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Abstract: Soil maps can usefully serve in data scarce regions, for example for yield (gap) assess-
ments using a crop simulation model. The soil property estimates’ contribution to inaccuracy and
uncertainty can be functionally evaluated by comparing model results using the estimates as input
against independent observations. We conducted a functional evaluation of digital maps of soil
hydraulic properties of the Zambezi River Basin using a crop growth model AquaCrop. AquaCrop
was run, alimented with local meteorological data, and with soil hydraulic properties derived from
the digital maps of digital soil mapping (DSM) techniques, as opposed to estimations from the widely
used Saxton and Rawls pedotransfer functions. The two simulated time series of canopy cover (CC)
(AquaCrop-CC-DSM and AquaCrop-CC-Saxton), which were compared against canopy cover data
derived from the remotely sensed Leaf Area Index (LAI) from the MODIS archive (MODIS-CC).
A pairwise comparison of the time series resulted in a root mean squared error (RMSE) of 0.07 and a
co-efficient of determination (R2) of 0.93 for AquaCrop-CC-DSM versus MODIS-CC, and an RMSE of
0.08 and R2 of 0.88 for AquaCrop-CC-Saxton versus MODIS-CC. In dry years, the AquaCrop-CC-
DSM deviated less from the MODIS-CC than the AquaCrop-CC-Saxton (p < 0.001), although this
difference was not significant in wet years. The functional evaluation showed that soil hydraulic
property estimates based on digital soil mapping outperformed those based on Saxton and Rawls
when used for simulating crop growth in dry years in the Zambezi River Basin. This study also
shows the value of conducting a functional evaluation of estimated (static) soil hydraulic properties
in terms of dynamic model output.

Keywords: AquaCrop; crop canopy cover; digital soil mapping; leaf area index; remote sensing

1. Introduction

Critical to better soil management is quantitative information detailing the soil re-
source, its processes, and its variation across landscapes under the broad umbrella of
environmental monitoring [1,2]. In this context, digital maps of soil hydraulic properties
have been developed using digital soil mapping (DSM) techniques for the Zambezi River
Basin (ZRB) [3]. The maps were generated using the machine learning Random Forest
model, using covariates related to the SCORPAN concept, whereby soil (S), climate (C),
organisms (O), relief (R), parent material (P), and age (A), supplemented with geographic
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position (N), stand for Jenny’s soil forming factors [2]. The maps were generated for water
content at pF0.0 (saturation), pF2.0 (field capacity), pF4.2 (wilting point), and for satu-
rated hydraulic conductivity (Ksat), for three soil depth layers of 30–40 cm, 60–70 cm, and
100–110 cm, and at a spatial resolution of 90 m for the whole ZRB; however, before these
maps are used in crop growth or hydrological modelling studies, it is important to check
for their performance. In the absence of such confidence, there are uncertainties about the
true soil hydraulic properties and processes of the considered soils [4]; hence, it is vital to
determine to what extent uncertainties are propagated through the DSM and how these
affect subsequent application models relying on these data as input variables.

According to [4,5], in modeling exercises, uncertainty of the model output is a com-
bination of three main sources including model structure uncertainty, model parameter
uncertainty and model input uncertainty. These uncertainties in the DSM models can be
investigated through functional evaluation; for instance, by checking for the DSM model
performance in a crop model such as the FAO’s water driven AquaCrop. Obviously, DSM
techniques for estimating soil hydraulic properties at a specific place are not error-free.
Depending on the intended model application, the significance of the resulting uncertainty
will vary. When the estimation of hydraulic properties is not the final aim, there is scope
for evaluating the usability of DSMs by evaluating the accuracy of model output (e.g., from
crop growth or hydrological models), to which the DSM-estimates are inputted [6]. This
is what is meant by functional evaluation [7–9]. References [9,10] recommended using a
functional criteria analysis, which analyzes the functional behavior of estimated parame-
ters in various applications. By analyzing how model parameter uncertainties propagate
through the stochastic model, a functional analysis combined with a stochastic model of
soil hydraulic properties can be used to effectively analyze the relative effectiveness of
alternative parameterization methods [11,12]. Some authors have discussed the importance
of functional analysis for the uses of pedotransfer functions (PTFs) and have reported the
importance of functionally evaluating PTFs for real field-scale applications [9,10,13,14].
Studies have been conducted to evaluate the functionality of PTFs for environmental
simulations, such as water flow simulations [14,15], water balance studies [11,12,16,17],
irrigation water estimations [18,19] and crop yields [19–21], using different models.

However, in order to conduct functional evaluation through a model such as AquaCrop,
a functional criterion is needed [18,21,22]. This criterion can come in the form of any refer-
ence or measured data such as crop yield, crop water requirements [22] or the crop Canopy
Cover (CC). The AquaCrop crop model simulates CC to describe evolving phenological
crop development. Through its expansion, aging, conductance, and senescence, CC deter-
mines the amount of water potentially transpired, which in turn determines the amount of
biomass produced and the final crop yield. If water stress occurs, the simulated CC will
be less than the potential canopy cover for no stress conditions [23]; however, this type of
approach comes with its own challenges, in that most of the reference data or functional
criterion (such as CC) needed to perform functional evaluation is rarely available, especially
in places such as the ZRB.

Therefore, remote sensing can be used for field surveys providing reference data such
as CC. The collection of spatially explicit crop data for such large areas could be very costly,
tedious, and time-consuming, and therefore, the combined use of satellite imagery and
ground data collection to monitor crop growth conditions, and subsequently predict yields,
is not only convenient, but also economical [24,25]. Among the many available remote
sensing products, the Moderate resolution Imaging Spectrometer (MODIS) products are
freely available datasets that provide considerable advantages over other remote sensing
products in crop monitoring studies [26–31]. MODIS provides for many vegetation indices
including the normalized difference vegetation index (NDVI), which is an indicator of crop
vigor as well as the Leaf area index (LAI), and is a useful biophysical variable defined
as the sum of all one-sided green leaf areas divided by the corresponding area on the
ground covered by the plant and is generally used for monitoring crop development and
estimating crop yields [32–34]. The possibility of using remote sensing data instead of field
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data makes most crop growth models more applicable for use in data-scarce areas such
as the ZRB, whereby LAI derived from MODIS data can be assimilated in crop growth
modelling studies as a steering factor (reference or observed data and also used as a
functional criterion in this study), in which a crop growth model such as AquaCrop is
re-parameterized and calibrated to reduce the difference between the model value and
the satellite-derived value [29,35,36]. For this study, the Leaf Area Index (LAI, m2m−2)
derived from MODIS data MCD15A3H Version 6 [37] was used as reference data (functional
criterion) for the FAO’s AquaCrop crop growth model after conversion to crop canopy cover
(CC, m2m−2), for the purposes of performing functional evaluation of the soil hydraulic
property maps that were developed using DSM techniques and the machine learning
random forest model in another study. The aim of this study, however, was to investigate to
what extent the different procedures for mapping the soil hydraulic properties get reflected
in a crop-growth model, and to verify if these differences can be noticed by RS data—in
this case MODIS. The assumption is that the crop growth model that best reflects the crop
growth in the field will also have the highest correspondence with the NDVI value recorded
by MODIS by considering the following specific objectives:

1. Evaluate and compare the time series of the AquaCrop simulated maize canopy cover
(CC) with the time series of the canopy cover derived from the MODIS-satellite LAI-
product (MODIS-CC), whereby AquaCrop is alimented by the available digital soil
hydraulic property maps (AquaCrop-CC-DSM).

2. Investigate whether the AquaCrop-CC-DSM is closer to the MODIS-CC than the CC
time series generated by the AquaCrop alimented with the soil hydraulic properties
that were estimated by the widely used PTFs of Reference [38].

3. Examine whether the performance of the AquaCrop-CC-DSM and the AquaCrop-CC-
Saxton depend upon the reference soil group (RSG) and/or upon the rainfall abundance.

2. Materials and Methods
2.1. Study Area and Land Units

The study area coincides with the part of the Zambezi River Basin falling within
the Republic of Zambia and is located between 8–18◦ S latitude and 22–33◦ E longitude
(Figure 1). The spatial resolutions of available soil hydraulic properties (SHPs) data are
not sufficient for application in the ZRB, and only a few initiatives such as the SoilGrids
information system [39] provide global predictions of SHPs at a resolution of 250 m by 250 m
for water only content at pF0.0 and the available water capacity (AWC). Reference [40] also
generated a worldwide collection of soil hydraulic properties data and sub-grid variability
of soil water retention and hydraulic conductivity curves at 1 km by 1 km resolutions,
whereas [41] developed a dataset of the AWC for Africa at a resolution of a 1 km by 1 km
scale. Highly weathered soils (Ferralsols) are predominant in the northern section of the
ZRB on the higher parts of the plains, and they plateau predominantly in areas constituted
of Precambrian basement rocks. The creation of the rift valleys and adjacent mountains
has a significant impact on the soils of the eastern section of the basin. These soils are
less weathered (e.g., Luvisols, Lixisols) or weakly developed (Cambisols), and are often
rocky, stony, or shallow (Leptosols, Regosols). In the driest part, particularly in northern
Zimbabwe, soils occur that are affected by the accumulation of soluble salts (Solonchaks,
Solonetz). Relatively fertile soils occur on the recent volcanic parent materials (Andosols)
in the northern part of ZRB in Tanzania, where older volcanic or calcareous rocks have
weathered the fertile black soils of the cracking clay type which have formed (Vertisols).

Most of the data preparation and pre-processing for the AquaCrop model inputs [22]
were done using a combination of R-software, version 3.5.0 [42] and ArcGIS-software,
version 10.7. The AquaCrop model simulations were conducted for 12 locations (land units)
in Zambia (Figure 1). These were 12 pure pixels (500 m × 500 m) not under irrigation
and were assumed to be a monoculture of maize during the rainy season with fallow land
between the maize growing seasons, and they represented mapping units of six different
dominant Reference Soil Groups. The land units were generated using ArcGIS-software by
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combining a climate zone map from the Global Yield Gap and Water Productivity Atlas
(GYGA) [43], a land cover map of Africa obtained from http://2016africalandcover20m.
esrin.esa.int/ (accessed on 20 November 2021) for extracting agricultural areas, a slope
map derived from a Digital Elevation Model (DEM) obtained from http://srtm.csi.cgiar.
org (accessed on 20 November 2021), and a soil map based on [44] obtained from the
International Soil Reference and Information Centre (ISRIC) SoilGrids web interface at
https://soilgrids.org/ (accessed on 20 November 2021).
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2.2. AquaCrop Model Inputs and Outputs

AquaCrop is a physical crop water productivity model that simulates crop develop-
ment and production under various environmental conditions and management practices.
The model has been calibrated for more than 30 different crops, including widely cultivated
crops such as maize, wheat, and sugarcane, as well as underutilized crops such as bambara
groundnut and tef. As AquaCrop keeps an optimal balance between accuracy, robustness,
and simplicity, it only requires a limited number of easily obtainable input parameters [23],
which makes the model applicable even in data-scarce conditions. AquaCrop has been
applied multiple times to assess irrigation, crop, and field management in African cropping
systems in the ZRB. The AquaCrop model requires crop input data and observations for
parameterization, soil properties, field management practice data, and a time series of
weather data, that define the environment in which a crop develops [23].

http://2016africalandcover20m.esrin.esa.int/
http://2016africalandcover20m.esrin.esa.int/
http://srtm.csi.cgiar.org
http://srtm.csi.cgiar.org
https://soilgrids.org/
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2.2.1. Climate Data

We used weather data from the Global Yield Gap and Water Productivity Atlas
(GYGA) [43] for 6 climate stations in Zambia (Figure 1). The data for the period of
1998–2012 consisted of daily records of rainfall, minimum and maximum temperature,
mean relative humidity, mean wind speed, and solar radiation. The time series of daily
reference evapotranspiration (ETo), which AquaCrop also requires, was calculated from
the minimum and maximum temperature, mean relative humidity, mean wind speed, and
solar radiation, according to the FAO Penman Monteith equation [45], by applying the ETo
calculator software [23].

2.2.2. Crop Data

We selected maize (Zea mays L.) to simulate crop canopy cover (CC) since it is
the most common crop grown by small-holders and large commercial farmers through-
out the ZRB during the rainy season. We downloaded MODIS (MCD15A3H Version 6)
LAI time series data [37] for the period 2002–2012 by means of the R-MODIStsp pack-
age. This data comes as a rasterstack time series dataset that is already pre-processed
(i.e., georeferenced and corrected for atmospheric interference). The MCD15A3H Version
6 MODIS Level 4, Combined Fraction of Photosynthetically Active Radiation (FPAR),
and Leaf Area Index (LAI) product, is a 4-day composite data collection with a pixel
size of 500 m. Within the 4-day period, the compositing algorithm selects the best pixel
from all acquisitions of both MODIS sensors on NASA’s Terra and Aqua satellites https:
//lpdaac.usgs.gov/products/mcd15a3hv006/ (accessed on 20 November 2021) [37], which
both have a temporal resolution of 8 days (Table 1).

Table 1. Description of the standard MODIS LAI/FPAR products.

Official Name Platform Raster Type Spatial
Resolution

Temporal
Granularity

MOD15A2H Terra Tile 500 m 8 Days
MYD15A2H Aqua Tile 500 m 8 Days

MCD15A2H Terra + Aqua
Combined Tile 500 m 8 Days

MCD15A3H Terra + Aqua
Combined Tile 500 m 4 Days

The MODIS LAI rasterstack time series data was overlaid with the land units layer to
extract the stack of pixels with the LAI-value corresponding to the center of the 12 land
units. As the AquaCrop model produces CC rather than LAI as one of its outputs, the
LAI gathered from the MODIS data had to be converted to CC in order to compare the
AquaCrop CC outputs. In general, the relation between LAI and CC is based on Beer’s law
(commonly used to describe the relationship between the proportion of light penetrating
a plant canopy and the leaf area index), and according to [46], it can be expressed as in
Equation (1).

CC(%)= 1.005 ×
[
1 − exp(−0.6LAI)

]1.2
(1)

with CC as the green crop Canopy Cover percentage and LAI the MODIS Leaf Area Index
(m2m−2). Before comparing the MODIS CC with the AquaCrop simulated CC, the MODIS
CC time series data were filtered using a moving average with parameters (p = 1, n = 3) of
the Savitzky-Golay Filter [47–49]. The filtering was done because the atmospheric effects
on surface reflectance generally cause negatively biased noise within the LAI values of
MODIS [48]. The AquaCrop model generates CC outputs using a daily time scale; however,
the converted MODIS CC was available on a 4-day time scale. To ensure a fair comparison
between the AquaCrop CC and the MODIS CC, 4-day values for the AquaCrop time series
were extracted from the daily AquaCrop time series using R by selecting a value of CC
every 4 days.

https://lpdaac.usgs.gov/products/mcd15a3hv006/
https://lpdaac.usgs.gov/products/mcd15a3hv006/
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In AquaCrop, crops are characterized by a set of parameters that can easily be cali-
brated by the modeler to meet specific local growing conditions [22]. We selected default
crop parameters for the length of a growing period to reach maturity (1517 growing degree
days) and crop planting density (49,231 plants/m2) because this was a comparison study.
For the planting date, we used the rainfall criterion used for Southern Africa [50] which
was: first day of the first 10-day period since the 1st of July with a cumulative precipitation
of at least 25 mm. Prior to the planting date, the actual AquaCrop simulations began on
1 January 1998. At this time, because most portions of the ZRB are already in the peak rain-
fall period, the initial soil water content was considered to be at field capacity throughout
the soil profile.

2.2.3. Soils and Soil Hydraulic Properties Data

The AquaCrop simulations for the 12 land units were conducted on soil profiles
representative for the Reference Soil Groups (RSG) according to the 3rd edition of the World
Reference Base for soil resources [51]. In the 12 land units, agricultural land occurs on the
following six RSGs: Acrisols, Arenosols, Cambisols, Ferralsols, Luvisols, and Podzols. The
soil textural classes of each RSG are presented in Table 2.

Table 2. Soils and soil hydraulic properties data for AquaCrop simulations as generated through
DSM (based on ANN derived PTFs and Random Forest regression with Residual Kriging), and the
Saxton and Rawls PTF.

Soil Hydraulic Properties Data Used in AquaCrop Simulations

Digital Soil Mapping (DSM) Saxton & Rawls PTFs
Land Unit,
RSG and
Climate
Station

Soil
Profile
Depth
Layer (cm)

FAO Textural
Class pF0.0

vol %
pF2.0
vol %

pF4.2
vol %

AWC
vol %

Ksat
mm/h

pF0.0
vol %

pF2.0
vol %

pF4.2
vol %

AWC
vol %

Ksat
mm/h

1
Acrisol
Kabwe

30
60
100

Sandy loam
Sandy Clay loam
Sandy Clay loam

31.7
29.6
31.1

17.3
17.1
17.4

6.7
6.1
7.0

10.6
11.0
10.4

204.6
201.8
185.8

38.8
39.5
40.4

20.0
26.2
29.3

12.0
16.8
19.2

8.0
9.4

10.1

15.7
5.8
3.4

2
Ferralsol
Kabwe

30
60
100

Sandy Clay loam
Sandy Clay loam
Clay loam

36.6
36.5
37.3

22.6
21.5
21.8

9.1
9.7

10.3

13.5
12.0
11.5

100.8
66.4
69.3

40.0
41.3
42.9

26.2
31.1
34.6

15.7
19.8
22.7

10.5
11.3
11.9

6.6
2.7

1.45
3
Ferralsol
Mpika

30
60
100

Sandy Clay loam
Sandy Clay
Sandy Clay

37.7
36.5
38.3

23.1
22.2
21.3

9.8
9.6
9.4

13.3
12.6
11.9

120.5
98.5

101.9

40.3
41.3
42.4

28.1
31.7
34.6

18.1
21.1
23.4

10.0
10.6
11.2

4.5
2.2
1.2

4
Luvisol
Mumbwa

30
60
100

Sandy Clay loam
Sandy Clay loam
Sandy Clay

37.0
36.6
37.4

25.6
24.9
23.5

11.6
10.2
10.7

14.0
14.7
12.8

69.8
71.8
73.8

39.7
41.0
42.1

25.1
30.0
33.0

15.1
19.3
21.6

10.0
10.7
11.4

7.8
3.3
1.9

5
Acrisol
Mumbwa

30
60
100

Sandy Clay loam
Sandy Clay loam
Clay loam

38.2
38.8
39.5

26.5
26.6
23.8

11.3
11.3
11.5

15.2
15.3
12.3

68.3
50.3
48.0

40.0
41.6
43.0

26.7
31.3
34.6

16.3
19.9
22.8

10.4
11.4
11.8

5.9
2.8
1.5

6
Acrisol
Choma

30
60
100

Sandy loam
Sandy Clay loam
Sandy Clay loam

30.5
29.3
30.6

18.3
17.9
17.6

6.8
6.7
7.2

11.5
11.2
10.4

163.1
190.4
197.1

38.7
38.9
39.5

19.0
23.6
26.2

11.4
15.0
16.8

7.6
8.6
9.4

18.4
8.6
5.7

7
Acrisol
Choma

30
60
100

Sandy loam
Sandy Clay loam
Sandy Clay loam

28.5
28.3
28.7

21.1
21.0
20.8

7.2
7.0
7.3

13.9
14.0
13.5

208.4
232.5
242.2

38.7
38.8
39.0

18.6
22.5
24.1

11.4
14.4
15.6

7.2
8.1
8.5

19.3
10.3
7.9

8
Arenosol
Livingstone

30
60
100

Sandy loam
Sandy loam
Sandy loam

33.3
32.1
32.0

21.2
21.4
21.0

9.3
8.8
7.9

11.9
12.6
13.1

187.8
180.0
225.8

38.9
39.1
39.5

22.8
24.5
26.1

14.4
15.6
16.8

8.4
8.9
9.3

10.1
7.6
5.9

9
Arenosol
Livingstone

30
60
100

Sandy loam
Sandy loam
Sandy loam

30.3
31.5
31.4

20.5
20.8
20.3

7.8
8.0
8.0

12.7
12.8
12.3

182.5
198.8
233.5

38.9
39.1
39.4

22.5
24.9
26.5

14.4
16.2
17.4

8.1
8.7
9.1

10.6
6.9
5.2

10
Podzol
Mongu

30
60
100

Sandy loam
Sandy loam
Sandy loam

26.3
26.0
26.1

17.5
16.6
16.0

5.2
5.2
5.4

12.3
11.4
10.6

336.7
351.4
342.2

39.2
38.5
38.5

12.6
17.1
18.1

6.9
10.6
11.3

5.7
6.5
6.8

44.7
22.8
19.9

11
Arenosol
Mongu

30
60
100

Sandy loam
Sandy loam
Sandy loam

25.7
25.7
25.8

15.8
14.7
14.0

4.6
4.4
4.6

11.2
10.3
9.4

386.1
392.5
383.2

39.4
38.7
38.5

12.1
13.4
14.8

6.4
7.5
8.7

5.7
5.9
6.1

49.2
38.8
31.6

12
Cambisol
Mongu

30
60
100

Sandy Clay loam
Sandy Clay loam
Sandy Clay

36.9
36.1
36.8

21.8
21.4
21.5

8.3
9.0
9.8

13.5
12.4
11.7

84.7
78.1
75.2

39.7
40.8
42.2

26.9
30.8
34.4

17.5
20.4
23.4

9.4
10.4
11.0

5.2
2.5
1.2
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We used the International Soil Reference and Information Centre (ISRIC) or the Soil-
Grids web interface to download basic soil datasets such as soil granulometry fractions
(sand, clay, and silt), soil organic carbon content, and bulk density, with a spatial resolution
of 250 m at depth layers of 30, 60, and 100 cm to compare two methods of estimating soil
hydraulic properties data [39] at (https://soilgrids.org/, accessed on 20 November 2021).
Each of the downloaded datasets was then overlaid with the 12 land units, and using zonal
statistics with the mean function, the extracted values were used as input for the Saxton
and Rawls PTFs to estimate soil hydraulic properties (Table 2) for the first method. In the
second method, the soil hydraulic properties data at depth layers of 30–40 cm, 60–70 cm,
and 100–110 cm were obtained from the digital soil maps of hydraulic properties derived
based on Digital Soil Mapping (DSM) techniques. Each map layer (Figure 2) was also over-
laid with the 12 land units, and using zonal statistics with the mean function, we extracted
soil hydraulic properties values (Table 2) that were used as input in the AquaCrop model.
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2.2.4. Simulation Outputs

Two daily CC time series covering the 1 January 2002 to 31 December 2012 period
were generated for each of the 12 land units by means of AquaCrop. One was obtained
from AquaCrop operated with soil hydraulic properties data (Figure 2 and Table 2) derived
from DSM, hence referred to as AquaCrop-DSM-CC, whereas the other one, referred to
as AquaCrop-Saxton-CC, was generated from AquaCrop operated with soil hydraulic
properties data (Table 2), which were derived from the [38] PTFs. The two daily time series
were eventually converted to a 4-day time step to match the temporal resolution of the
MODIS CC time series.

2.2.5. Statistical Analysis

The MODIS CC time series were used as the reference so that the two comparisons
considered were (a) AquaCrop-CC-DSM versus MODIS-CC and (b) AquaCrop-CC-Saxton
versus MODIS-CC. The AquaCrop CC-simulations were evaluated against the MODIS-CC-
time series using the root mean squared error (RMSE) and the co-efficient of determination
(R2). To determine whether the deviation between AquaCrop-DSM-CC and MODIS-CC on
the one hand, and AquaCrop-Saxton-CC and MODIS-CC on the other hand are statistically
significant, an Analysis of Covariance (ANOCOVA) was conducted. The ANOCOVA model
in Equation (2) was put forward. The quantitative dependent variable was the deviation of
either the DSM-CC or Saxton CC time series from the MODIS CC time series, all based on a
4-day time step, whereas the independent variables were the Reference Soil Group (RSG),
the rainfall (also on a 4-day time step) and interactions between the RSG and rainfall. The
rainfall variable was primarily included in the equation because the maize crop simulations
in the AquaCrop model were rainfed rather than irrigation based.

Deviation of (CCDSM or Saxton from CCMODIS)= RSG + Rainfall + RSG × Rainfall (2)

Furthermore, in order to identify dry, normal, and wet years from the six meteorologi-
cal stations, the RAINBOW-a software package for hydrometeorological frequency analysis
and for testing the homogeneity of historical data sets was used [52].

3. Results
3.1. Maize Canopy Cover (CC)

During the 2002–2012 growing seasons, there was a good agreement of the MODIS
CC time series with both the DSM and Saxton CC time series for all the 12 land units
(Figure 3). The deviations of either the DSM or Saxton CC time series from the MODIS CC
time series were mainly observed in the growing seasons with lower rainfall events or dry
spell periods. For the land units 1 (Acrisol) and 2 (Ferralsol), the deviations in the dry spell
periods were not as pronounced as those for the rest of the land units.

3.2. Statistical Analysis

For the 12 land units, a mean RMSE = 0.07 and a mean R2 = 0.93 was observed for
the MODIS CC time series versus the DSM CC time series, whereas a mean RMSE = 0.08
and mean R2 = 0.88 was obtained for the MODIS CC time series versus the Saxton CC time
series (Figure 4). Although, the AquaCrop model performance was slightly better with the
soil hydraulic properties data obtained from DSM maps than with those from the Saxton
and Rawls PTFs. Figure 4 seems to suggest that there was no marked difference between
the DSM and the Saxton methods, but rather, that there are two different population effects,
one leading to a straight line and the other leading to an S-shaped curve.
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Table 3 for the ANOCOVA tests indicates that the RSG, the rainfall, and interactions
between the RSG and rainfall variables each have a significant impact on the deviations
of either the DSM CC or the Saxton CC from the MODIS CC data points. Most of the
p-values of the RSG, rainfall, and interactions between the RSG and rainfall variables were
all p < 0.001 for the deviations of either the DSM CC or the Saxton CC from the MODIS CC.
Furthermore, using the intercepts and coefficients in Table 3, on average, for a every 3 mm
of rainfall received on a RSG, the deviations of the DSM CC from the MODIS CC were about
−4.68%, whereas those for the deviations of the Saxton CC time series from the MODIS
CC time series were about −13.31%. Moreover, the deviations of the Saxton CC time series
from the MODIS CC were more pronounced and statistically significant (p-values < 0.001)
in the dry years (2002–2003, 2005–2006, and 2011–2012 of Figure 3), implying that overall,
the DSM outperformed the Saxton and Rawls PTF method when it came to estimating the
soil hydraulic properties data.
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Table 3. Intercepts, coefficients, and p values for the ANOCOVA tests based on Equation (2).

Digital Soil Mapping (DSM) Saxton & Rawls PTFs
Variable Coefficients p Values Coefficients p Values
Intercept 0.312 0.754 −0.879 0.379
Rainfall −6.288 3.330 × 10−10 *** −6.990 2.910 × 10−12 ***

Arenosol 4.459 8.320 × 10−06 *** 1.138 0.255
Cambisol −0.349 0.727 −3.407 6.580 × 10−4 ***
Ferralsol −5.044 4.620 × 10−07 *** −3.726 1.960 × 10−4 ***
Acrisol −1.131 0.258 −2.050 0.040 *
Luvisol 4.883 1.060 × 10−06 *** 4.036 5.480 × 10−05 ***
Podzol 10.266 <2.000 × 10−16 *** 6.797 1.120 × 10−11 ***

Arenosol *
Rainfall 6.794 1.150 × 10−11 *** 4.777 1.800 × 10−06 ***

Cambisol *
Rainfall 2.717 0.007 ** −0.340 0.734

Ferralsol *
Rainfall

Acrisol * Rainfall
Luvisol *
Rainfall

−3.429
0.650
5.941

6.080 × 10−4 ***
0.516

2.910 × 10−09 ***

−2.336
−0.726
5.188

0.019 *
0.467

2.16 × 10−07 ***

Podzol * Rainfall 9.499 <2.000 × 10−16 *** 7.443 1.060 × 10−13 ***
Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.
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4. Discussion

Time series of canopy cover is an important intermediate output of water-driven
crop growth models such as the AquaCrop model, and therefore, an accurate estimation
of this variable is essential for the model to produce good/acceptable estimates of crop
evapotranspiration, biomass, and yields [53]. In this study, two methods of estimating soil
hydraulic properties data were functionally evaluated by using the SHPs in AquaCrop
and analyzing the simulated CC. AquaCrop model simulations were conducted for 1998
to 2012 with soil hydraulic properties data derived either from DSM or from the Saxton
and Rawls PTFs; hence, we obtained from the AquaCrop model two simulation outputs: a
maize crop CC time series based on the DSM derived soil hydraulic properties data, and a
maize crop CC time series based on the Saxton and Rawls PTFs soil hydraulic properties
data. The AquaCrop model performance was evaluated using the RMSE and R2 obtained
by comparing each of both obtained CC time series with a MODIS CC time series for
12 considered land units.

Whereas the statistical indices indicate a relatively good performance of the AquaCrop
model, the results seem to suggest that there was no marked difference between the DSM
and the Saxton methods, but rather that there are two different groups of years, one
leading to a straight line, and the other leading to an S-shaped curve (Figure 4); however,
the ANOCOVA tests showed that the deviations of the Saxton CC time series from the
MODIS CC were more pronounced than the DSM-CC from the MODIS CC and statistically
significant with (p-values < 0.001) in the dry years. This was most likely (Table 2) due to
the crops’ water stress, which was more severe in dry years than in the wet years. In the
wet years, the difference between the DSM and the Saxton technique for calculating soil
hydraulic properties is likely to be negligible because no water stress occurs in a wet year,
so the difference in SHPs is of lesser importance for CC (water content does not drop below
thresholds for canopy expansion and early leaf senescence, below which growth reduction
occurs). Furthermore, when compared to the DSM method, the significant deviations for
the Saxton and Rawls PTFs were much larger in dry years because Saxton produces lower
values of the available water capacity and saturated hydraulic conductivity, but slightly
larger values of the water content at pF0.0, pF2.0, and pF4.2 (Table 2).

We may conceive a few possibilities for why the S-shaped curves in Figure 4 appear:
(1) the rainfall variable’s cyclic change between dry and wet seasons; (2) a discrepancy
between the AquaCrop CC and the MODIS CC at the start of the growth season; (3) a
chosen land unit might not be a pure agricultural pixel; (4) the crop on a particular land unit
may not have been maize, and/or the NDVI may be spiked by, e.g., weeds; and lastly (5) in
the months between May and sometime in November, MODIS CC may show higher values
in the beginning of the season, because for AquaCrop simulations, there were no crops on
the field; hence, there were zero values for CC, but MODIS generates some CC values in
this period, which probably came from other vegetation such as weeds, and other crops
that farmers plant before the start of the rain season, sometime in the month of November.

The findings of this study reveal that the DSM maps produce estimates of soil hydraulic
properties, which, when fed into the AquaCrop crop model, produce maize CC estimations
that are closer to the MODIS CC, compared with the AquaCrop CC, simulated with the
SHPs that were estimated by the Saxton and Rawls PTF. The DSM estimates of the SHPs
differ from the PTF estimates at three levels: (i) the deterministic estimation model type
(Random Forest versus Multiple Linear Regression), (ii) the predictor variables (DEM-
derived, climatic, SoilGrids-derived etc., versus SoilGrids only), (iii) the accounting for the
spatial autocorrelation of the deterministic model residuals when they are present, versus
ignoring this spatial autocorrelation.

Apart from using the AquaCrop simulated CC as the criterion for the functional
evaluation of the DSM versus Saxton in crop growth modelling, other variables can be
considered, with the condition that the reference data are available, e.g., biomass and yield
of the considered crop [20,21]. Such information was not available for the studied land
units, nor can it easily be derived from available remotely sensed imagery. Other possible
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variables for functional evaluation relate to the terms of the soil water balance, which in
a water driven crop growth model, have a direct relationship with model outputs such
as CC, biomass, and yield. Again, reference data must be available for such variables to
assess the usability of the SHP estimates. One such variable is the water content of the
topsoil which is simulated by AquaCrop for each time step and can be derived through
microwave remote sensing [54]. It can be argued that the water content of the topsoil is
more directly influenced by the SHPs (especially Ksat) than the canopy cover, and hence,
would be a more appropriate variable for functional evaluation. Our reasoning was that
the canopy cover (and biomass and yield) is the more pertinent variable of interest in the
context of crop growth modelling, whereas for this context, topsoil water content is a rather
intermediate indicator.

5. Conclusions

In modelling, researchers often limit themselves to comparing their modelled data
with observed data, but this gives little insight into the relevance of the modelled data
for the land manager. By performing a functional evaluation, we aimed to gain insight
into the applicability of the crop modelled results; however, in order to conduct functional
evaluation through a soil water balance-based model such as AquaCrop, a functional
criterion is needed. This criterion can come in the form of model output deviation from
any reference or measured data such as crop yield, the temporal profile of crop water
requirements, or crop canopy cover. As CC is closely related to biomass production and
yield, and because of the availability of reference data through the MODIS-LAI time series,
we used the CC time series of the maize crop as the functional criterion. The location
specific CC time series were derived from the time series of remotely sensed LAI, as
available in the MODIS archive. AquaCrop alimented with local meteorological data and
with soil hydraulic properties data derived from digital maps, and the widely used standard
Saxton and Rawls PTFs, were run to generate two time series of AquaCrop simulated CC
for each considered location so that pairwise comparison of time series could be made.
These comparisons resulted in a RMSE of 0.07 and an R2 of 0.93 for AquaCrop-CC-DSM
versus MODIS-CC, and a RMSE of 0.08 and R2 of 0.88 for AquaCrop-CC-Saxton versus the
MODIS-CC time series. An ANOCOVA test showed that the deviations of the Saxton based
CC time series from the MODIS CC were more pronounced and statistically significant
(p-values < 0.001) in the dry years than the DSM based CC time series. The findings of this
study reveal that the developed DSM maps produce estimates of soil hydraulic properties
data, which, when fed into the AquaCrop crop model, produce maize CC estimations that
are closer to the MODIS CC; therefore, this study recommends the use of soil hydraulic
properties data derived from our DSM maps in crop growth models in favor of other
available data products; however, instead of using the CC as the functional criterion in
future functional evaluation studies, other variables such as the topsoil moisture content
should be used.
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