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Abstract: Ecosystem services (ESs) are irreplaceable natural resources, and their value is closely
related to global change and to human well-being. Research on ecosystem services value (ESV) and
its influencing factors can help rationalize ecological regulatory policies, and is especially relevant in
such an ecologically significant region as the Yellow River Basin (YRB). In this study, the ecological
contribution model was used to measure the contribution of intrinsic land use change to ESV, the
bivariate spatial autocorrelation model was applied to investigate the relationship between land use
degree and ESV, and the geographical detector model (GDM) and geographically weighted regression
(GWR) were applied to reveal the impact of natural and socio-economic factors on ESV. Results
showed that: (1) The total ESV increased slightly, but there were notable changes in spatial patterns
of ESV in the YRB. (2) Land use changes can directly lead to ESV restoration or degradation, among
which, conversion from grassland to forest land and conversion from unused land to grassland
are vital for ESV restoration in the YRB, while degradation of grassland is the key factor for ESV
deterioration. (3) According to GDM, NDVI is the most influential factor affecting ESV spatial
heterogeneity, and the combined effect of multiple factors can exacerbate ESV spatial heterogeneity.
(4) GWR reveals that NDVI is always positively correlated with ESV, GDP is mainly positively
correlated with ESV, and population density is mainly negatively correlated with ESV, while positive
and negative correlation areas for other factors are roughly equal. The findings can provide theoretical
support and scientific guidance for ecological regulation in the YRB.

Keywords: ecosystem services value (ESV); natural and socio-economic factors; ecological contribu-
tion model; geographical detector model (GDM); geographically weighted regression (GWR); Yellow
River Basin (YRB)

1. Introduction

Ecosystem services (ESs) refer to all benefits obtained by humans from the natural
environment [1]. The ecosystem services value (ESV) is a measure of ESs and is an important
indicator of ecological health, which includes transfer of ESs into practical applications [2].
To ensure territorial ecological security, adapt to global climate change, and achieve high-
quality development, it is essential to monitor and maintain ESV [3]. However, with
socio-economic development and population growth, high-intensity human activities have
had a huge impact on ecosystems [4], resulting in a slew of global ecosystem deterioration
issues such as climate change [5], ozone layer destruction [6], biodiversity loss [7], water
pollution [8] and land desertification [9]. With the increasing prominence of environmental
issues, there exists an urgent need to investigate the spatiotemporal evolution of regional
ESV and its influencing factors, in order to achieve a balance between ecosystems and
socio-economic sustainable development.
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Many studies have shown that ESV is vulnerable to multiple impacts from natural
changes and human activities, with land use and cover change (LUCC) being the most
important influencing factor on terrestrial ESV [10–12]. Changes in land use type cause
changes in basic ecological elements, hence influencing ESV directly, although the under-
lying relationships are complex [13]. Statistical analysis, correlation analysis, regression
analysis, redundancy analysis, principal component analysis, and other methods have been
employed to explore the relationship between LUCC and ESV [14–17]. Wang et al. [18],
for example, used a geographically weighted regression (GWR) model to investigate the
effect of LUCC on ESV, finding that forest land and grassland had the greatest effect on
ESV. Using bivariate spatial autocorrelation, Lei et al. [19] explored the link between land
use degree and ESV and discovered a negative correlation. However, most studies have
explored only the effect of area of different land use types on ESV, or the effect of land
use degree on overall ESV. Using an ecological contribution model of land use change,
we attempted to reveal the potential impact on ESV changes of transformation processes
of land use type. In addition, we employed a bivariate spatial autocorrelation model to
investigate the relationship between degree of land use and the value of each ES, in order
to uncover a more nuanced relationship between them.

Furthermore, a number of natural and socio-economic factors have a substantial
impact on overall ESV through exerting varied effects on the inherent aspects of ESs [20,21].
For example, Zhang et al. [22] found that an increase in average precipitation leads to
an increase in lake and wetland area, which in turn leads to an improvement in regional
ESV. Dai et al. [23] showed that when population density exceeds a threshold, there is a
risk of ecological undersupply, which has a negative impact on ESV. When studying the
effects of natural and socio-economic factors on ESV, it is necessary to consider a wide
range of factors and their interactions. The geographical detector model (GDM) is a new
statistical method for revealing the impact of multiple influencing factors and their linkages
on a geographical phenomenon [24]. It has two major advantages. First, it can identify
relationships between a complex set of factors and a wide range of geographical phenomena,
without any assumptions or restrictions regarding independent and dependent variables,
allowing it to be used without removing multi-collinear factors [24–26]. Second, it can
quantitatively extract the implicit interrelationships between pairs of factors and obtain
useful findings [27]. The GDM is now widely utilized in a variety of disciplines, and an
increasing number of researchers have employed it to investigate the factors that influence
ESV [28,29]. In this study, the GDM’s Factor Detector and Interaction Detector tools were
used to reveal the relative roles of the multiple natural and socio-economic factors, as well
as their interactions. However, the GDM can only quantify the effect magnitude of various
factors, and the directions of influence could not be determined [30]. To investigate the
direction and spatial variation of each factor’s effect on ESV, we further adopted the GWR,
which can capture the correlation between spatial objects themselves, as well as reflect the
spatial heterogeneity and direction of influence at different geographical locations through
the regression coefficient [31].

The Yellow River Basin (YRB) is a key ecological barrier and economic belt in China,
and plays a critical role in China’s socio-economic development and ecological security [32].
In recent years, the Chinese government has placed high priority on ecological conservation
and the green development of the YRB, implementing initiatives such as the Three-North
Shelterbelt Project, the “Grain-for-Green” and Natural Forest Protection programs, which
have begun to bear fruit [33–35]. However, some areas of ecological degradation still
exist in the YRB, where the ESs have been severely damaged. For example, the Shaanxi-
Gansu-Ningxia region, in the upper and middle of the YRB, suffers from severe soil erosion
and a fragile ecological environment [36]. Severe silt deposition frequently generates
river overhangs in the lower YRB, flooding is frequent, and ESs are grave danger [37].
To optimize the YRB’s ecological structure and promote high-quality development, it is
critical to identify the vulnerable ESV areas in the YRB and reveal their influencing factors.
Specifically, the objectives of our study are: (1) to map the spatial distribution of ESV and
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identify vulnerable areas of ESV in the YRB; (2) to quantify the impact of LUCC on ESV and
reveal the extent of that impact; (3) to investigate the impact of natural and socio-economic
factors on ESV, and reveal the interactions of multiple factors; and (4) to propose relevant
recommendations based on the findings.

2. Materials and Methods
2.1. Overview of the Study Area

The Yellow River is the second longest river in China, with a total length of 5464 km.
It is a major biodiversity gathering region as well as an ecological security barrier within
China. This study defines the provinces through which the Yellow River flows, viewing
the YRB in a broad sense, based on the Yellow River and physical geographic watersheds,
with the provincial administrative regions considered as the units. Since most of Sichuan
Province belongs to the Yangtze River Basin, the other eight provinces where the Yellow
River flows were used as research areas in this study (Figure 1). The terrain in the YRB
is complex. With an average altitude of around 4000 m, the western region is made up
of a succession of mountains with permanent snow and glacier landforms. The central
region has a loess landform with loose soil and considerable soil erosion, with an average
altitude of 1000 m to 2000 m. The Yellow River’s alluvial plain makes up the majority of
the eastern area. The overall ecological quality in the YRB is poor due to substantial land
degradation including soil erosion and desertification. It is critical to evaluate the YRB’s
ecological condition, identify its ecological weak spots, to provide scientific guidance for
ecological protection and spatial management, and build its ecological barrier status.
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2.2. Data Sources

This study used basic geographical data, such as LUCC, administrative boundaries,
grain yield per unit area and grain price, and data on natural and socio-economic factors
of ESV change (Table 1). The LUCC data of 1990, 2000, 2010 and 2018, with a spatial
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resolution of 30 m × 30 m, were obtained from the Resources and Environmental Sciences
and Data Center, Chinese Academy of Sciences (https://www.resdc.cn/ (accessed on
20 November 2021)). The original LUCC data contains 29 land use types, which we reclas-
sified into 6 categories (i.e., cropland, forest land, grassland, water bodies, and unused
land). The administrative boundary data of each administrative unit was taken from the
1:400,000 database of the National Geomatics Center of China (http://www.ngcc.cn/ngcc/
(accessed on 22 November 2021)). Using sown area and grain yield, grain yield per unit
area was estimated, with data coming from the statistical yearbook of each region. The
grain price data came from the China Agricultural Product Price Survey Yearbook.

Table 1. List of basic data information.

Type Name Source Year Precision

Statistics
Grain sown area

Statistical Yearbook 2018 ProvincialGrain yield
Grain price

Vectors

Administrative
boundary The 1:400,000 database of the

National Geomatics Center of China
(http://www.ngcc.cn/ngcc/

(accessed on 22 November 2021))

2017 -River map
Road map

City location

Rasters

LUCC
The Resources and Environmental
Sciences and Data Center, Chinese

Academy of Sciences
(https://www.resdc.cn/ (accessed

on 20 November 2021))

1990, 2000,
2010, 2018 30 m

DEM - 250 m
Precipitation 2015

1 km
NDVI 2018

Population density
2015GDP

The natural factors included elevation, slope, aspect, soil types, soil erosion, precipita-
tion, temperature, vegetation types, and NDVI. Socio-economic factors included population
density, GDP, road maps, river maps, railway maps, county location, city location, and
provincial capital location. The DEM was processed in ArcGIS 10.7 to produce the elevation,
slope, and aspect maps. The Euclidean Distance Tool of ArcGIS 10.7 was used to create
the distance maps. Data for other influencing factors were obtained from the Resources
and Environmental Sciences and Data Center, Chinese Academy of Sciences. Finally, using
the ArcGIS 10.7 software, all the data were converted to raster data with a resolution
of 1000 m × 1000 m, and the influencing factors data were discretized to type data sets
according to Jenks (Figure 2). In addition, the mapping and tabulation were processed at
the prefecture-level city scale.

2.3. Methods
2.3.1. LUCC Evolution Analysis Model

(1) Land use transfer matrix

The transfer matrix of land use can depict the changes in various land use types through
time and the amount of change from one land use type to another [38]. It is based on a
grid-by-grid description of the change from the initial state to the final state, reflecting the
transformation of land use from moment T to moment T + 1, which can reveal the spatial
and temporal evolution of land use patterns. The transfer matrix is described as follows:

Sij =


s11 s12
s21 s22

. . . s1n

. . . s2n
. . . . . .
sn1 sn2

. . . . . .

. . . snn

 (1)

https://www.resdc.cn/
http://www.ngcc.cn/ngcc/
http://www.ngcc.cn/ngcc/
https://www.resdc.cn/
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where Sij represents the area of LUCC change from type i to type j, and snn denotes the
LUCC type before and after transfer.
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(2) Calculation of land use degree

The comprehensive index of land use degree is a metric for assessing the extent to
which land is used by humans. Different land use types were assigned to distinct values
to represent the level of human utilization [39]. Specifically, built-up land was graded 4,
cropland graded 3, forest land, grassland and water bodies were graded 2, and unused
land was graded 1. The formula is as follows:

L = ∑n
i=1 AiCi (2)

where L is the comprehensive index of land use degree; Ai is the grade of different land use
type, and Ci is the proportion of land use type i to the total area.
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2.3.2. ESV Evaluation Model

To evaluate ESV, this study adopted the value coefficient method modified by Xie
et al. [40]. Specifically, the economic value of food supply provided by cropland was
defined as the standard value, and the ESV of all other land use types was converted into
equivalent values corresponding to the standard value. The economic value of food supply
equals to 1/7 of the estimated value of grain yield in the YRB, which can be estimated
based on the grain yield per unit area of the YRB and the average grain price in 2018, which
is 2.08 × 105 CNY·km−2·a−1 (1 USD = 6.70 CNY). The value of each type of ESs provided
by different land use types is shown in Table 2. The ESV and its changes in the YRB can be
estimated with the following formulas:

ESV = ∑n
i=1(LUCi ×VCi) (3)

AESV =
∑n

i=1(LUCi ×VCi)

∑n
i=1 LUCi

(4)

C =
ESVt2 − ESVt1

ESVt1
× 100% (5)

where ESV is ecosystem services value (CNY), AESV is the average ESV (CNY·km−2), VCi
is the ESV coefficient from land use type i, and LUCi is the area of land use type i, C is the
rate of change of ESV, ESVt1 and ESVt2 represent ESV at t1 and t2, respectively (CNY).

Table 2. ESV coefficient of different land use type in the YRB (CNY·km−2·a−1).

Ecosystem Services Cropland Forest Land Grassland Water
Bodies

Unused
Land

Supply services Food supply 2083.02 687.40 895.70 926.94 41.66
Raw material 812.38 6207.40 749.89 614.49 83.32

Regulation
services

Gas regulation 1499.77 8998.65 3124.53 3041.21 124.98
Climate regulation 2020.53 8477.90 3249.51 16,257.98 270.79

Hydrological
regulation 1603.92 8519.55 3166.19 33,547.05 145.81

Waste disposal 2895.40 3582.80 2749.59 30,464.18 541.59

Support services
Soil conservation 3062.04 8373.74 4665.97 2499.62 354.11

Biodiversity
maintenance 2124.68 9394.42 3895.25 7415.55 833.21

Cultural services Aesthetic landscape 354.11 4332.68 1812.23 9508.99 499.93

Total 16,455.86 58,574.54 24,308.85 104,276.02 2895.40

2.3.3. ESV Changes in Response to LUCC

(1) Ecological contribution model of land use change

To calculate how land use change contributes to ESV change, we used the ecological
contribution model of land use change. This method can clearly show the direction and extent
of the contribution of different land use changes to ESV change, and facilitate the identification
of the main types of land use change that affect ESV [41]. Its formula is as follows:

ELi−j =
(VCj −VCi)× LUCi−j

∑n
i=1 ∑n

j=1
[
(VCj −VCi)× LUCi−j

] (6)

where ELi−j is the contribution of land use change to ESV change, VCi and VCj is the
coefficient from ESs type i and type j, LUCi−j is the total area converted from land use type
i to type j.
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(2) Bivariate spatial autocorrelation model

LUCC can cause ESV variation. The local bivariate spatial autocorrelation proposed
by Anselin [42] was used to investigate the spatial correlation between land use degree and
ESV. Its formula is as follows:

Ii
kl = zi

k ∑j wijz
j
l (7)

where wij is the spatial weight matrix, Xi
k represents the value of attribute i of unit k, X j

l
represents the value of attribute l to unit j, Xk and Xl are the average values of attributes k
and l, respectively, σk and σl are the variances of attributes k and l, respectively.

2.3.4. Geographical Detector Model (GDM)

In this study, the average ESV was taken as the dependent variable, 17 natural and
socio-economic factors were taken as independent variables, and the GDM was used to
investigate the individual impacts of each factor and their interactions, as well as the degree
of impact on spatial heterogeneity of the average ESV in the YRB.

The GDM is composed of Factor Detector, Interaction Detector, Risk Detector and
Ecological Detector, which can be used to detect spatial heterogeneity and its influencing
factors [24]. In this study, the Factor Detector and Interaction Detector tools were used to
explore the impact of natural and socio-economic factors on ESV.

(1) Factor Detector

The Factor Detector uses the relationship between the within-strata variance and
the variance of the entire region to measure the explanatory degrees of independent to
dependent variables. The formula is as follows:

q = 1− 1
Nσ2 ∑L

h=1 Nhσ2
h (8)

where q measures the influence degree of each influencing factor on the dependent variable
ESV, and its value is within [0, 1]. The larger the q value, the stronger the influence of the
factor on ESV. h = 1, 2, . . . , L represents the strata of influencing factors. Nh and N are the
number of samples in strata h and the entire region, respectively. σ2

h and σ2 are the variance
of influencing factors in strata h and the entire region, respectively.

(2) Interaction Detector

The Interaction Detector is used to quantify the interaction between different factors,
i.e., wheter two factors have stronger or weaker effects on ESV when combined than when
considered separately. The interaction effects of influencing factors were judged by the
relationship between q(xi ∩ xj), q(xi), and q(xj) based on the following formulas:

If min (q(xi), q(xj)) < q(xi ∩ xj) < max (q(xi), q(xj)), it represents single-factor nonlinear weakening.
If q(xi ∩ xj) > max (q(xi), q(xj)), it represents two-factor enhancement.
If q(xi ∩ xj) > q(xi) + q(xj), it represents nonlinear enhancement.
If q(xi ∩ xj) = q(xi) + q(xj), it represents mutual independence.

2.3.5. Geographically Weighted Regression (GWR)

By establishing the local regression equation in each grid, GWR can be used to study
the correlation between multiple variables with spatial distribution characteristics to a
dependent variable. In this study, GWR described the correlation between ESV and natural
socio-economic factors, and reflected the spatial heterogeneity and direction of influence
through the regression coefficient within each grid [31]. Its formula is as follows:

yi = βo(ui, vi) + ∑p
k=1 βk(ui, vi)xik + ξi (9)

where: yi is the ESV in grid i, (ui, vi) is the space coordinates of grid i, βo and βk is the o and
k regression coefficient in the grid, xik is the kth independent variable for the ith site, ξi is
the residual value in the grid i.
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In this study, ten factors that passed the test for multi-collinearity were screened as
independent variables and regressed with average ESV as the dependent variable by the
GWR model. The results show an adjusted R2 value of 0.82, which indicates that the GWR
model fits well for exploration of the ESV and its influencing factors, and the results can be
used to explain the spatial heterogeneity of the influencing factors of ESV.

3. Results
3.1. Characteristics of LUCC Evolution in the YRB
3.1.1. Land Use Dynamics from 1990 to 2018 in the YRB

The land use transfer matrix (Figure 3) shows that the dominant land use types in
the YRB are grassland, cropland, and unused land, with these three types accounting
for over 80% of the total area during 1990–2018. The percentage of water bodies in the
study area is roughly 2%, with a modest increase every year. Built-up land has increased
substantially, nearly doubling from 1990 to 2018. Cropland area expanded greatly between
1990 and 2000, then declined, maintaining a marginal overall increase. Overall, the total
amount of forest land has fluctuated and increased. Between 1990 and 2010, the amount
of grassland declined significantly, especially between 2000 and 2010, when it decreased
by 44,325 km2. However, since 2010, the downward trend has reversed and its area has
gradually increased.
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3.1.2. Land Use Degree in the YRB

The land use degree of the YRB increased gradually over time, rising from 1.9650 to 1.9861.
Meanwhile, more than 90% of the cities studied exhibited a growing trend in land use during
the study period. After more than 20 years of development, only cities in the Inner Mongolia
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Autonomous Region and along the boundary between eastern Gansu Province and central
Shaanxi Province have seen a decline in land use. During 1990–2018, the Alxa League had
the lowest degree of land use, at around 1.1275. The cities with the highest degree of land
use changed over time, with Zhoukou City (3.1615), Shangqiu City (3.1697), Liaocheng City
(3.2066), and again Liaocheng City (3.2105) being the highest in 1990, 2000, 2010, and 2018,
respectively. These three cities are located in Henan or Shandong Provinces, near coastal areas
with developed agriculture or industry.

3.2. Temporal and Spatial Variations of ESV in the YRB

As shown in Figure 4, the lower ESV area in the YRB is concentrated in the northwest,
and the high value area is concentrated in the northeast. According to the calculation
results, the average ESV was 227.29 × 104, 226.35 × 104, 227.22 × 104, and 227.43 × 104

CNY·km−2 in 1990, 2000, 2010, and 2018, respectively. The regulation services had the
highest value, accounting for more than 50% of the total ESV, and that with cultural services
it followed a changing pattern of falling and growth over the study period. Eventually,
their values change from 356.81 × 1010 CNY and 49.03 × 1010 CNY to 359.01 × 1010 CNY
and 49.16 × 1010 CNY, respectively. Support services, on the other hand, steadily declined
from 211.68 × 1010 CNY to 209.77 × 1010 CNY. In addition, supply services fluctuated, but
their overall value remained consistent at roughly 62.51 × 1010 CNY.
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The ESV remained stable in most areas of the YRB during the study period, with only
a small number of areas improving or deteriorating (Figure 5). Specifically, the overall
changes from 1990 to 2000 were minor, dominated by ESV deterioration, and were sporadic



Land 2022, 11, 863 10 of 20

across the region. From 2000 to 2010, nearly 10% of the regions changed in ESV, accounting
for more than 70% of the regional changes during the whole study period. The Central Inner
Mongolia Autonomous Region, and Shanxi and Henan Provinces were characterized by
deterioration, while Qinghai and Shaanxi Provinces were characterized by improvement.
The northeastern Inner Mongolia Autonomous Region showed mixed changes. From 2010 to
2018, ESV remained stable, with changes concentrated in south Gansu Province. In general,
the ESV of YRB fluctuated during the study period, with an overall increase of 0.06%.
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3.3. Impact of LUCC on ESV
3.3.1. Ecological Contribution Rate of LUCC on ESV

ESV in the YRB was 680.03 × 1010 CNY, 677.22 × 1010 CNY, 678.91 × 1010 CNY, and
680.45 × 1010 CNY, respectively (Table 3). Grassland and forest land each contributed more
than 40% and 30% of ESV, respectively. The contribution of forest land increased, while
that of grassland decreased over time. The contribution of cropland remained consistent at
around 13%, while the contribution of unused land was the lowest.

Different land use activities lead to different changes in ESV. Conversion from land
use types with high value coefficients to those with low value coefficients will deteriorate
ESV, while the opposite will improve ESV. According to the calculation results of Formula
(6), a total of 30 pairs of land use type changes resulted in ESV variation (Table 4), of which
half improved ESV and the other half deteriorated ESV.
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Table 3. ESV coefficient of different land use type in the YRB (CNY·km−2·a−1).

Type

1990 2000 2010 2018

ESV Proportion ESV Proportion ESV Proportion ESV Proportion

108 CNY % 108 CNY % 108 CNY % 108 CNY %

Cropland 8846.56 13.01 9053.06 13.37 8969.53 13.19 8865.89 13.03
Forest land 21,233.50 31.22 20,990.48 31.00 22,040.78 32.42 21,843.85 32.10
Grassland 29,731.38 43.72 29,460.94 43.50 28,383.45 41.75 28,453.66 41.82

Water
bodies 6006.40 8.83 6035.81 8.91 6371.68 9.37 6689.31 9.83

Unused
land 2185.46 3.21 2181.44 3.22 2215.17 3.26 2192.11 3.22

Total 68,003.31 100.00 67,721.73 100.00 67,980.62 100.00 68,044.81 100.00

Table 4. Contribution rate of land use change to ESV in the YRB during 1990–2018.

Land Use
Change

1990–2000 2000–2010 2010–2018 1990–2018

Variation Improvement Deterioration Variation Improvement Deterioration Variation Improvement Deterioration Variation Improvement Deterioration

108 CNY % % 108 CNY % % 108 CNY % % 108 CNY % %

1→2 28.26 5.71 373.85 9.33 183.93 8.05 436.18 8.01
1→3 34.33 6.93 169.18 4.22 184.19 8.06 297.97 5.47
1→4 56.82 11.47 267.68 6.68 199.53 8.73 390.80 7.17
1→5 −54.68 7.04 −353.78 9.44 −192.99 8.69 −532.71 9.85
1→6 −6.21 0.80 −47.12 1.26 −27.89 1.26 −42.66 0.79
2→1 −124.08 15.97 −286.74 7.65 −198.63 8.94 −487.94 9.02
2→3 −128.05 16.48 −453.99 12.11 −463.44 20.86 −786.84 14.55
2→4 1.51 0.30 25.32 0.63 12.75 0.56 32.13 0.59
2→5 −2.69 0.35 −61.62 1.64 −46.86 2.11 −97.64 1.81
2→6 −5.68 0.73 −375.00 10.01 −173.83 7.82 −492.98 9.12
3→1 −128.39 16.52 −225.99 6.03 −182.79 8.23 −437.00 8.08
3→2 62.91 12.70 1209.61 30.19 416.77 18.23 1463.76 26.87
3→4 46.70 9.43 172.89 4.31 183.12 8.01 346.26 6.36
3→5 −7.34 0.94 −104.33 2.78 −109.24 4.92 −201.67 3.73
3→6 −110.00 14.16 −1176.80 31.40 −345.16 15.54 −1386.11 25.64
4→1 −112.94 14.54 −215.77 5.76 −122.51 5.51 −316.33 5.85
4→2 −2.15 0.28 −14.08 0.38 −10.37 0.47 −18.74 0.35
4→3 −31.99 4.12 −91.48 2.44 −139.78 6.29 −195.20 3.61
4→5 −3.02 0.39 −52.14 1.39 −49.64 2.23 −74.04 1.37
4→6 −59.21 7.62 −284.78 7.60 −153.69 6.92 −329.18 6.09
5→1 0.59 0.12 160.58 4.01 74.53 3.26 173.13 3.18
5→2 0.23 0.05 18.28 0.46 14.47 0.63 20.50 0.38
5→3 0.00 0.00 24.26 0.61 31.24 1.37 33.79 0.62
5→4 0.10 0.02 91.45 2.28 99.90 4.37 103.34 1.90
5→6 0.00 0.00 0.88 0.02 1.47 0.06 1.00 0.02
6→1 19.01 3.84 75.46 1.88 49.69 2.17 109.66 2.01
6→2 8.74 1.76 85.30 2.13 115.59 5.06 131.29 2.41
6→3 97.97 19.78 947.10 23.64 454.35 19.88 1251.04 22.96
6→4 138.18 27.90 385.04 9.61 264.50 11.57 657.45 12.07
6→5 −0.50 0.06 −4.35 0.12 −4.99 0.22 −7.75 0.14

Note: 1–6 represent cropland, forest land, grassland, water bodies, built-up land and unused land, respectively.
1→2 represents land use type change from cropland to forest land, and other conversion types follow the same pattern.

The value coefficients of land use types determine the direction of ecological contribu-
tion of land use change, while the conversion area dominates the magnitude of contribution.
Conversion from grassland to forest land and conversion from unused land to grassland
during 1990–2018 were the key causes of ecosystem improvement, with their contribution
rate more than 20%. Unused land converted into water bodies was a primary factor in ESV
improvement, with a contribution rate of more than 10%. The conversion from cropland
to forest land, grassland, and water bodies, as well as conversion from grassland to water
bodies were minor factors for ESV improvement, with a contribution of more than 5%.
Other land use change types contributed no more than 5% to ESV improvement and had
only a negligible effect.

Conversion from grassland to unused land was the key cause of ESV deterioration,
contributing more than 25%. Another primary factor for ESV degradation was the conver-
sion of forest land to grassland, with a contribution rate of more than 10%. Furthermore,
the occupation of cropland by expansion of built-up land, the conversion of forest land to
grassland and unused land, the conversion of grassland to cropland, and the conversion of
water bodies to cropland and unused land had less impact on ESV deterioration, with a
contribution of more than 5%. Other land use change types contributed no more than 5%
to the ESV deterioration.
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3.3.2. Bivariate Spatial Autocorrelation between Land Use Degree and ESV

Using the GeoDa spatial analysis tool, a Queen spatial connectivity matrix was gener-
ated to calculate the global spatial autocorrelation index for land use degree and the value
of each ESs in different years. As shown in Table 5, Moran’s I for all ESs and land use degree
was negative, except for supply services, indicating that there was a significant positive
spatial correlation between supply services and degree of land use. This is because supply
services are composed of food production and raw material, both of which are linked to
the extent of cropland reclamation and built-up land expansion. As a result, increasing
degree of land use results in improved supply services. Furthermore, there is a significant
negative spatial correlation between land use degree and support services and cultural
services, which are intimately linked to the natural ecosystem and its aesthetic landscape.
There is no doubt that human efforts to strengthen land use have a negative influence on
the natural environment, so the increase in degree of land use leads to a decrease in support
and cultural services. The relationship between land use degree and regulation services
was negative but not significant.

Table 5. Bivariate spatial autocorrelation between land use degree and ESV.

Index
Comprehensive Index of Land Use Degree

Moran’s I Z p-Value

1990

Supply services 0.4360 7.8729 0.0010
Regulation

services −0.0045 −0.1379 0.4640

Support services −0.1067 −2.0931 0.0200
Cultural services −0.3836 −6.8991 0.0010

2000

Supply services 0.4299 7.7624 0.0010
Regulation

services −0.0121 −0.2860 0.3870

Support services −0.1106 −2.1650 0.0150
Cultural services −0.3825 −6.8704 0.0010

2010

Supply services 0.3603 6.5781 0.0010
Regulation

services −0.046 −0.9580 0.1790

Support services −0.1821 −3.5213 0.0010
Cultural services −0.4051 −7.2955 0.0010

2018

Supply services 0.3333 6.1278 0.0010
Regulation

services −0.0545 −1.1116 0.1440

Support services −0.2004 −3.8674 0.0010
Cultural services −0.4081 −7.3436 0.0010

3.4. Impact of Natural and Socio-Economic Factors on ESV
3.4.1. Relative Effects and Interactions of Influencing Factors

Factor Detector results (Table 6) show that both natural and socio-economic factors
affected the spatial heterogeneity of average ESV in the YRB, and the impact size of
different factors changed slightly each year. NDVI had the greatest impact on the spatial
heterogeneity of average ESV, with q values of higher than 0.55 for each year. Meanwhile,
the q values of precipitation and population density were above 0.20, which were the
primarily reasons for spatial heterogeneity of average ESV. In contrast, the q values of
slope, distance to road, distance to railway and distance to city were less than 0.10, and had
smaller effects on the spatial heterogeneity of average ESV.

As revealed by the Interaction Detector (Table 7), the interaction effects between all
pairs of factors selected were greater than those of each factor separately. As a result, the
spatial heterogeneity of the average ESV in the YRB was caused by the mutual influence of
multiple factors, and their interactions exacerbated the spatial heterogeneity. Specifically,



Land 2022, 11, 863 13 of 20

the interaction between NDVI and other factors had the strongest impact on average ESV.
The q values of NDVI ∩ population density were the highest (q = 0.6605), and thus had the
strongest impact on the spatial heterogeneity of ESV. Following that were NDVI ∩ GDP
(q = 0.6564) and NDVI ∩ elevation (q = 0.6302). There were 14 interaction combinations
with q values greater than 0.5, five were natural factor combinations, nine were natural and
socio-economic factor combinations, with no combinations between socio-economic factors.

Table 6. The results of Factor Detector for the spatial heterogeneity of average ESV in the YRB during
1990–2018.

Factors
1990 2000 2010 2018

q p-Value q p-Value q p-Value q p-Value

Elevation 0.1140 0.0000 0.1105 0.0000 0.0998 0.0000 0.0961 0.0000
Slope 0.0717 0.0000 0.0717 0.0000 0.0825 0.0000 0.0829 0.0000

Precipitation 0.3861 0.0000 0.3873 0.0000 0.4066 0.0000 0.4031 0.0000
NDVI 0.5511 0.0000 0.5522 0.0000 0.5590 0.0000 0.5562 0.0000

Population density 0.2785 0.0000 0.2810 0.0000 0.2630 0.0000 0.2591 0.0000
GDP 0.1496 0.0000 0.1520 0.0000 0.1494 0.0000 0.1459 0.0000

Distance to road 0.0900 0.0000 0.0912 0.0000 0.0936 0.0000 0.0927 0.0000
Distance to river 0.1470 0.0000 0.1471 0.0000 0.1663 0.0000 0.1637 0.0000

Distance to railway 0.0183 0.0000 0.0188 0.0000 0.0231 0.0000 0.0228 0.0000
Distance to city 0.0448 0.0000 0.0454 0.0000 0.0472 0.0000 0.0475 0.0000

Table 7. The results of Interaction Detector for the spatial heterogeneity of average ESV in the YRB.

Xi ∩ Xj q(Xi) q(Xj) q(Xi ∩ Xj) Interaction Types

X1 ∩ X3 0.0961 0.4033 0.5650 Nonlinear enhancement
X1 ∩ X4 0.0961 0.5560 0.6302 Two-factor enhancement
X1 ∩ X5 0.0961 0.2592 0.6024 Nonlinear enhancement
X1 ∩ X6 0.0961 0.1459 0.5750 Nonlinear enhancement
X2 ∩ X4 0.0829 0.5560 0.5829 Two-factor enhancement
X3 ∩ X4 0.4033 0.5560 0.5952 Two-factor enhancement
X3 ∩ X5 0.4033 0.2592 0.5251 Two-factor enhancement
X3 ∩ X6 0.4033 0.1459 0.5017 Two-factor enhancement
X4 ∩ X5 0.5560 0.2592 0.6605 Two-factor enhancement
X4 ∩ X6 0.5560 0.1459 0.6564 Two-factor enhancement
X4 ∩ X7 0.5560 0.0929 0.5758 Two-factor enhancement
X4 ∩ X8 0.5560 0.1638 0.5810 Two-factor enhancement
X4 ∩ X9 0.5560 0.0228 0.5852 Nonlinear enhancement
X4 ∩ X10 0.5560 0.0475 0.6174 Nonlinear enhancement

Note: X1—elevation, X2—slope, X3—precipitation, X4—NDVI, X5—population density, X6—GDP, X7—distance
to road, X8—distance to river, X9—distance to railway, and X10—distance to city.

3.4.2. Spatial Distribution of the Effects of Influencing Factors

Figure 6 depicts the spatial variation of the regression coefficients of each influence
factor based on GWR results. The regression coefficients of NDVI are all greater than zero,
meaning that NDVI is always positively correlated with ESV. Regression coefficients of
GDP are generally greater than zero, indicating that the influence of GDP on ESV is mainly
positive. In contrast, the regression coefficients of population density are generally less
than zero, indicating that the influence of population density on ESV is mainly negative.
In addition, other factors showed approximately equal areas of positive and negative
correlation with ESV. Among them, the effects of elevation, precipitation, distance to road
and distance to city on ESV were mainly positive in the west and negative in the east. The
effects of slope and distance to railway on ESV showed mainly negative correlations in
the west and positive correlations in the east, while the distance to river showed positive
correlation in the center and negative correlations in the east and west.
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4. Discussion
4.1. Temporal-Spatial Evolution of ESV and Its Determinants

The findings of this study show that the northeastern part of the YRB with high
vegetation cover had the highest average ESV, while the northwest part with scarce water
resources and three large deserts had the lowest average ESV, which is consistent with
the research of Cui et al. [43] and Zhang et al. [44]. Meanwhile, most scholars believe that
the conservation of ecological lands such as forest land, grassland and water bodies is
particularly important for the stability of ESV [34,35].

In terms of time, the ESV in the YRB clearly deteriorated from 1990 to 2000, owing to
people’s lack of awareness of the importance of their ecological environment and the failure
to take effective ecological protection measures, resulting in the disorderly expansion of
built-up land and the continuous degradation of forest land and grassland [45]. Since
2000, China has gradually strengthened ecological management, particularly through a
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series of afforestation and soil conservation projects, which have improved the ecological
environment of the YRB [46]. These ecological protection projects have shown preliminary
results, indicating the state’s important role in ecological regulation [47–49].

Overall, the total ESV of the YRB has remained stable, but the results show significant
spatial heterogeneity, with some parts improving and others deteriorating. It was the
balance of improvement and deterioration across the region that kept the ESV of the YRB
relatively stable [50]. Regions with improved ESV were scattered across the YRB, all
of them in areas showing an expansion of built-up land, and where at least one type of
ecological land use had also increased. This suggests that the expansion of built-up land has
been widespread, and that focusing on the cultivation of ecological land to allow orderly
expansion of construction land can help to achieve the goal of ESV improvement [51,52].
Socio-economic development is based on the consumption of various resources, and land
exploitation is inevitable. Our results show that any change in land use type resulted
in a moderate or substantial change in ESV, exerting a direct impact on ESV. Specifically,
the conversion of grassland to forest land was the major reason for ESV improvement in
YRB, accounting for more than 25% of the total increase (Table 4), due to the much higher
ESV per unit area of forest land than grassland (Table 2), and the large conversion areas
(Figure 3). This was made possible by the implementation of projects such as the Three-
North Shelterbelt Project, the “Grain-for-Green” and Natural Forest Protection programs,
which resulted in a net increase in the area of forest land [53]. In particular, the Three-North
Shelterbelt Project has been promoting large-scale afforestation since its implementation and
has contributed greatly to ESV growth [54]. Meanwhile, the areas with deteriorating ESV
were mainly concentrated in the eastern part of the YRB, and these areas showed a decline in
forest land and grassland, and a significant increase in built-up land. Grassland degradation
was the major factor in the deterioration of ESV in the YRB, accounting for more than 25%
of the reduction (Table 4). Because of the fragile ecological environment of the YRB, with the
frequent natural disasters such as floods and mudslides, grassland, a relatively ecologically
fragile area, is vulnerable to destruction [33]. Additionally, human activities such as
irrational use of water resources, overgrazing and overexploitation have exacerbated the
degradation of grassland [55]. Therefore, in future construction, it is necessary to continue to
supervise the implementation of these ecological projects, to strengthen the protection and
construction of ecological land, and to formulate protection policies tailored to ecological
degradation areas in order to ensure steady ecological improvement.

Research on ESV has become a hot topic in the process of building an ecological civi-
lization. Most recent studies have found that changes in ESV are the result of a combination
of natural and socio-economic factors [10,56]. Different factors can have varying impacts
on ESV, and the combination of multiple factors can produce more complex effects [20].
From the perspective of sustainable development, positive impacts should be promoted
and negative impacts should be suppressed [57]. Therefore, identifying the ways in which
different factors contribute to ESV is essential for precise policy-making and the formula-
tion of reasonable ecological regulatory measures. In this study, we used GDM and GWR
models to explore in depth the impacts on ESV of multiple natural socioeconomic factors.

The results revealed that NDVI was the relative strongest influencing factor for spatial
heterogeneity of ESV, which is consistent with the findings of Sun et al. [36]. Meanwhile,
NDVI is the only factor that positively affected ESV in all regions. Because NDVI is an
indicator of vegetation growth status [58], and abundant vegetation growth and cover
are beneficial to ESV [59], therefore, NDVI had a relatively strong effect on ESV with a
positive correlation across the whole area. Due to the different geographic conditions, there
was spatial variability in the effects on ESV of all other factors. Overall, compared with
socio-economic factors, natural factors dominated the influence on ESV. This is in line with
the findings of Han et al., who suggested that various types of natural factors influence the
structure, distribution, growth, and succession of biomes on a large scale, thus influencing
ESV at a macroscopic level [49]. Nevertheless, the impact of socio-economic factors on
ESV cannot be ignored, especially population density, which is the most influential of the
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socio-economic factors. Population growth will lead to an increased demand for built-up
land, food, and other necessities. In such a case, it will lead to LUCC and eventually
influence ESV [51]. Therefore, in the practice of enhancing ESV, human interference should
be minimized and the regulation of natural elements prioritized [60].

Furthermore, the results of the Interaction Detector revealed that the interaction ef-
fect of any two factors was greater than each factor alone, and the interaction type was
dominated by two-factor enhancement, indicating that spatial heterogeneity of ESV in
the YRB was the result of the combined effect of multiple factors. This is consistent with
previous studies, which showed that combining various variables increased their influence
on ESV [11,61,62]. It was noted that 9 of the 14 pairs of interaction combinations with q
values over 0.5 are interactions of nature and socio-economics, which means that in terms
of interaction, the joint effect of nature and socio-economic factors has a stronger influence
on ESV. Therefore, in ecological regulation, attention should be paid to the harmonious
coexistence of man and nature, and to the combined effect of different regulation meth-
ods in order to maximize overall benefits and thus increase the efficiency of ecological
improvement initiatives.

4.2. Policy Implication

Based on an in-depth analysis of the temporal-spatial evolution of ESV and its influenc-
ing factors, this study proposes three practical policy recommendations for the YRB. First,
our study indicated that both in ecological improvement or deterioration areas, built-up land
generally showed a trend for expansion, while the maintenance of ecological land such as
forest land and water bodies can keep ESV stable. Therefore, an ecological monitoring mech-
anism can be established in the YRB to dynamically monitor various types of ecological land.
The first priority is to monitor its area and limit the conversion of ecological land to other
land uses. Ecological quality monitoring should also be enhanced for areas with ecological
significance, and timely regulation should be carried out when their quality declines.

Second, the positive effect of the state as the main body to regulate ecology has already
been shown, and the implementation of ecological conservation or restoration programs,
such as the Three-North Shelterbelt Project, the “Grain-for-Green” Program and the Natural
Forest Protection Program should be strengthened. Aside from policies applied to the entire
region, specific programs should be designed and implemented in ecologically fragile areas
based on their type of ecological vulnerability. For example, in water-scarce areas, a system
of compensated use of water resources that matches socio-economic development should
be implemented to conserve and control water in a comprehensive manner. In areas with
severe land degradation, the local government should identify the type of land degradation,
and implement unified planning and treatment in a piecemeal manner according to the
classification results. In addition, areas prone to natural disasters should be designated
as disaster management zones, requiring strict environmental control to prevent human
activities from aggravating disasters.

Third, since natural ecosystems have the ability to self-heal, an ecological assessment
mechanism can be established in the YRB, and different measures can be taken based on
the assessment results to maintain or improve the ecological environment for different
ecological zones. For example, in ecologically sound areas, ESV can be stabilized by limiting
human activities, especially those that are polluting and destructive. In contrast, human
interventions such as afforestation and engineering restoration are needed to rehabilitate
the ecological environment in areas that have lost the ability to restore themselves.

4.3. Limitation

The YRB is an important ecological region within China. We investigated the temporal
and spatial heterogeneity of its ESV, identified the ecologically fragile areas of the basin,
evaluated the influencing factors, and proposed policy recommendations for improving the
ecosystems of the YRB. Our findings may provide a basis for decision-making for ecological
governance and regulation in the YRB.
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However, there were some limitations to our study. First, we only classified the land
use data into six primary categories without further subdividing it, which would tend
to make the results biased. In the future, a more detailed classification of land use types
should be performed to calculate ESV more accurately, such as dividing cropland into
paddy fields, dryland, and irrigated land, and dividing forest land into tree forest, bamboo
forest, shrub land, etc. Second, due to the limitation of data acquisition, the influencing
factors used may not have been comprehensive enough, and policy or institutional factors
were not taken into account. More data should be collected in the future to allow a more
thorough investigation of the factors influencing ESV.

5. Conclusions

In this study, we investigated the temporal–spatial evolution of ESV and its determi-
nants in the YRB, based on the ecological contribution, bivariate spatial autocorrelation,
and geographical detector models. We found that the ESV of the YRB fluctuated during
the study period, with an overall increase of 0.06%. Land use change exhibited a direct
and dominant effect on ESV, with conversion of grassland to forest land and conversion of
unused land to grassland being the dominant factors in ESV improvement, and conversion
of grassland to unused land being the main cause of ESV deterioration. In addition, natural
and socio-economic factors had a subtle influence on ecological elements, which gradually
affected ESV. Furthermore, the differences in geographical location made the effect of
natural socio-economic factors on ESV spatially heterogeneous. These results revealed
that the adjustment of land use types in ecological management practices is a dominant
factor in maintaining and improving ESV. At the same time, when formulating optimal
land management policies, practical and efficient policies should be developed according
to local conditions, to promote ESV improvement.
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