and secondary
energy in activities such as lighting, cooking, and travel by personal transport [34,35].
Indirect RCEs are induced by the energy use of non-energy products consumed by residents
in clothing, food, housing, and transportation for all life-cycle links [36]. Numerous
previous studies have analyzed the factors affecting residential CO2 emissions by various
methods. Li et al. used the logarithmic mean Divisia index (LMDI) to identify the driving
factors of RCEs [37]. Wang et al. used the stochastic impacts by regression on population,
affluence, and technology (STIRPAT) model to analyze the factors influencing total carbon
emissions of households [38]. Zang et al. examined the driving factors behind household
direct CO2 emissions by the LMDI method [39]. Fan et al. used the adaptive weighting
Divisia (AWD) to identify the quantitative effects of the driving components [40]. Using
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the LMDI model, Zhou et al. explored the driving factors behind household indirect CO2
emissions [41]. Yuan et al. proposed a new structural decomposition analysis (SDA) model
to investigate regional variations in factors’ impacts on indirect RCEs in China [42]. These
studies on drivers mainly used the econometric method to decompose the driving factors
simply and the investigation of differences in the effects of drivers by spatial location
was inadequate. CO2 emissions, as an atmospheric resource, are changeable in different
geographical locations [43] and the effects of CO2 emissions correspondingly vary at
different locations. For this reason, it is essential to study the variation of CO2 emissions
and their driving factors in different geographical locations (the spatial heterogeneity of
CO2 emissions and their driving factors). The geographically weighted regression (GWR)
model is one useful method to deal with spatial heterogeneity. The estimation results of
GWR not only consider the drivers’ spatial location but also incorporate the data’s spatial
characteristics. Sheng et al. found that GWR is more appropriate to estimate parameters
than ordinary least square (OLS) in a study of CO2 emissions [44]. Wang et al. came to
the same conclusion [45]. Moreover, Wang et al. investigated the effect of urbanization on
CO2 emissions in China’s six sectors. They found that the influence of urbanization has
significant spatial differences [46]. These existing studies have shown that the GWR model
is more appropriate and objective than other models to explore drivers.
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consumption sector.

Given the emerging concerns about climate change, CO2 emissions and energy tran-
sition are advocated and are becoming a popular research topic. Zhao et al. developed
a bottom-up national energy technology model to reveal the energy consumption, CO2
emissions, and technology pathways at national and sectoral levels for China’s energy
system’s transformation and CO2 emissions mitigation [47]. Wang et al. applied the de-
coupling index model and decomposition approach to understanding the effects of energy
transition on the decoupling of economic growth from CO2 emission growth [48]. Li et al.
proposed the “coal–gas transition balance theory” to discuss the impact of fossil energy
consumption transition on CO2 emissions [49]. However, existing studies on CO2 emissions
reduction and energy transition are rarely conducted in the residential sector. There is
also a fact that CO2 emissions may spill over through climate ingredients and economic
behavior [50]. The development of China’s economy, interregional economic exchanges,
and people’s travel inevitably strengthen interregional connections. At the same time, vast
territory, energy resource endowment differences, and income inequality among provinces
strengthen the spatial heterogeneity of direct RCEs [51,52], which poses a challenge for
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regional coordination of CO2 emissions reduction and energy transition [53]. As a result,
integrating interregional association and heterogeneity is important for the synergistic and
differentiated energy-related CO2 emissions reduction, energy transition of the residential
sector, and achieving peak CO2 emissions in China.

Existing research has already dealt with residential energy-related CO2 emissions and
energy transition, but there are still blank spaces in the research. Although SNA is used
in the field of energy consumption and energy-related CO2 emissions, it has rarely been
applied in the study of RCEs. The existing studies on the spatial association network of
energy consumption and energy-related CO2 emissions considered only the association
between provinces; spatial heterogeneity was ignored. In addition, CO2 emissions and
energy transition have received much attention as the adverse effects of climate change
appeared, but the research has rarely been conducted in specific sectors, such as the
residential sector. To fill that blank, we introduce SNA to complete a study of RCEs.
Meanwhile, we are first to combine SNA with GWR to analyze the spatiotemporal dynamics
of China’s direct RCEs and the driving factors based on comprehensive interregional
association and heterogeneity of direct RCEs among provinces in China, and propose policy
implications of energy transition for China’s residential consumption sector. Accordingly,
it is expected to provide a scientific reference point for the formulation and implementation
of China’s energy transition and CO2 emissions mitigation policies. The limitations of some
existing studies and the innovation of this paper are presented in Table 1.

Table 1. A summary of relevant studies on CO2 emissions from residential energy consumption.

Author(s) Methods Subject Area and Period Limitations and
Innovation

Zhou et al. [24] Spatial autocorrelation
analysis; GWR model RCEs in China China

2003–2015 The attribute rather than
the relationship is

considered when using
spatial autocorrelation

analysis to study
spatial effects.

Long et al. [25] Spatial autocorrelation
analysis; panel data

CO2 emissions
generated by private

cars

Japan
1990–2016

Rong et al. [26] Spatial autocorrelation
analysis; GWR model RCEs in Kaifeng Kaifeng in China

2015–2016

He et al. [31]
SNA and the quadratic
assignment procedure

(QAP)

CO2 emissions from
the electricity sector

China
2005–2016

SNA is a method that
quantifies relationships

instead of the attribute of
network actors and their
connections, but it has

rarely been applied in the
study of RCEs.

Shen et al. [33] Theil index and SNA

Synergistic emissions
reduction

effect of urban
agglomerations

Yangtze River Delta,
Chengdu–Chongqing
urban agglomeration,

and Guangdong–Hong
Kong–Macao urban

agglomeration in China
2010–2015

Bu et al. [30] SNA and LMDI model Interprovincial natural
gas consumption

China
2005–2017

Bai et al. [32] SNA and QAP Transportation CO2
emissions

China
2005–2015

Wang et al. [38] CLA model and
STIRPAT model Driving factors of RCEs China

2006–2015 These studies mainly used
econometric methods that

cannot investigate
differences in the effects of
drivers in spatial location.

Zang et al. [39] LMDI model Driving factors behind
direct RCEs

Shanxi Province
in China

1995–2014

Yuan et al. [42] SDA model Driving factors of
indirect RCEs

China
2002–2007
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Table 1. Cont.

Author(s) Methods Subject Area and Period Limitations and
Innovation

Zhao et al. [47] National energy
technology model

Transition path of
China’s energy system

China
2015–2050

These studies just studied
the national and regional

CO2 emissions and energy
transition, rarely
conducted in the
residential sector.

Wang et al. [48]
Tapio decoupling

model and
LMDI model

The effects of energy
transition on the

decoupling of
economic growth from
CO2 emission growth

186 countries in
the world
1990–2014

Li et al. [49] Coal–gas transition
balance theory

The relationship
between fossil energy

consumption transition
and CO2 emissions

Sichuan Province
in China

2005–2019

This paper SNA and GWR model
RCEs and policy
implications of

energy transition

China
2000–2019

This paper is the first to
combine SNA and GWR to
reveal the spatiotemporal
dynamics characteristics

and driving factors of
direct RCEs, then gives

some policy implications of
energy transition.

2. Materials and Methods
2.1. Data Description

Considering the data unavailability of Tibet’s RCEs and the inconsistent statistical
caliber of Taiwan, Hong Kong, and Macao, 30 provinces that include autonomous regions
and municipalities in China are used as the research subjects in this paper; Tibet, Taiwan,
Hong Kong, and Macao are not included. Due to the statistical lag, the latest data on
residential energy consumption that we can obtain are for 2019. Considering the availability
of data, we set 2000–2019 as the study period. We selected 2000 and 2019 as the study time
nodes because the comparative results for starting and ending years are more convincing
in showing the changes in study objects over the study period. All residential energy
consumption data were obtained from the energy balance sheets of each province in
the China Energy Statistical Yearbook (2001–2020) [54]. As data on residential energy
consumption in Ningxia were missing from 2000 to 2002, we used linear regression to fit
the trend of residential direct energy consumption, then extrapolated the missing energy
consumption data. With reference to Kennedy et al. [55], carbon emission coefficients of all
kinds of energy types are listed in Appendix A Table A1. The carbon emission coefficients
of electricity in this paper are the carbon emission coefficients of China’s regional power
grids. They are shown in Appendix A Table A2. With reference to Jia et al. [56], the
carbon emission coefficient of heat can be measured as 0.11 t-CO2/GJ by the equivalent
calorific value. The conversion factor of standard coal for various energy types is from the
China Energy Statistical Yearbook (Appendix A Table A1). The data on GDP, per capita
consumption expenditure (PCE), and population are from the China Statistical Yearbook.
The geographic distance between provincial capitals is the spherical distance. To eliminate
the effect of price changes, all data on GDP and PCE are converted into 2015 constant prices.

Energy-related CO2 emissions are affected by economy, population, and energy con-
sumption [57]. Economic factors include GDP, consumption level, income, per capita
consumption expenditure, etc.; energy consumption structure and per capita energy con-
sumption are energy consumption factors; population size, household size, educational
level, and population aging are demographic factors [24]. GDP is an important indica-
tor of economic development, and economic growth is the main factor of CO2 emission
growth [58]. Energy consumption is closely related to CO2 emissions, and Reinders et al.
found that energy consumption of households varies with expenditure [59]. The impact of
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per capita consumption expenditure (PCE) on direct RCEs is worth exploring. Changes
in per capita energy consumption were the important drivers underlying the increase in
residential CO2 emissions across all of Japan’s 47 prefectures [60]. It should be investigated
whether per capita energy consumption (PEC; the ratio of the total energy consumption to
the total population) also has a great influence on direct RCEs in each province of China.
The energy consumption structure, expressed by the ratio of natural gas and electricity
consumption to total energy consumption, has a negative impact on direct RCEs [45]. It is
important for the policy formulation of energy transition to figure out the impact of energy
consumption structure (ECS), expressed by the proportion of coal consumption to total
energy consumption. RCEs are influenced by consumers’ lifestyles, which are reflected in
consumption behavior [21]. According to Bin and Dowlatabadi, the external environment
has the greatest impact on consumer behaviors, and external environment is closely related
to culture and consciousness [13]. The difference in educational level (EDU; the ratio of
the population with college education and above to the total population) can be a good
reflection of the difference in culture and consciousness. With the population aging (AG;
the ratio of the population aged 65 and above to the total population) of China deepening,
it is necessary to investigate whether population aging plays a role in growth of direct
RCEs or not. Given the above-mentioned contents, GDP and PCE were selected to measure
economic factors; AG and EDU were chosen as demographic factors; PEC and ECS were
selected as energy consumption factors.

2.2. Calculation of Direct RCEs

The energy sources involved in measuring the direct RCEs are raw coal, washed coal,
other washed coal, briquettes, coke, coke oven gas, other gas, natural gas, liquefied natural
gas, crude oil, gasoline, kerosene, diesel, lubricants, fuel oil, liquefied petroleum gas, other
petroleum products, electricity, and heat. The calculation of direct RCEs uses the method
provided by the IPCC [54]. The equation is:

Cdir = ∑ Ei · Fi (1)

where Cdir is direct RCEs; i is the type of fuel; Ei is the apparent consumption of i; and Fi
represents the carbon emission factor of i.

2.3. Spatial Association Network Construction of Direct RCEs

A spatial association network of direct RCEs is an aggregate of exploring the direct
RCEs relationships between provinces. Each province is a node in the network; the spatial
association of direct RCEs for two different provinces is expressed by a directed line
segment. There are two main methods for portraying spatial associations, namely, vector
autoregressive model (VAR) and gravity model. The VAR model is only applicable to
data covering a lengthy time span. Moreover, the VAR model cannot reveal the dynamic
evolutionary characteristics of network structures [61]. The gravity model has many
advantages for a quantitative study of spatial associations and their effects compared with
the VAR model [31,33,62]. It is more applicable to aggregate data and easier to use with
cross-sectional data for portraying the changing trend of spatial associations. It can also
consider the comprehensive influence of various factors. Considering the difference in
direct RCEs’ scale between provinces, we used the share of direct RCEs of the province i in
the sum of direct RCEs of the provinces i and j to correct the empirical constant. Based on
these considerations, we constructed a spatial association network of China’s direct RCEs
using the corrected gravity model. The equation is:

Yij = k
3
√

PiGiCi 3
√

PjGjCj

D2
ij

(2)
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k =
Ci

Ci + Cj
(3)

D2
ij =

[
dij

gi − gj

]2

(4)

where i and j represent provinces i and j, respectively; Yij is the association of direct RCEs
between i and j; dij is the geographic distance expressed as the spherical distance between
the provincial capital city i and j; Dij is the economic geographic distance between province
i and province j; P, G, C, and g, respectively, represent the total year-end population, GDP,
direct RCEs, and per capita GDP; k denotes the share of direct RCEs of the province i in
the sum of direct RCEs of the province i and j; and k is an empirical constant of the gravity
model in this study.

Based on the corrected gravity model, we calculated the direct RCEs’ gravitational
matrix between provinces to reflect the strength of direct RCEs’ gravitational force between
provinces. We set the average value of each row of the gravitational matrix as the row
threshold. If a value in the row is bigger than the threshold, it is designated as 1. This
indicates that there is a clear spatial association of residential direct CO2 emissions between
the province in the row and the province in the column. Otherwise, it is designated as 0,
which indicates that there is no association. According to this rule, a binary matrix can
be obtained.

2.4. Network Characteristics
2.4.1. Overall Network Characteristics

Network density and relatedness (network connectedness, network efficiency, network
hierarchy) are usually used to describe the overall network characteristics in SNA. The
network density indicates how tightly connected the spatial network is, the higher the
density is, the greater the association of the network is. The network density, D, is calculated
by the following formula:

D =
M

N(N − 1)
(5)

where N is the number of nodes; N(N − 1) is the maximum possible number of network
relationships; and M is the number of relationships.

The network connectedness represents the network structure’s robustness and vul-
nerability. The greater the connectedness is, the more stable the network structure is. The
formula is:

C = 1− V
N(N − 1)/2

(6)

where C denotes connectedness; V is the number of unreachable pairs of nodes in the
network; and N is the number of nodes.

The network hierarchy reflects the position of supremacy of network members in the
network. The higher the value is, the clearer the class difference between nodes is. The
network hierarchy, H, is calculated by the following equation:

H = 1− K
Max(K)

(7)

where K is the number of symmetrically reachable node pairs in the network; and Max(K)
is the maximum number of symmetrically reachable node pairs.

Network efficiency refers to the degree of redundancy of network connections. The
lower the network efficiency is, the more redundant connections exist between provinces.
This indicates that the network is more stable. The network efficiency, E, is calculated by
the following formula:

E = 1− R
Max(R)

(8)
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where R is the number of redundant lines in the network, and Max(R) is the maximum
possible redundant lines.

2.4.2. Individual Network Characteristics

Centrality is a valid index that can help us understand the importance of the roles
played by individual provinces in the association network and helps to formulate regional
policies accordingly. Individual network characteristics can be characterized by degree
centrality and betweenness centrality. Degree centrality and betweenness centrality can
be calculated directly by UCINET 6 software. Moreover, they both reflect the “power” of
certain nodes in the network and the collaborative relationship between nodes. In other
words, they measure how much “clout” a province has with other provinces.

The degree centrality indicates the central position of the node in the network. A node
that has a higher degree centrality has tighter and more connections with other nodes, and
is closer to the center of the network. The equation is:

De =
n

(N − 1)
(9)

where De is the degree centrality; n denotes the number of nodes directly associated with
the node, it can be easily understood as the number of 1s in a row of the node in the
binary matrix.

Betweenness centrality reflects the degree to which a node controls the association
relationships of other nodes. If a node has a greater betweenness centrality, it indicates the
node has a greater power to control the ties with other provinces and is closer to the center
of the network. The betweenness centrality, CB, is calculated by the following equation:

CB =
2∑n

j ∑n
k bjk(i)

n2 − 3n + 2
, j 6= k, and j < k (10)

where gjk is the number of shortcuts that exist between nodes j and k; bjk(i) denotes the
ability of a third node, i, to control the interactions between j and k, which is the probability
that i is on the shortcut between nodes j and k; gjk(i) represents the number of shortcuts
that exist between j and k through node i, and bjk(i) = gjk(i)/gjk.

2.5. Spatial Clustering Analysis

The block model is the main method of spatial clustering analysis in SNA that helps
us understand intuitively the role of each province in the spatial network. It divides actors
in the network into discrete subsets following certain criteria and examines whether there
are relationships between the subsets. These subsets are called “locations”, which can also
be called “clusters” and “blocks”. The interaction mechanisms and influence paths among
the clusters can be evaluated by a density matrix and image matrix of the network. A
convergent correlations (CONCOR) method allows partitioning of each actor (province) to
simplify data. The size of dataset is small in terms of the number of nodes in this study. If
the dataset was divided into more than 4 clusters, there would be more clusters consisting
of only a few nodes. Consequently, defective results of spatial clustering analysis will occur.
Therefore, we applied a CONCOR method to perform block model analysis, and chose an
iteration criterion of 0.2 and a maximum partition density of 2 to obtain four clusters.

The spatial association network can be divided into four attribute types [63], namely,
net beneficiary, bidirectional spillover, net spillover, and brokers. The cluster type is
determined by comparing the ratio of expected and actual internal relationships of the
cluster, and combining it with the number of the total receiving and sending relation-
ships of the cluster. Assuming that there are g nodes in the network, where cluster Bk
includes gk nodes, the maximum number of possible relationships of all members in the
network is gk(g− 1). Moreover, if the maximum number of possible internal relationships
is gk(gk − 1), then the ratio of expected internal relationships of the cluster Bk in the rational



Land 2022, 11, 1039 9 of 26

situation is (gk − 1)/(g− 1), which is used as an indicator to determine the type of the
cluster (Table 2).

Table 2. The division of cluster types.

Ratio of Internal
Relationships

Ratio of Accepted Relationships

≈0 >0

≥(gk − 1)/(g− 1) Bidirectional spillover cluster Net beneficiary cluster
≤(gk − 1)/(g− 1) Net spillover cluster Brokers cluster

2.6. Geographically Weighted Regression Model

The geographically weighted regression model is an important approach to dealing
with spatial heterogeneity. It embeds spatial location of data into the regression parameters
and uses locally weighted least squares methods for point-by-point parameter estimation to
explore the spatial variation and related drivers of the study object with a certain scale. To
analyze the driving factors of direct RCEs comprehensively and thoroughly, we established
a model by incorporating economic factors (GDP and PCE), demographic factors (AG and
EDU), and energy consumption factors (ECS and PEC) into the regression. If there is high
multi-collinearity among the explanatory variables in a multiple regression model, it will
lead to inaccurate estimation. For this reason, multi-collinearity testing should be used
with the factors before performing geographically weighted regression. The basic form of
the regression model is:

yi = β0(ui, νi) + ∑
k
βk(ui, νi)xk,i + εi (11)

where i denotes the spatial location point (province) i; yi is the explanatory value for
dependent variable (direct RCEs) at location point i; (ui, vi) is the longitude and latitude
coordinates of i; β0(ui, vi) denotes the intercept parameters for location point i; xk,i is the
independent variable (GDP, AG, ECS, PEC, PCE, EDU); k is the number of the independent
variables (k = 1,2,3, . . . , n); βk(ui, vi) is a continuous function of geographical location,
which denotes the k-th coefficient of the independent variable at location point i, and it is
obtained by a local regression estimation, which varies across the geographical location; εi
is the error of i.

3. Results
3.1. Amount and Structure of Direct RCEs

The amount and structure of China’s direct RCEs from 2000 to 2019 are shown in
Figure 2 (the amount of China’s direct RCEs is calculated by Equation (1)). The total
direct RCEs of China show a significant increasing trend rising from 396.32 Mt in 2000 to
1411.69 Mt in 2019. Only the amount of coal-related direct RCEs went down, whereas the
direct RCEs generated by the other four energy sources went up. Specifically, coal-related
direct RCEs dropped from 211.90 Mt in 2000 to 137.23 Mt in 2019, and the share decreased
remarkably from 53.47% in 2000 to 9.72% in 2019. Conversely, the electricity-related direct
RCEs rose most remarkably from 114.70 Mt in 2000 to 699.14 Mt in 2019 and the share
increased from 28.94% in 2000 to 49.53% in 2019. The reasons for the difference in direct
RCEs generated by these two kinds of energy are the popularity of household appliances
and improvements in coal utilization efficiency in China. Oil-related direct RCEs also had a
relatively significant upward trend, increasing from 35.11 Mt in 2000 to 249.01 Mt in 2019;
the share rose from 8.86% to 17.64%. It should be noted that the share of oil-related direct
RCEs was greater than the share of direct RCEs generated by coal, natural gas, and heat in
2019. The main reason is that economic development and rising incomes have produced
improved living standards and demand for transport. In addition, economic development
boosts demand for cleaner energy, which explains the increase in direct RCEs induced by
natural gas during the investigated period. The direct RCEs generated by natural gas rose
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from 7.23 Mt in 2000 to 105.15 Mt in 2019; the share grew from 1.82% to 7.45%. Heat-related
direct RCEs also had an upward trend with CO2 emissions growing from 27.37 Mt to
221.16 Mt; the share increased from 6.91% in 2000 to 15.67% in 2019. In summary, the
amount and structure of direct RCEs varied significantly over the study period. Although
the share of coal-related direct RCEs dropped remarkably, the share of oil-related direct
RCEs rose. The share of direct RCEs caused by natural gas has risen, but the overall share
was relatively low. Moreover, given that electricity and heat are mainly produced by coal
in China, it can be seen clearly that the energy-using structure in the residential sector has
improved over the investigated time, but the structure has not been altered completely.
Therefore, it is necessary to promote emissions reduction and energy transition.
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3.2. Characteristics of Spatial Association Network

According to the corrected gravity model (Equation (2)), we calculated the spatial
association matrix to establish the spatial association network of China’s direct RCEs. To
reveal the characteristics of the spatial association network of China’s direct RCEs, we used
UCINET to visualize the network (Figure 3).
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3.2.1. Overall Network Characteristics

The spatial associations of China’s direct RCEs had a typical network structure and
an obvious center–edge structural feature. The number of associations of direct RCEs
has increased over the two decades (Figure 3). In this study, network density, network
connectedness, network efficiency, and network hierarchy are selected to describe the
overall network characteristics, they are calculated by Equations (5)–(8), respectively.

The number of network association relationships and the network density of China’s
direct RCEs both present a trend of fluctuating growth. The number of network association
relationships increased from 150 in 2000 to 192 in 2019. The network density rose from
0.1724 in 2000 to 0.2207 in 2019. The network connectedness always had a value of 1 over
the investigated period. This indicates that direct RCEs in China had universal direct or
indirect associations, and the interprovincial spatial associations were becoming stronger.
However, the maximum number of association relationships, 192 in 2019, shows a large
gap from the maximum possible number of association relationships of 870 (Figure 4). This
means the spatial association network of China’s direct RCEs is continuously optimizing,
but it is far from the best state.
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The network hierarchy and efficiency both had a downward trend. The network
hierarchy decreased from 0.6212 in 2000 to 0.519 in 2019, but it is still greater than 0.5
(Figure 4). This indicates that the interprovincial spatial associations of direct RCEs have
been strengthened. Although the hierarchical structure of the network is gradually being
broken, the network still has a strong spatial hierarchy. The network efficiency decreased
from 0.7586 in 2000 to 0.6798 in 2019. Although the network efficiency increased from 2000
to 2001, there was a decline in other years and a small fluctuation in the overall trend. This
further confirms that the spatial associations of direct RCEs became stronger.

3.2.2. Individual Network Characteristics

Individual network characteristics can be analyzed by degree centrality and between-
ness centrality. In this study, we used Equations (9) and (10) to calculate degree centrality
and betweenness centrality. The results in 2000 and 2019 are shown in Figure 5 and
Appendix A Table A3. The average degree centrality was 29.20 in 2000 and 36.55 in 2019.
The mean values of betweenness centrality in 2000 and 2019 were 2.55 and 2.29, respectively.
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Beijing, Shanghai, and Jiangsu were the top three provinces; their degree centrality and
betweenness centrality were greater than average in 2000 and 2019. Beijing, Shanghai,
and Jiangsu are economically developed regions in China. They had a higher level of
economic development and transport. For these reasons, they were at the center of the
spatial association network for China’s direct RCEs and had a significant influence on
the overall spatial associations for direct RCEs. It must be noted that they control the
spatial associations of other provinces in the network. Conversely, provinces such as Inner
Mongolia, Liaoning, Hebei, Xinjiang, Ningxia, and Jilin were at the edge of the spatial asso-
ciation network for China’s direct RCEs with a lower degree centrality and betweenness
centrality. They are concentrated in remoter geographical areas of northwest and northeast
China. These provinces had a relatively small economic development scale. Therefore, their
associations were more easily dominated by the provinces that occupy a central position in
the spatial network.

Land 2022, 11, x FOR PEER REVIEW 13 of 27 
 

China. These provinces had a relatively small economic development scale. Therefore, 
their associations were more easily dominated by the provinces that occupy a central po-
sition in the spatial network. 

 
Figure 5. The degree centrality and betweenness centrality of the spatial association network for 
China’s direct RCEs in 2000 and 2019. The detailed data are shown in Appendix Table A3. 

3.3. Spatial Clustering Analysis 
The results of spatial clustering analysis in 2000 and 2019 are shown in Figure 6 and 

Table 3. In 2000, cluster A contained 14 provinces; cluster B included 10 provinces; clusters 
C and D both contained three provinces. The spatial association network had 150 associ-
ations with 12 internal relationships and 138 external relationships. The ratio of expected 
internal relationships of cluster A was greater than the ratio of actual internal relation-
ships. Furthermore, the number of contacts received from outside was significantly lower 
than the number of contacts sent to the outside. Therefore, cluster A was the net spillover 
cluster. The ratio of expected internal relationships of cluster B was greater than the ratio 
of actual internal relationships, and the number of relationships sent was significantly 
larger than the number of relationships received. Thus, cluster B is also a net spillover 
cluster. The ratio of actual internal relationships of cluster C was smaller than the ratio of 
expected internal relationships. Cluster C not only sent relationships to the outside but 
also received relationships from the outside. The relationships received from the outside 
were more than those sent to the outside, and the internal relationships of cluster C ac-
count for a lower proportion. Therefore, cluster C was the brokers cluster and was an 
intermediary in the network. The ratio of actual internal relationships of cluster D was 
greater than the ratio of expected internal relationships, and the relationships received 
from the outside were much greater than the relationships sent to the outside. Thus, clus-
ter D was the net beneficial cluster. 

In 2019, cluster A contained 12 provinces; cluster B included 10 provinces; clusters C 
and D both contained four provinces. The spatial association network of China’s direct 
RCEs had 192 associations with 10 internal relationships and 182 external relationships. 
The ratio of expected internal relationships is 37.93%; the ratio of actual internal relation-
ships is 3.16%. Obviously, the ratio of expected internal relationships was greater than the 
ratio of actual internal relationships. Furthermore, the number of relationships received 

Figure 5. The degree centrality and betweenness centrality of the spatial association network for
China’s direct RCEs in 2000 and 2019. The detailed data are shown in Appendix A Table A3.

3.3. Spatial Clustering Analysis

The results of spatial clustering analysis in 2000 and 2019 are shown in Figure 6
and Table 3. In 2000, cluster A contained 14 provinces; cluster B included 10 provinces;
clusters C and D both contained three provinces. The spatial association network had
150 associations with 12 internal relationships and 138 external relationships. The ratio of
expected internal relationships of cluster A was greater than the ratio of actual internal
relationships. Furthermore, the number of contacts received from outside was significantly
lower than the number of contacts sent to the outside. Therefore, cluster A was the net
spillover cluster. The ratio of expected internal relationships of cluster B was greater
than the ratio of actual internal relationships, and the number of relationships sent was
significantly larger than the number of relationships received. Thus, cluster B is also a net
spillover cluster. The ratio of actual internal relationships of cluster C was smaller than
the ratio of expected internal relationships. Cluster C not only sent relationships to the
outside but also received relationships from the outside. The relationships received from
the outside were more than those sent to the outside, and the internal relationships of
cluster C account for a lower proportion. Therefore, cluster C was the brokers cluster and
was an intermediary in the network. The ratio of actual internal relationships of cluster D
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was greater than the ratio of expected internal relationships, and the relationships received
from the outside were much greater than the relationships sent to the outside. Thus, cluster
D was the net beneficial cluster.
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Table 3. The clusters’ spillover effect of spatial association network for China’s direct RCEs in 2000
and 2019.

Clusters

Receiving
Relationships

Sending
Relationships

Ratio of Expected
Internal
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Ratio of Actual
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Relationships a
Cluster Type

Inside Outside Inside Outside

2000

A 10 17 10 74 44.83% 11.90% Net Spillover
B 0 6 0 39 31.03% 0 Net Spillover
C 0 47 0 16 6.90% 0 Brokers
D 2 68 2 9 6.90% 18.18% Net Beneficial
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Table 3. Cont.

Clusters

Receiving
Relationships

Sending
Relationships

Ratio of Expected
Internal

Relationships

Ratio of Actual
Internal

Relationships a
Cluster Type

Inside Outside Inside Outside

2019

A 3 32 3 92 37.93% 3.16% Net Spillover
B 4 14 4 48 31.03% 6.00% Net Spillover
C 1 45 1 26 10.34% 3.70% Brokers
D 2 91 2 16 10.34% 11.11% Net Beneficial

a The ratio of the clusters’ numbers of internal relationships to the clusters’ total numbers of spillover relationships.

In 2019, cluster A contained 12 provinces; cluster B included 10 provinces; clusters C
and D both contained four provinces. The spatial association network of China’s direct
RCEs had 192 associations with 10 internal relationships and 182 external relationships. The
ratio of expected internal relationships is 37.93%; the ratio of actual internal relationships
is 3.16%. Obviously, the ratio of expected internal relationships was greater than the
ratio of actual internal relationships. Furthermore, the number of relationships received
from the outside was significantly lower than the number of relationships sent to the
outside. Therefore, cluster A was the net spillover cluster. It should be noted that cluster
B was defined as the net spillover cluster for the same reasons as cluster A. The ratio of
actual internal relationships of cluster C was smaller than the ratio of expected internal
relationships. The relationships received from the outside were more than those sent to
the outside, and the internal relationships of cluster C account for a lower proportion.
Therefore, cluster C was the brokers cluster in the network. Cluster D was the net beneficial
cluster, because the ratio of actual internal relationships was greater than the ratio of
expected internal relationships, and the relationships received from the outside were much
greater than the relationships sent to the outside.

To sum up, in 2000 and 2019, clusters A and B were the net spillover cluster; cluster
C was the brokers cluster; cluster D was the net beneficial cluster. The provinces that
were classified as clusters A, B, C, and D between 2000 and 2019 just changed slightly. The
provinces of cluster A were undeveloped and mostly had a higher proportion of coal energy
consumption than other clusters. These provinces were in central and western China. The
provinces of cluster B were mainly resource-rich but economically underdeveloped. These
provinces are in central, northern, and northeast China. Most provinces of cluster D were
in developed eastern China and had the lowest proportion of coal energy consumption. It
should be noted that the number of provinces that were classified as cluster A in 2019 is less
than that in 2000. Fujian and Hubei were not classified as the net spillover cluster (cluster A)
in 2019, but classified as the brokers cluster (cluster C). This change can be explained by the
following reasons. First, in 2000, the eastern coastal area was the center of China’s economic
development according to the strategy of preferential development of the east. Since the
implementation of the Central Rising Development Strategy in 2004, Hubei’s economy and
infrastructure have been developing rapidly. Wuhan, the capital of Hubei, has become the
economic and geographical center of China by being a “bridge” between the energy-rich
area in western China and the economically developed area in the Yangtze River Delta.
Secondly, since the construction of the economic zone on the west side of the strait in 2019,
Fujian has become increasingly connected to both the Pearl River Delta and the Yangtze
River Delta economic zones. Since Jiangsu implemented the Yangtze River Delta Regional
Integration Strategy in 2010 and the Yangtze River Economic Belt Development Strategy in
2016, the comprehensive development level of Jiangsu has been significantly improved.
Now, it is one of the provinces with the highest level of comprehensive development in
China. This is the reason Jiangsu was classified as the brokers cluster (cluster C) in 2000
and changed into a province of the net beneficial cluster (cluster D).

We calculated the density matrix to reflect the spillover effect among the clusters,
and examined the transmission mechanism of the direct RCE flow among provinces. The
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density of the spatial association network for China’s direct RCEs was 0.1427 in 2000 and
0.2207 in 2019, which were taken as the critical values. If the density of each cluster was
greater than the critical value, a value of 1 was assigned, otherwise, a value of 0 was
assigned. According to this rule, the image matrix was obtained (Table 4). The rows of
the image matrix represent the sending relationships; the columns denote the receiving
relationships; the diagonal lines represent the associations among the members within
the cluster.

Table 4. The density and image matrix of the spatial association network for China’s direct RCEs in
2000 and 2019.

Clusters
Density Matrix Image Matrix

A B C D A B C D

2000

A 0.055 0.014 0.905 0.81 0 0 1 1
B 0.021 0 0.233 0.967 0 0 0 1
C 0.262 0 0 0.556 0 0 0 1
D 0.071 0.133 0.222 0.333 0 0 1 1

2019

A 0.023 0.058 0.813 0.958 0 0 1 1
B 0.050 0.044 0.100 0.95 0 0 0 1
C 0.396 0.000 0.083 0.438 1 0 0 1
D 0.146 0.175 0.125 0.167 0 0 0 0

In 2000 and 2019, clusters A and B were the primary emitters of spillover relationships;
clusters A, B, and C sent relationships to other clusters; cluster D was the primary recipient
of spillover relationships and was associated with other clusters (Table 4). Clusters A and
B could deliver energy to the eastern economic development areas (clusters C and D) as
they had abundant coal, oil, and natural gas resources. Additionally, clusters A and B had
a higher proportion of coal consumption. Therefore, clusters A and B were important areas
that can develop clean energy and promote energy consumption structure transition. That
cluster C played an intermediary role in the network in 2000 and 2019 can be explained
by two points. First, Zhejiang is in the Yangtze River Delta, which has frequent economic
activity transactions and close population exchanges with Shanghai and Jiangsu. Secondly,
Guangdong has close economic ties with the Yangtze River Delta and the Beijing–Tianjin–
Hebei area. The provinces of cluster D are the economically developed Chinese provinces
with a relative lack of energy resources. Therefore, they need to receive a lot of energy from
other clusters to meet the needs of their economic development. These provinces have a
siphon effect on the other areas and the various elements such as population, technology,
and resource flow to cluster D. Therefore, cluster D is the core, final link of the spatial
association network of China’s direct RCEs; it is the priority area for energy transition and
CO2 reduction in China.

3.4. Driving Factors’ Analysis

The six driving factors were standardized (dimensionless) and were tested by the
variance inflation factor (VIF) before performing regression analysis. The results show that
there is no multi-collinearity among the factors (VIF ≤ 7.5), and regression analysis can be
performed (Table 5).

Table 5. The multi-collinearity diagnosis results of driving factors for China’s direct RCEs in 2000
and 2019.

VIF GDP AG ECS PEC PCE EDU

2000 1.679 2.391 1.602 2.899 5.502 5.046
2019 1.670 1.168 1.716 1.778 5.634 5.673
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Table 6 presents the overall estimates of the GWR model and the average regression
coefficient of each factor for 30 provinces in 2000 and 2019, which were calculated by
Equation (10) using ArcGIS 10.2 software. It can be seen from the estimates that the overall
fit of the GWR model was relatively good. From the perspective of coefficients’ average
values, the coefficients of GDP, PEC, PCE, and AG were the top four from 2000 to 2019. The
ranking of the regression coefficient for each factor changed slightly in 2019 compared with
2000. Specifically, the regression coefficient of EDU changed from fifth to sixth, and the
regression coefficient of ECS changed from sixth to fifth. In other words, the influence of
EDU was weaker than ECS in 2019.

Table 6. The overall estimates of the geographically weighted regression model and the average
regression coefficient of each factor for 30 provinces in 2000 and 2019.

Overall Estimates Average Regression Coefficients

R2 Adjust R2 Bandwidth AICC GDP AG ECS PEC PCE EDU

2000 0.762 0.666 2789137.739 472.742 0.893 0.247 0.121 0.794 −0.702 −0.134
2019 0.798 0.745 35816131.810 540.503 0.941 0.192 0.104 0.439 −0.381 −0.011

To determine the variation of the regression coefficient of each factor across provinces,
the regression coefficient for each province is presented in Figure 7. There is an upward
trend for every province for the influence of GDP, but the influence of other factors de-
creased with increasing years. GDP, AG, ECS, and PEC had positive contributions to the
growth of each province’s direct RCEs, whereas PCE and EDU had negative impacts. GDP,
PEC, and PCE had significant influences on the growth of direct RCEs, which indicates they
had stronger explanatory power on direct RCEs. Therefore, the influences of GDP, PEC,
and PCE deserve special attention. It should be noted that GDP and PCE are economic
factors and GDP had the greatest influence. Although demographic factors (AG and ECS)
had insignificant influence, the influence of AG was greater than EDU. Therefore, consider-
ing the influence of economy, energy consumption, and demography on direct RCEs, we
focus on analyzing the spatial and temporal evolutions of the influences of GDP, PEC, and
AG. We present their regression coefficients on the map of China using ArcGIS software
(Figures 8–10).

The GDP had a positive contribution to the growth of direct RCEs and, except for
Xinjiang, the contribution for each province’s direct RCEs increased slightly over the
investigated period (Figure 8). The primary reason is that energy demand increases with
economic development, but energy utilization technology and environmental awareness
of residents also improve. Significantly, this phenomenon is more pronounced in areas
with a higher level of economic development. The positive influence of GDP displays a
significant geographic variation and the degree of influence on direct RCEs was gradually
enhanced from the east coastal area of China to western China from 2000–2019. The eastern
coastal area of China has a higher level of economic development and energy utilization
efficiency. Although the economic growth rate of western China has accelerated since the
Western Development Strategy was implemented, there was a higher proportion of coal
consumption in western China and less consistent economic development. Therefore, with
the combination of the above reasons, the influential effect of GDP was gradually enhanced
from the eastern coastal area of China to western China.

The positive influence of PEC was significant, but decreased during the investigated
period (Figure 9). This is related to improvements in energy utilization efficiency in China.
The spatial distribution for the positive influence of PEC in each province from 2000 to
2019 varied widely. In 2000, the greatest positive impact was in the eastern coastal area of
China. However, in 2019, the greatest positive impact was in northeast China; southwest
and northwest China had a smaller positive impact. Although the eastern coastal area has
been the key region of China’s economic development since the reform and opening up,
the development pattern has not been transformed yet and awareness of energy saving



Land 2022, 11, 1039 17 of 26

among residents was lacking in 2000. This led to the fact that the eastern coastal area of
China is the region with the strongest positive influence in 2000. Southwest and northwest
China have responded to national policies that positively promote clean energy production
and energy consumption structure transition, so have achieved significant results. For
this reason, southwest and northwest China had a smaller positive impact of PEC in 2019.
Additionally, northeast China is China’s heavy industrial base and its industrial structure
and energy consumption structure cannot be fundamentally adjusted in a short time. Thus,
in 2019, the greatest positive impact of PEC was in northeast China.
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AG had a positive impact on direct RCEs, but the positive impact was insignificant
and weakening (Figure 10). The main reason is that population aging deepening and popu-
larization of electrified equipment had led to elderly people using electrified equipment
more frequently. However, the elderly Chinese are inclined to travel on foot or by public
transport. They also have a strong sense of thrift and frugality, which is consistent with the
reality of China. The impact of AG shows a large spatial distribution difference between
2000 and 2019. The degree of influence gradually increased from the southeast coastal
area of China to northwest China in 2000. However, in 2019, AG in northeast China had
the greatest impact on direct RCEs, which resulted from various factors such as serious
population aging and irrational industrial structure in northeast China.

4. Discussion

It would be meaningful to compare the results of our study with previous studies.
The spatial associations of direct RCEs show an obvious spatial network structure and
the number of associations increased during the investigated period. Beijing, Shanghai,
and Jiangsu were at the center of the spatial association network for China’s direct RCEs.
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The network characteristics of the spatial association network for China’s direct RCEs are
similar to the network characteristics for China’s CO2 emissions [64].

Currently, some advanced concepts of social network analysis have already been
proposed and used to address some issues in other fields. These advanced concepts
include a multi-dimensional social network-based model [65], the concept of scope in a
multi-IoT scenario [66], trust and reputation in a multi-IoT scenario [67], colored social
networks [68], and a social network analysis-based classifier (SNAc) [69]. Ucer et al.
developed SNAc, which allows building the model based on the correlation between
samples [69]. Corradini et al. used a multi-dimensional social network-based model to
investigate negative reviews from multiple dimensions [65]. In our study, we give some
policy implications for energy transition based on results. It is important to study whether
these policy implications are widely accepted by the public. Therefore, a multi-dimensional
social network-based model may be applied to study the public’s positive and negative
feedback on these policy implications on social platforms. In a multi-IoT scenario, there
are some analogies between scope and some other concepts used in sociology such as
reputation, trust, centrality, and power. The concepts of centrality and power were applied
in our study. In a multi-IoT scenario, Cauteruccio et al. defined the concept of scope, and
proposed two formalizations of this concept, allowing them to calculate its values [66];
Ursino and Virgili proposed a context-aware approach that is not limited to certain specific
scenarios to evaluate trust and reputation of things [67]. Chen proposed a novel trust
inference model to assess the trustworthiness of mobile social networks. This model is a
multi-dimensional fuzzy trust inferring approach introducing a multi-dimensional trust
metric to reflect the complexity of trust. Moreover, this model provides more detailed
analysis and higher accuracy in trust assessment [70]. In a social context, investigating
trust and reputation of things is useful, and the evaluation of service quality is one of
its applications [67]. Carbon inclusion is a new direction for reducing CO2 emissions
in the residential sector of China. The Carbon Inclusion Platform and Carbon Inclusion
Cooperation Network are designed for this direction. Combining the Carbon Inclusion
platform with the Internet of Things (IoT) to stimulate reduction behaviors of residents
should be considered in our future work. In addition, in a multi-IoT scenario, the scope of
services, the quality of services, the reputation, and trust in the Carbon Inclusion Platform
and Carbon Inclusion Cooperation Network should be evaluated by a suitable approach.
Lo Giudice et al. proposed a network analysis-based approach to support experts in their
analyses of subjects with mild cognitive impairment and Alzheimer’s disease [68]. The
important tool used in this approach is the concept of a clique. Given that the concept of
a clique has not been applied to study association networks of CO2 emissions, it may be
considered in our future work provided that the conditions for its use are met.

We applied the GWR model to analyze the driving factors of direct RCEs. It can be
found that per capita consumption expenditure had a greater influence on direct RCEs,
which is similar to the finding of Zha et al. [71]. Rong et al. also found that per capita
consumption expenditure was one of the main drivers of the increment in direct RCEs in
central China [72]. In addition, the effect of energy consumption structure on direct RCEs
was negative in the findings of Wang et al. [45], but the influence of energy consumption
structure is positive in our study. The reason is that there is a different measure of energy
consumption structure between the two studies. We found that the per capita energy
consumption had a large positive effect on direct carbon emissions, but the impact on
each province was different. Yosuke et al. came to a similar conclusion in their study of
sub-national CO2 emissions in Japan’s household sector [60]. However, there are some
limitations in this study with using a GWR model to analyze the driving factors of di-
rect RCEs. First, direct RCEs may be influenced by the number of households [38], per
capita household income [39], energy intensity [38], population size, and urbanization [37].
However, this study just analyzed six drivers: gross national product (GDP), per capita
consumption expenditure (PCE), energy consumption structure (ECS), per capita energy
consumption (PEC), population aging (AG), and educational level (EDU). Moreover, this
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study only explored the driving factors influencing direct RCEs but did not pay any at-
tention to studying the influencing mechanism of the role that each cluster plays in the
spatial association network of direct RCEs. In addition, GWR extends the traditional linear
regression framework by allowing local rather than global parameters [73]. GWR also faces
a potential endogeneity issue (occurring when an independent variable is correlated with
the error term) of a traditional linear regression framework [74]. However, in our study,
we did not pay attention to discussing the endogeneity that probably exists. Meanwhile,
most researchers have not discussed potential endogeneity when applying GWR to address
the issue of driving factors in the field of energy consumption and CO2 emissions, such as
Chen et al. [75], Sheng et al. [44], Qin et al. [76], and Yang et al. [77]. Thus, this limitation
should be given greater attention in the future.

5. Conclusions and Suggestions
5.1. Conclusions

Taking 30 provinces of China as an example, we analyzed the spatiotemporal evolution
characteristics and driving factors of the direct RCEs. The conclusions are set out below.

From 2000 to 2019, the total direct RCEs rose from 396.32 Mt to 1411.69 Mt. The coal
consumption and electricity consumption were the primary sources of direct RCEs. Only
the amount and share of coal-related direct RCEs went down; the direct RCEs generated by
the other four energy sources increased.

From 2000 to 2019, the spatial associations of direct RCEs in China show an obvious
spatial network structure. The number of associations was increasing, but it still had strong
spatial hierarchical characteristics. Beijing, Shanghai, and Jiangsu were at the center of the
spatial network and were classified as the net beneficiary cluster (cluster D) in 2019. These
provinces had a significant influence on the spatial associations. Provinces such as Yunnan,
Shanxi, Xinjiang, Gansu, Qinghai, and Guizhou were classified as the net spillover cluster
(clusters A and B). Zhejiang, Guangdong, Fujian, and Hubei were classified as the brokers
cluster (cluster C) in 2019. The role of each cluster was different in the network. Clusters A
and B were senders of direct RCE association relationships. Thus, they were facing two
important issues, deliver clean energy to other clusters and promote the transition of energy
consumption structure. Cluster C played the role of a “bridge” in the network. Cluster D
was the core and final link of the spatial network. Thus, cluster D should be the critical and
priority area of residential CO2 emissions reduction and energy transition in China.

GDP, PCE, and PEC had a significant influence on the growth of direct RCEs, and
AG, ECS, and EDU had an insignificant influence. GDP, AG, ECS, and PEC had a positive
influence on the growth of direct RCEs, whereas PCE and EDU had a negative impact.
In 2019, from the perspective of coefficients’ absolute values, the influence levels of the
six driving factors on the direct RCEs were: GDP (0.941), PEC (0.439), PCE (−0.381), AG
(0.192), ECS (0.104), EDU (−0.011).

5.2. Suggestions

Based on the above conclusions, suggestions for China’s emissions reduction and
energy transition are proposed as follows.

First, coal consumption substitution and transition should be promoted. Coal con-
sumption and electricity consumption were the primary sources of direct RCEs. This
indicates that promoting the substitution of coal and electricity consumption is an effective
scientific way to realize emissions reduction and energy transition. In other words, coal
consumption should be strictly and reasonably controlled, and the use of clean coal should
be accelerated. New coal power projects should be controlled and electricity generated by
renewable energy should be promoted.

Secondly, the economic development pattern should be modified to be greener and be
in the direction of greater sustainability and better health; a favorable social environment
for low-carbon energy transition and emissions reduction should be created. Northwest
China where the GDP contributed most to the growth of direct RCEs and the area where
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clusters A and B were should give special consideration to the above measures. Beijing,
Shanghai, and Jiangsu were at the center of the direct RCE spatial network and were
classified as cluster D. They should use their central position in the network to take a lead
in accelerating a comprehensive green transition of economy and society, and play the
role of a growth pole for high-quality development, and drive economic development
and industrial structure upgrading in surrounding areas. Hubei, Zhejiang, Fujian, and
Guangdong should strengthen the efficiency of energy transmission on the premise of
promoting economic development of the region.

Thirdly, the shift of residential consumption patterns to be greener for energy transition
in terms of the residential sector’s consumption structure should be advocated; improving
energy utilization efficiency and stimulating the utilization of clean energy are necessary.
On one hand, the proportion of coal consumption should be reduced for an increasing
proportion of natural gas and other clean energy supplies. This measure should be imple-
mented with special consideration in the area where clusters A and B were located and in
northeastern China where PEC had the greatest influence in 2019. On the other hand, each
province ought to develop clean energy based on its real conditions. Specifically, renewable
energy such as solar energy and wind energy should be vigorously developed in western
China, thereby continuously exporting clean energy to Shanghai, Beijing, Tianjin, Jiangsu,
and other provinces with a relative lack of resources but which are highly developed. As
the core, final link of the spatial association network for China’s direct RCEs, Shanghai,
Beijing, Tianjin, and Jiangsu should improve the utilization efficiency of carbon-containing
resources and advocate for the shift of consumption patterns of residents to be greener.
These provinces should strengthen their demonstration role of CO2 emissions reduction
and transition for energy consumption structure.

Finally, education should be developed to enhance the awareness of a low-carbon
lifestyle and provide a universal foundation for emissions reduction and energy transition.
Demographic factors had a certain impact on the direct RCEs. Improved education is
conducive to enhancing awareness of energy saving and emissions reduction. China has
implemented a three-child policy in response to the adverse socio-economic impact of
population aging. The number of newborns in China will increase as a result. Given that,
making greater efforts to develop education is particularly important for energy transition
for now and the future. It should be noted that the impact of AG is strongest in northeast
China. Thus, enhancing the awareness of a low-carbon lifestyle and encouraging people
to use greener products might be an effective method for emissions reduction and energy
transition in northeast China.
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Appendix A

Table A1. The carbon emission coefficients and standard coal coefficients of each energy type.

Energy Type Emission Coefficient
(t-CO2/t)

Standard Coal Coefficient
(kg ce/kg)

Raw coal 1.977 0.7143
Washed coal 2.488 0.9000

Other washed coal 0.795 0.2857
Briquettes 1.717 0.6000

Coke 3.019 0.9714
Coke oven gases 7.421 a 0.6143 b

Other gases 7.421 a 0.3570 b

Natural gas 21.84 a 1.3300 b

Liquefied natural gas 2.836 1.7572
Crude oil 3.102 1.4286
Gasoline 3.185 1.4714
Kerosene 3.153 1.4714

Diesel 3.185 1.4571
Lubricants 2.948 1.4143

Fuel oil 3.126 1.4286
Liquefied petroleum gas 2.983 1.7143

Other petroleum products 2.948 1.2000
a The unit is t-CO2/104 m3. b The unit is kg ce/m3.

Table A2. The carbon emission coefficients of China’s regional grids.

Province
Emission

Coefficient
(kg/kw·h)

Grid Affiliation Region
Emission

Coefficient
(kg/kw·h)

Grid
Affiliation

Beijing 0.8292 NCPG Tianjin 0.8733 NCPG
Shanxi 0.8798 NCPG Inner Mongolia 0.8503 NCPG/NECPG

Jilin 0.6787 NECPG Heilongjiang 0.8158 NECPG
Jiangsu 0.7356 ECPG Zhejiang 0.6822 ECPG
Fujian 0.5439 ECPG Jiangxi 0.7635 CCPG
Henan 0.8444 CCPG Hubei 0.3717 CCPG

Guangdong 0.6379 SCPG Guangxi 0.4821 SCPG
Chongqing 0.6294 CCPG Sichuan 0.2891 CCPG

Yunnan 0.4150 SCPG Shaanxi 0.8696 NWPG
Qinghai 0.2263 NWPG Ningxia 0.8184 NWPG
Hebei 0.9148 NCPG Hunan 0.5523 CCPG

Liaoning 0.8357 NCPG Hainan 0.6463 SCPG
Shanghai 0.7934 ECPG Guizhou 0.6556 SCPG

Anhui 0.7913 ECPG Gansu 0.6124 NWPG
Shandong 0.9236 NCPG Xinjiang 0.7636 NWPG

The NCPG, NECPG, ECPG, CCPG, SCPG, and NWPG represent northern China power grid, northeast China
power grid, eastern China power grid, central China Power grid, southern China power grid, and northwest
China power grid, respectively.

Table A3. The detailed degree centrality and betweenness centrality of the spatial association network
for China’s direct RCEs in 2000 and 2019.

Province
Degree Centrality

(%) Betweenness Centrality

2000 2019 2000 2019

Beijing 93.10 79.31 25.22 12.42
Tianjin 58.62 72.41 8.67 10.05
Hebei 6.90 13.79 0.00 0.03
Shanxi 13.79 20.69 0.06 0.11
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Table A3. Cont.

Province
Degree Centrality

(%) Betweenness Centrality

2000 2019 2000 2019

Inner Mongolia 10.34 13.79 0.04 0.06
Liaoning 10.34 13.79 0.04 0.06

Jilin 13.79 17.24 0.06 0.12
Heilongjiang 17.24 17.24 0.14 0.12

Shanghai 89.66 89.66 20.04 14.98
Jiangsu 68.97 82.76 8.38 12.56

Zhejiang 58.62 62.07 5.82 5.00
Anhui 20.69 24.14 0.16 0.27
Fujian 27.59 44.83 0.45 2.09
Jiangxi 20.69 24.14 0.16 0.27

Shandong 17.24 20.69 0.07 0.26
Henan 24.14 27.59 0.42 0.39
Hubei 17.24 48.28 0.09 1.71
Hunan 20.69 34.48 0.16 0.51

Guangdong 51.72 44.83 3.55 2.09
Guangxi 24.14 37.93 0.22 0.63
Hainan 20.69 27.59 0.09 0.34

Chongqing 24.14 37.93 0.33 0.60
Sichuan 20.69 31.03 0.21 0.51
Guizhou 24.14 31.03 0.22 0.51
Yunnan 20.69 31.03 0.21 0.51
Shaanxi 17.24 27.59 0.14 0.34
Gansu 31.03 41.38 1.09 1.31

Qinghai 20.69 31.03 0.21 0.44
Ningxia 17.24 24.14 0.06 0.12
Xinjiang 13.79 24.10 0.04 0.34

Mean 29.20 36.55 2.55 2.29
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