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Abstract: Intensive agricultural production accompanied by the climate change impacts in post-
Colonial rural landscapes have continuously increased the demand for water resources and coastal
areas, showing an unprecedented water supply crisis. By taking extreme weather conditions and
rainfall events for future trends, a resilient water storage facility for the landscape requires the collab-
orative approach of natural systems and simulation modelling techniques to develop sustainable
future scenarios. In this study, an ecological suitability model is used to identify potential sites for
the construction of multi-purpose dams. As part of the model structure, multi factors are classified
using the patterns of changing landscapes, and then weighted overlay analysis is conducted on a
Geographic Information System (GIS) platform. Compared to previous studies, this paper derives
its principal impact parameters and projections based on historical land cover information. The
suitability maps that are generated visually guide the geographical location of the multi-purpose
dams and indicate the areas from highly suitable to least suitable, clarifying the possibility of building
blue infrastructure alongside the waterways in west-central Barwon. The workflow proposes a
resilient water system based on existing land characteristics and measures that future water storage
capacity will be a valid increase of approximately 1.5 times. This strategy alleviates water scarcity
during the dry season to benefit traditional agricultural activities. Digital calculations are utilized to
demonstrate the feasibility of the experimental results, providing a methodology for regulating the
distribution and supply of river flows throughout the year while retaining runoff in a hierarchical
pattern at precipitation periods.

Keywords: landscape risks; ecological suitability; water supply; GIS; Barwon

1. Introduction

Contemporary research shows that intensive production-led models of environmental
exploitation are leading to global climate anomalies, ecosystem degradation, and biodiver-
sity loss [1]. Meanwhile, the world population is expected to increase from 7.7 billion to
9.7 billion by 2050 [2]. Rapid population growth and its potential impact on the surrounding
areas have become a geological phenomenon as far as the functioning of natural systems is
concerned. Their combined forces mark the planet’s transformation towards a new epoch,
the Anthropocene, driven essentially by human behaviors and inducing global changes that
will, in turn, push the context of the times facing wider society from resource acquisition
and material exploitation to ecological constraints and conservation issues [3–5].

Since the Industrial Revolution, large-scale material production has caused dramatic
changes in ecological networks’ structure and functional capacity. It threatened the sta-
bility and values they provide, which can be traced back to 1836 when colonists began
‘settlement’ and land clearance, with livestock and plantations breaking up the traditional
low-disturbance land management patterns by Aboriginal Australians [6,7]. In addition,
climate change associated with the dominance of the Anthropocene will be a factor that
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cannot be ignored in transforming ecological service functions [8,9]. Continued climate
change is expected to put extreme pressure on water supplies in arid and semi-arid areas
and to negatively affect water quality. Increased risks to flora and fauna, as well as to the
occurrence of extreme events, will be reflected through freshwater storage and the transfer
of energy from biomes and will impair their ecological significance [10,11].

Estuaries and coastal areas have long been overexploited as focal points for human
settlement and marine resource use and have led to the destruction of natural habitats and
the transformation of ecological suitability. In addition, urban regeneration has not only
increased their degradation but also undermined their structural resilience and the resource
values they provide [12,13]. Given the importance of this transitional system between
terrestrial and marine environments for people and organisms, they have become the
focus of efforts to develop strategies based on environmental management and long-term
restoration [12,14–16]. In Australia, 85 percent of the population lives within 50 km of the
coastline [16]. Therefore, the dynamics between coastal land and ecology are highly relevant
to the human habitat. The Wadawurrung and Gadubanud people settled along the southern
coast of Victoria between 40,000 and 60,000 years ago and are the traditional owners of this
land. Indigenous people used sustainable methods of growing crops near their shelters
to ensure that they would not create an ecological burden, and they modified basalt to
construct waterways and weirs as a water management system to obtain subsistence
supplies [6,17]. However, the tendency towards dense coastal migration, intensive land
clearing and agriculture and climatic anomalies after the 1970s has affected the distribution
of water resources in the region. Rainfall in Victoria has declined in most seasons in recent
decades, and temperatures in Victoria rose by more than 1 degree Celsius between 1910 and
2018 [18,19]. Environmental change and the rapid population growth accompanying
urbanization have led to a shortage of water supplies as a potential threat to intensive local
agricultural activities [20–22].

Most previous studies have evaluated ecological risk from the perspective of a single
element or specific evolutionary process, which is often isolated as an expected outcome of a
project, rather than providing ecological risk mitigation and early warning in the context of
broader environmental functions. Because of its multi-risk components, multi-stakeholders,
and complex interaction mechanisms, the quantification and characterization of integrated
factors are key to ecological risk assessment [23,24].

This study builds on the conventional use of gridded sample cells to calculate an
ecological risk index for the landscape, taking into account changes in historical land-
use patterns and drivers of ecological degradation [12,14,25] to assess areas of ecological
vulnerability in the Barwon region of Australia. The overall objective is to anticipate and
mitigate the environmental challenges coming to the region in the next stages from a
temporal change perspective. A weighted overlay approach was used to identify areas of
reasonable presence for future water supply infrastructure and to calculate the volumes
that could be provided to cope with the collateral effects of ongoing climate change. The
ecological infrastructure selected through the analysis has the capacity to balance the
contradictions in water supply within the year and to make adequate utilization of the
potential blue infrastructure to serve the increasing local water demand due to production
specificities and population migration. The strategy for landscape risk prediction and
enhancement improves the previous single-factor analysis of the target zones, so the
new approach is equally applicable to other coastal regions of the world. Its precise
characterization could be determined by the impact factors selected, but its application can
verify its positive impact on local industrial farming and land use.

2. Materials and Methods
2.1. Study Area

Barwon is located in the south-central part of Victoria, which is the second-largest
metropolitan region near Melbourne and is a rapidly expanding area in terms of demo-
graphics. Aside from this, the region is Australia’s largest supplier of dairy products,
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accounting for nearly 25% of total output, and about 20% of the country’s plantation forests
are here [18]. The study site is sensitive to reduced water supply and increased tempera-
tures, including diverse land languages, intensive cultivation, urban areas, marginal towns,
grazing, forestry, water catchment areas, and coastal areas. As a result of the confluence of
human production and climate change, Geelong’s water storage, the most important city in
Barwon, had fallen to 14% in 2007, making residents more concerned about the security
of their water supply [26,27]. The area applied in this scientific research is approximately
9000 km2 (4% of Victoria), with the southern part of the region forming part of Australia’s
south-eastern coastline and much of the northeast being densely populated and connected
to the edge of metropolitan areas (Figure 1) [28]. The Barwon River and the Moorabool
River are the most extensive waterways in the Barwon Basin [29]. It is projected that
significant population growth and climate change will impose increasing pressure on the
sustainability of the basin’s watersheds and its natural landscape. Moreover, the abundant
water resources are accompanied by an unbalanced distribution of storage facilities, which
can lead to scenarios of seasonal flooding and short-term water scarcity in summer, and
directly affect the livelihoods of the surrounding residents and livestock activities [30].
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2.2. Data Source

The Victorian database is used as the base evaluation database for this research. DEM
data are extracted from the United States Geological Survey (USGS) (https://www.usgs.
gov/, accessed 21 October 2021). Geographical location information for towns and cities
is obtained from Open Street Map (OSM) (https://www.openstreetmap.org/, accessed
21 October 2021). High-resolution satellite and aerial imagery were extracted from the
United States Geological Survey (USGS) (https://www.usgs.gov/, accessed 7 July 2021).
Victorian NDVI data are collected from the Australian Bureau of Statistics (http://www.
bom.gov.au/, accessed 21 October 2021). The same projection coordinate system is defined
for all data: Lambert_Conformal_Conic_2SP.

2.3. Methods

Everything from energy cycles and water security to responses to natural disasters
serves as concrete social manifestations of climate change mitigation and anthropogenic

https://www.usgs.gov/
https://www.usgs.gov/
https://www.openstreetmap.org/
https://www.usgs.gov/
http://www.bom.gov.au/
http://www.bom.gov.au/
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interventions. A paradigm from addressing traditional material requirements to nature-
based solutions can protect, manage, restore, and modify natural ecosystems that may
increase their resilience and human adaptability in facing climate change [31–33]. Digital
workflows in GIS and CAD platform are a diagnostic approach being developed by many
researchers that reshape environmental systems through landscape planning and design.
These results have the advantage of allowing multiple lenses to be engaged and provide
descriptive, explanatory, and predictive analyses of a range of influencing factors [34,35].

The ecologically suitable zones are derived from a weighted overlay of the digital
elevation model, spatial analysis of coastal areas, hydrological and geological contexts, and
urban distribution, which allows for the prioritization of known environmental parameters
and provides the conditions required for water supply assessment. This workflow can
simulate the location of multiple water infrastructures and calculate their water storage
capacity. Its conclusions will guide the adoption of a multi-stage blue infrastructure in the
Barwon region to achieve a green wetland system that retains surface runoff and enhances
the stability of the water supply.

2.3.1. Changes in Land-Use Patterns

Regardless of human involvement in natural processes, a distinctive feature of land-
scapes and ecosystems is their constant change and evolution, and they are inevitably
subject to dynamic adjustments due to their spatio-temporal complexity and chaotic char-
acter. Although landscapes have diverse spatial and functional attributes in public land,
their fluctuations hinder the ability to predict and control their future development [36].
The limited human knowledge of the essence of the operation and these uncertainties have
prompted a shift in the focus of analysis from spatial drivers (species–landscape patch
interactions) to a more dynamic, process-oriented ecological perception [37,38]. Whereas
dissecting the essence of the operation requires identifying patterns of land-use change
over time, this approach emphasizes patterns of variation in landscape configuration rather
than information about land cover over a specific period.

Comparative GIS analysis can explore the driving forces behind change trajectories and
the main consequences of these processes, since modern landscape patches are associated
with a specific land-use history [36]. The application of this technique is valuable as an
assessment tool to explicitly link land elements and extract their characteristics from the
fragments. Water resources, land use, and ecosystem services are key factors in mitigating
the negative impacts of future climate change [39]. Remote sensing analysis at different
time nodes allows a spatial summary of development trends and a comparison of previous
configurations to create models for forward-looking predictions in landscape patterns
synthetically.

Over a century of evolution from colonial exploration in 1866 to the present, the
indigenous peoples of this region have gradually migrated and integrated, while the
main productive activities have remained as timber production and agricultural grazing
(Figure 2). The change in land use mode from a predominantly dryland cultivation to a
grazing pattern is an epochal choice of local economic development and climate change.
Its historical iteration clearly illustrates the precise relevance of water resources as a fun-
damental element of land patch use to the change in its production pattern following the
reduction of annual precipitation by 100~200 mm in recent decades [18]. From this, it can
be inferred that future population growth and agricultural production will be susceptible
to water sources.



Land 2022, 11, 621 5 of 20

Land 2022, 11, x FOR PEER REVIEW 5 of 20 
 

be inferred that future population growth and agricultural production will be susceptible 
to water sources. 

 
Figure 2. The historical iteration of land-use patterns. 

2.3.2. Screening for Ecological Suitability Factors 
Ecological suitability analysis is an assessment of the suitability of land for redevel-

opment in order to find the best pattern and planning [40]. This screening is based on the 
assumption that the effects of a risk source are the same for different ecosystems but that 
different environmental factors may influence the level of ecological suitability. Suitability 
in this context refers to the indicators that comprise ecological stability under potential 
environmental conditions. It is more applicable on a large-scale with less complex studies 
[41]. The overall assessment can be constructed using a weighted overlay technique. Four 
basic categories are considered to filter the influences: climate; topography; ground sur-
face; and human activity, then decomposed into their associated parameters. The climate 
and topography include geology, groundwater, and salinity; the factor of ground surface 
is represented by the Normalized Difference Vegetation Index (NDVI) and surface runoff; 
the Euclidean distance of the town signifies the anthropogenic factor [42,43]. All these 
indicators need to be standardized before further processing [44]. 

The formulae used for evaluating ecological suitability are as follows [42–44]: 𝑆 = ∑ (𝑤  𝑓 )   (1)

Figure 2. The historical iteration of land-use patterns.

2.3.2. Screening for Ecological Suitability Factors

Ecological suitability analysis is an assessment of the suitability of land for redevel-
opment in order to find the best pattern and planning [40]. This screening is based on the
assumption that the effects of a risk source are the same for different ecosystems but that
different environmental factors may influence the level of ecological suitability. Suitability
in this context refers to the indicators that comprise ecological stability under potential en-
vironmental conditions. It is more applicable on a large-scale with less complex studies [41].
The overall assessment can be constructed using a weighted overlay technique. Four basic
categories are considered to filter the influences: climate; topography; ground surface;
and human activity, then decomposed into their associated parameters. The climate and
topography include geology, groundwater, and salinity; the factor of ground surface is
represented by the Normalized Difference Vegetation Index (NDVI) and surface runoff;
the Euclidean distance of the town signifies the anthropogenic factor [42,43]. All these
indicators need to be standardized before further processing [44].

The formulae used for evaluating ecological suitability are as follows [42–44]:

S =
l

∑
n=1

(wn fn) (1)

where S represents the eco-environmental suitability; fn represents the normalized suit-
ability factors (Multiple classes, 1 is extremely unsuitable gradually shifting to 9 is highly
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suitable.); wn represents the weights of fn; l is the number of suitability factors; and
0 < n < l + 1.

In general, the higher the NDVI, water table, and rock hardness values, the higher
the adaptation of regional water supply facilities; moreover, it performs lower with higher
salinity levels [42–44]. However, all distances of ecological infrastructure are expected to
simultaneously satisfy moderate surface runoff and reasonable distribution of built-up
areas [45]. Therefore, a screening of regional suitability influencing factors was achieved,
as shown in Table 1.

Table 1. Screening of regional suitability factors.

Factors Selection Basis The Range of Values after
Assignment

Distance from stream Reflecting the extent of supply,
routes, and water volumes 3, 4, 5, 7, 9

NDVI
Distance from towns

Lithology
Groundwater

Salinity

Reflects plant vigor as affected
by rainfall and drought

conditions
Reflects the accessibility of

water to humans
Reflecting differences in

infiltration rates and water
storage capacity

Reflecting positive effects on
water retention capacity

Reflects the potential quality
of water storage

1–9
1–9
1–9

2, 4, 6, 8, 9
1, 2, 3, 4, 6, 8, 9

2.3.3. Spatial Analysis Assessment of Potential Catchment Areas Based on a Weighted
Overlay Technique

The graphical overlay is the most coherent and effective way to represent or conclude
multiple specific components by transforming the layered structure of a vertical transect
onto a horizontal plane, and it allows hidden relationships to ‘emerge’ by extracting differ-
ent spatial information [46]. Geographic Information Systems (GIS) provide a powerful
toolset for spatial analysis by preparing raster images of the above ecological suitability
factors to identify potential water supply zones in conjunction with multi- environmental
criteria.

In raster superimposed analysis, each cell in every layer must refer to the exact
geographical location to couple the features of the numerous layers and combine them into
a single one [47]. A particular thematic layer’s pixels (cells) are assigned numerical weight
values mathematically simulated to generate a new value for the corresponding pixel in
the output layer. The scale weight for each category of the weighted overlay analysis is
defined in the range 1–10, and weights are allocated according to their suitability for water
supply [45,48]. The formulation of this multi-layer methodology is:

S =
[(

STc × STf

)
+
(

Nc × N f

)
+
(

CTc × CTf

)
+
(

Lc × L f

)
+
(

GWc × GW f

)
+
(

SAc × SA f

)]
(2)

where, S refers to weighted index value (consolidated water supply potential values); ST
indicates surface runoff; N refers to NDVI; CT concerns distance from towns; L indicates soil
context; GW refers to groundwater level; SA indicates salinity. In addition, the subscript
letter ‘c’ indicates the scale weight assigned to a layer-specific feature class, while ‘ f ’
indicates the percentage of influencing weight allocated to the thematic layer.

In summary, parameters such as surface runoff and NDVI are regarded as core features
and attributed to high influence weights’ values. Moreover, the dispersal distance of towns
and soil context is also relevant for water storage, but groundwater level fluctuation rates
and salinity are also considered indirect indicators for identifying potential zones.
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Their practical significance for the site water supply is discussed separately, with sur-
face runoff (Figure 3a) as an important parameter determining the extent of supply, routes,
surface volumes, and infiltration rates [49]. Barwon is in a coastal estuary with abundant
streamflow, and its flood pulses during the deluge period mainly function on a flood plain
two kilometers offshore. Natural water level fluctuations occurring transversely (perpen-
dicular to the river) could easily change the environmental conditions to moderate the rate
of ecological competition and improve flora diversity, in which dynamic interactions are
integral to the protection of the river’s hinterland [50–52]. It purifies water by decomposing
sediments and maintains a diverse ecological structure that benefits agricultural production
on a global level. Hence, the proposed water infrastructure uses plant roots to slow and
retain surface seepage between the river and the land, requiring the structures to be a suit-
able distance from the river. To reduce the disturbance of the existing nearshore ecology by
new facilities, the area of the by-pass waterway 2–4 km from the main river is chosen as the
optimum, and a decreasing principle is adopted to create an adequate water storage space
on both sides. As illustrated by NDVI (Figure 3b), plant health is controlled by rainfall and
drought conditions, and its value reflects the ability to contribute to water conservation
actively. The towns should be at an appropriate distance from the water storage system
(Figure 3c) to prevent pollution from human activities, but destinations that are too far
away can increase transport costs, so a balance is required between the interests of both to
determine the final site. According to the satellite images, the area 6–7 km away from the
town is generally undisturbed by human intervention and has an accessible geographic
configuration. The suitability of the location decreases along the sides with this central
threshold. Furthermore, the properties of lithology (Figure 3d) are direct variables that
govern differences in water storage, regulating the dynamic configuration of groundwater
and surface runoff through changes in percolation rates and storage capacity [53]. In this
background of global warming and reduced precipitation, the storage level and quality
(salinity) of groundwater (Figure 3e,f) determine ecosystem composition and productivity,
while distribution patterns generally modulate seasonal drought [49].

Because these factors collectively drive the ultimate evaluation of site suitability and
the intensity of ecological influence they provide, this database of land characteristics is
used as a source of information to compare the scale weight and percentage of influence
weights assigned to each criterion theme layer based on their contribution to water avail-
ability. They are all performed with reference to the literature and expert opinion [42–44,48],
as shown in Table 2.
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Table 2. Reclassified layers and their preference value.

Sl. No Parameter Feature Class Scale Weight % of Influence

1.

Distance from stream
(km)

2–4
4–6

9
7 25

6–8
8–9

5
4

0–2 3

2.

NDVI 0.80–1 9 25
0.70–0.80
0.60–0.70
0.50–0.60
0.40–0.50
0.30–0.40
0.20–0.30
0.10–0.20

0–0.10

8
7
6
5
4
3
2
1

3.

Distance from towns 6–7 9 15
(km) 5–6 8

7–8 7
8–9
4–5
3–4
2–3
1–2
0–1

6
5
4
3
2
1

4.

Lithology Granite 9 15
Basalt

Volcanics
Fluvial

Lagoonal
Fluvial Aeolian
Aeolian & Marl

Alluvium
Sedimentary

8
7
6
5
4
3
2
1

5.

Groundwater (m) >50 9 10
20–50
10–20
5–10
0–5

8
6
4
2

6.

Salinity TDS (mg/L) A1 (0–600) 9 10
A2 (601–1200)
B (1201–3100)
C (3101–5400)
D (5401–7100)

E (7101–10,000)
F (>10001)

8
6
4
3
2
1

A weighted overlay analysis of all the parameters from the sum of the above total
percentages equal to 100%, converting the feature layers (vectors) to a raster grid format
and reclassifying them, results in Figure 4. Further, the weighted thematic raster layers are
input to Equation (2) to generate a water supply potential map in the ArcGIS platform. The
output map is graded into four zones of a progressive transition from high suitability to
extreme unsuitability based on water storage potential [48].
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2.3.4. Distribution and Projections of Future Water Supply Systems

The distribution of water storage facilities, such as hierarchical dams or resilient
wetlands, is simulated in areas of high suitability. However, since dams can effectively
retain surface runoff and release water in a manageable manner [54], they are developed
for use in this study as the primary structure for improving water supply. The proposed
solutions can be applied to existing terrain environments and ultimately determine different
allocation options by analyzing the advantages and drawbacks of water storage. These
strategies allow the researcher to modify, test and simulate, which enables us to easily
add checkpoints and dams onto the suitability map to create retention catchments. The
application of multilevel water storage and eco-infrastructure in the watershed’s high
vulnerability areas effectively increases the storage capacity of future water supplies by
intercepting seasonal floods during the rainy season and allowing for gentle releases for
the rest of the year, offering diverse possibilities for an iterative design process.



Land 2022, 11, 621 11 of 20

By inputting a Digital Elevation Model (DEM) and potential pour points into the
GIS environment to simulate the hydrological system. This workflow model the flow
network and hierarchy of a pre-defined site by calculating the raster’s flow direction and
flow accumulation [34]. Snapping pour points is a necessary procedure for computing the
watershed, which is combined with the profile graph of pour points to produce a value for
the volume of water stored through surface volume. Note that two parameters will affect
the final volume result, one is the planned height as the original terrain height plus the
proposed dam height (determined by the whole depth of the profile), and the other is the
selection below the reference plane.

Consequently, these fundamental steps to move forward (Figure 5) identify vulner-
abilities in the water supply system and locations of a hypothetical eco-infrastructure,
which reasonably derives water storage capacity and explores the possibility of future
infrastructure as an ecological landscape [55].
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3. Results
3.1. Characterization and Analysis of Ecological Suitability Factors

A cross-comparison of multiple parameters reveals their intrinsic correlation affecting
the level of ecological suitability, which examines the large-scale land elements of the site
and decomposes the related variables that make them up, such as surface runoff, NDVI,
town distribution, soil typology, groundwater status, and salinity. By selecting appropriate
factors to overlay, the proportion of their scale weight and their characteristics in the site
are analyzed.

According to the information compared in Figure 6, it is concluded that the Barwon area
ecological landscape has the following characteristics: (1) The terrain throughout the study area
gradually changes from a forested plateau in the southwest to the northern plains. The space
between the canyons is conducive to the convergence of water and guides its direction, which
provides a topographical difference for the catchment area. Compared with the mapping
of land types, lithology intuitively shows that most of southern Barwon is sedimentary and
aeolian soil types. This property enhances water permeability and groundwater retention. In
contrast, the central basin of the mainstream is composed of basalt (complex rock formations)
in the north and extends towards the sedimentary rock plain (Figure 6a,b), which suggests
that the hardness of the land may influence the direction of the flow; (2) NDVI values in
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areas of high salinity show a negative performance (Figure 6b,c). However, its role as an
indicator of the healthy growth of vegetation typically fluctuates with dry climates and reduced
precipitation, where farmlands and grasslands, the most crucial type of production occupying
the Barwon region, are particularly impacted [56,57]. Plant rhizomes can also contribute to
the consolidation of groundwater sources and become a buffer zone between humans and
nature, thus increasing the space for water resilience; (3) The gently sloping central plain is a
floodplain for seasonal inundation and is partly adjacent to towns (Figure 6d). Streams and
settlements are interdependent, and the distances between them tend to be in a relatively stable
ecological environment. Because the cleanliness and safety of water storage have been proven
to be highly linked to the distance between water flows and communities, and as human
activity has been converting large vegetated areas into productive land with the expansion
of coastal development, the quality of water sources close to built-up areas is vulnerable to
human intervention.
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3.2. Map of Potential Catchment Areas Generated by the Weighted Overlay

The raster criteria layers were redefined using the reclassification tool provided by
ArcGIS based on the weighting information summarized in Table 2. Each layer has and
only has unique values corresponding to suitability for the same location pixels. In order
to better identify the dam site, the six sub-influence layers in Figure 3 are included in the
analysis of the potential catchment areas, and a weighted overlay produces the potential
catchment suitability map (Figure 7), which is classified as ‘high, medium, low and least
suitable’. The first two of these potential zones are significant for managing water resources
at Barwon in terms of the geographic site configuration.
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The high suitability areas represented in blue on this map provide a visual representa-
tion of where dams might be built and suggest the exact boundaries for further examination
and iteration. The Midwest plateau and plains interface are abundant with watercourses
and rugged rock formations, essential for dam construction. Potential objective areas are
within approximately equal distance of surrounding settlements and have a more substan-
tial likelihood of supplying numerous towns in the future. In addition, the water needs of
the central plain for extensive cultivation and grazing are concentrated in the calculated
areas of high suitability, which provides opportunities for efficient agricultural production
and reduces dependence on precipitation.

Smaller patches in the north and east also demonstrate potential for water storage
facilities. Nonetheless, the results are mainly based on the parameters of the river and
its surroundings, which are difficult to form a coherent network with the inherent water
system and have comparatively high salinity. The south-eastern coastal area has several
tributaries and ample groundwater resources. At the same time, the soft and permeable
rock type makes it challenging to retain intercepted surface runoff and is adjudged to be
unsuitable. Therefore, the overall suitable sites for dams and resilient wetlands are the
Midwest’s geologically rigid and agriculturally stable riverine areas.

Five ecologically resilient areas are proposed for dam site testing and selection based
on weighted calculations, with the overall objective being to alleviate water scarcity in the
dry season and serve traditional agricultural activities. The dams and wetlands can be
used as a cushion between humans and nature to regulate stream volumes when extreme
precipitation increases during the flood season. In particular, in periods of abnormal water
levels, dams are utilized to suppress runoff and redistribute it to other times of the year [54].
As shown in Figure 8, they are located within the high suitability areas of the synthetic map
and mainly around the middle and lower reaches. The simulated dam locations are input
into a spatial analysis platform (GIS) as pour points to create scenarios that intercept the
water flow, and a cross-section of the terrain is viewed in the built-in 3D function to provide



Land 2022, 11, 621 14 of 20

a reference dam height for the following estimation of storage capacity. It is proposed that
hierarchical dams in plain regions should not be too high to prevent overflow during the
rainy season, which requires the fundamental condition that their structures are lower than
the hills on either side. More specifically, for the first dam, its valley floor is shown in the
profile as about 113 m, while the height of the abutting cliffs is approximately 121 m. Based
on these requirements and allowing for sufficient safety margins, this dam is most suitable
at a maximum height of 6 m. The five sites are tested in sequential order, and their heights
are 6 m, 5 m, 5 m, 5 m and 3 m, respectively.
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Figure 8. Assessment of dam locations in areas of high suitability.

Using the Surface Volume function to calculate the volume of water stored will help
to summarize whether the project could make a meaningful contribution to the future
water supply. This technique has two main parameters that directly affect the outcome,
and the DEM model has been entered into the software ready for use. The Plan Height
is the original topographic elevation plus the proposed dam height and has been chosen
to generate the volumes below the Reference Plan, which are presented (Table 3) and
compared to the original water storage capacity of the Barwon area.

Table 3. The volumes of the proposed dam are compared to the original water storage capacity in
Barwon.

Regions. Volume (ML) Proposed Dam Height (M) Volume (ML)

Geelong 95,324 Dam1 6 105
Colac Region

Lorne
Apollo Bay

Gellibrand System

2654
215
375
60

Dam2
Dam3
Dam4
Dam5

5
5
5
3

37,250
7513
4475

30

Total Capacity (ML) 98,628 Total Capacity (ML) 49,373
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A brief estimate of the enhancement of the water supply system can be obtained by
summing the total capacity of the Barwon (98,628 ML) and the additional volume provided
by the envisaged multi-stage dam (49,373 ML), divided by the original water storage
capacity, resulting in an improvement of approximately 1.5 times, which explains the value
of the experiment. Furthermore, this diagram (Figure 9) outlines the entire mechanism
of the dam’s operation, with a continuously hierarchical water storage facility that uses
multiple interruptions to increase surface water retention opportunities and improve the
site’s overall ecological configuration and stability. The inhabitants of the surrounding
towns can extract the vital water resources from the linear system for productive activities
and create a healthy habitat for living creatures. The proposed blue infrastructure provides
water to support a wide range of intensive agricultural activities and creates ecological
wetlands along the river to accommodate the collateral effects of future precipitation
deficits.
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4. Discussion

In recent years, Australia’s high vulnerability and sensitivity to climate change were
reflected in severe droughts caused by a combination of rainfall deficits and rising tempera-
tures [58]. There is a 66% probability that the future affected area will extend to Victoria by
the 2150s [59], and this finding has driven the increasingly apparent contradiction in the
water supply to the coastal areas where most settlers are concentrated.

In order to establish a deeper understanding of the potential impacts of changing
landscape patterns on coastal ecological suitability, the spatial and temporal distribution
characteristics of shifting land-use in Barwon were investigated. It is evident that the
Anthropocene transformation is mainly embodied in more efficient agricultural grazing
and woodland development. We took the macro-predictions that population growth and
climate change will tend towards drought as a premise for our strategy and extrapolated
the conflicts between future water demand and actual supply capacity.

This article screened the basic parameters for the suitability analysis of dams based
on previous literature and practice. In the study, geomorphological attributes such as
surface hydrology, groundwater level, NDVI, salinity, lithology, and distance from towns
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comprised the objective factors for analyzing the construction of water supply systems in
the catchment area, and weighting proportions consistent with their self-significance were
applied to the parameters of the model. A graded map of dam suitability was extracted
by utilizing GIS data visualization to systematize the entire siting analysis process, and so
the accuracy of the results is further credible. The high suitability areas produced by the
model are centered on the plateau-plain convergence in the Midwest, which is the primary
productive place for local economic activity and has many settlements in its downstream
reaches, such as Geelong, one of Victoria’s largest regional cities [28]. Since the population
around the river is predominantly dependent on its supply, after assessing the storage
capacity of potential dam sites, five small dams of around five meters were identified to
provide a positive reaction to the ecological capacity of the area. In addition, the proposed
multi-level dams intercept seasonal floods to achieve resilient landscape space. These sites
were selected with ecological service purposes in view, and all factors were simulated and
overlaid to achieve the optimum volumes and conditions.

From a more comprehensive global perspective, with approximately 2.5 billion hectares
of land available for mixed crop farming, agriculture is the most vulnerable to climate
change owing to its enormous size and sensitivity [60,61]. In Australia, almost one-third of
the agricultural area is mixed farming. The changing climatic parameters of recent decades
have been a significant factor in the risks of intensive agriculture. Across much of the
southern part of the country, abnormal rainfall and rising temperatures have combined
to drive less streamflow into rivers and dams, which will reduce the amount of water
available for irrigation [60,62,63]. In addition, its adverse effects involve periodic prolonged
droughts and reduced groundwater recharge rates. Thus, the issue surrounding productive
activities along most rivers is that the intensity and frequency of precipitation may be
affected to different extents by climate change [64].

The water systems program mentioned in the text is presented as an adaptation action
to mitigate agro-pastoral complexities in the future. The strategies of this workflow might be
applied to these areas where water resources are unevenly scattered due to seasonal rainfall
fluctuations. For instance, in South Asia, human and economic losses caused by extreme
weather have risen exponentially over the century. One of the more obvious landscape
risks in flooding has demonstrated an upward trend in the Indian region [65]. The multi-
purpose dam concept allows for applying similar ecological conditions, converting excess
surface runoff into resilient wetlands through low disturbance hierarchical retention. This
model relieves pressure on water systems and can be associated with other hydrological
modelling platforms such as HEC-RAS and HEC-GeoRAS to provide practical support in
further developing iterative topography. The precise design of the positioning and function
of the blue infrastructure achieved with the help of digital simulation makes a positive
contribution to the efficient balancing of water allocation and reuse in the region.

Properly planned land regeneration is essential for the improvement of future land-
scape risk. Nevertheless, indirect site characteristics may also affect the accuracy of suitabil-
ity judgements, such as economic performance, human customs, site accessibility, and other
factors that have not been fully addressed. The results of the predictions are not simply
causal, which leads to uncertainty, and the fact that the evaluation and projection of this
study are without field surveys limits the precision of our exploration. This technology can
be used coupled with traditional methods of geological prospecting to shortlist locations
for the construction of water supply facilities, increasing efficiency, and saving time and
resources. Future research directions could invest more effort in methodologies such as
high-resolution land information extraction, artificial intelligence-based data collection and
multi-period water flow simulation to cope with the coupling and coordination of elements
under complex model construction.

5. Conclusions

The ecological suitability of the coast is influenced by the potential landscape pattern
and environmental carrying capacity. Because of human activities and climate change
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interventions, it is difficult to strike a balance for the future water supply in the Barwon
region between its service functions through natural regulation dynamically. Landscape
ecological risks reveal the current state of environmental security and provide urgency for
research to optimize regional ecosystems [66].

When analyzing more than 100 years of land-use transformation in the district, it
is recognized that the site will remain strongly characterized by grazing and dryland
agriculture, but the proportion of the former has experienced a marked increase, the
driving forces behind which are not only determined by geographical morphology and
economic orientation but are also linked to the long-term anthropogenic impact on the
climate. The water shortage during the dry season, becoming more acute this century, has
exposed a predictable water supply crisis. For this reason, mitigating the effects of extreme
weather conditions on the population has been widely discussed as a fundamental social
issue at this stage.

In the field of land use, ecological conservation, and economic development strategies,
a model is being proposed that utilizes raster map forms to integrate multiple impact
parameters to overlay analysis and calculate the corresponding priorities. It combines
GIS, remote sensing, and landscape infrastructure to describe surface landforms and
classifications of suitability assessment over various time ranges. The application of this
method identifies viable sites for constructing a multi-purpose dam at Barwon within the
potential area of the generating rank. As a result, five sites are identified and evaluated
using surface volume. Besides, the assumed water storage capacity is compared with the
original values to verify the feasibility of the project implementation. As it is approximately
1.5 times higher than the previous value, this will substantially enhance the stability of the
water availability on the site after a reduction in rainfall and provide sustainable support
for local agricultural development.

This study simulates the insecurity of future water supply, prospectively improving the
retention of surface runoff and the rational distribution of water resources. The proposed
hierarchy management system effectively optimizes production patterns and water storage
capacity, thereby reducing the potential for additional land degradation.
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