
����������
�������

Citation: Kalumba, M.; Nyirenda, E.;

Nyambe, I.; Dondeyne, S.; Van

Orshoven, J. Machine Learning

Techniques for Estimating Hydraulic

Properties of the Topsoil across the

Zambezi River Basin. Land 2022, 11,

591. https://doi.org/10.3390/

land11040591

Academic Editors: Jianzhi Dong,

Yonggen Zhang, Zhongwang Wei,

Sara Bonetti and Wei Shangguan

Received: 7 March 2022

Accepted: 14 April 2022

Published: 18 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

Machine Learning Techniques for Estimating Hydraulic
Properties of the Topsoil across the Zambezi River Basin
Mulenga Kalumba 1,2,* , Edwin Nyirenda 3, Imasiku Nyambe 4, Stefaan Dondeyne 5 and Jos Van Orshoven 1

1 Department of Earth and Environmental Sciences, University of Leuven,
Celestijnenlaan 200E, 3001 Leuven, Belgium; jos.vanorshoven@kuleuven.be

2 Department of Agricultural Engineering, The University of Zambia, Lusaka P.O. Box 32379, Zambia
3 Department of Civil and Environmental Engineering, School of Engineering, The University of Zambia,

Lusaka P.O. Box 32379, Zambia; edwin.nyirenda@unza.zm
4 Department of Geology, School of Mines, The University of Zambia, Lusaka P.O. Box 32379, Zambia;

inyambe@unza.zm
5 Department of Geography, Ghent University, Krijgslaan 281 S8, 9000 Gent, Belgium;

stefaan.dondeyne@ugent.be
* Correspondence: mulenga.kalumba@unza.zm

Abstract: It is critical to produce more crop per drop in an environment where water availability is
decreasing and competition for water is increasing. In order to build such agricultural production
systems, well parameterized crop growth models are essential. While in most crop growth modeling
research, focus is on gathering model inputs such as climate data, less emphasis is paid to collecting
the critical soil hydraulic properties (SHPs) data needed to operate crop growth models. Collection
of SHPs data for the Zambezi River Basin (ZRB) is extremely labor-intensive and expensive, thus
alternate technologies such as digital soil mapping (DSM) must be explored. We evaluated five
types of DSM models to establish the best spatially explicit estimates of the soil water content at
pF0.0 (saturation), pF2.0 (field capacity), and pF4.2 (wilting point), and of the saturated hydraulic
conductivity (Ksat) across the ZRB by using estimates of locally calibrated pedotransfer functions of
1481 locations for training and testing the DSM models, as well as a reference dataset of measurements
from 174 locations for validating the DSM models. We produced coverages of environmental
covariates from various source datasets, including climate variables, soil and land use maps, parent
materials and lithologic units, derivatives of a digital elevation model (DEM), and Landsat imagery
with a spatial resolution of 90 m. The five types of models included multiple linear regression
and four machine learning techniques: artificial neural network, gradient boosted regression trees,
random forest, and support vector machine. Where the residuals of the initial DSM models were
spatially autocorrelated, the models were extended/complemented with residual kriging (RK). Spatial
autocorrelation in the model residuals was observed for all five models of each of the three water
contents, but not for Ksat. On average for the water content, the R2 ranged from 0.40 to 0.80 in training
and test datasets before adding kriged model residuals and ranged from 0.80 to 0.95 after adding
model residuals. Overall, the best prediction method consisted of random forest as the deterministic
model, complemented with RK, whereby soil texture followed by climate and topographic elevation
variables were the most important covariates. The resulting maps are a ready-to-use resource for
hydrologists and crop modelers to aliment and calibrate their hydrological and crop growth models.

Keywords: digital soil mapping; multilinear regression; residual kriging; saturated hydraulic con-
ductivity; spatial autocorrelation; water retention

1. Introduction

In a context where water availability is declining and/or competition for water is in-
creasing, it is imperative to produce ‘more crop per drop’ [1]. To this end, rainfed and
irrigated crop production systems must be designed which are adapted to the local soil,

Land 2022, 11, 591. https://doi.org/10.3390/land11040591 https://www.mdpi.com/journal/land

https://doi.org/10.3390/land11040591
https://doi.org/10.3390/land11040591
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0000-0002-6766-9919
https://orcid.org/0000-0002-7422-7860
https://orcid.org/0000-0001-5756-7188
https://doi.org/10.3390/land11040591
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land11040591?type=check_update&version=2


Land 2022, 11, 591 2 of 22

climate, and socio-economic conditions. Integrated and well parameterized crop growth
models are key to designing such crop production systems. However, today, in most crop
growth and hydrological modelling studies, a lot of attention is devoted to collecting model
inputs such as climate data, whereas less attention is given to collecting and/or modelling of
the crucial soil hydraulic properties (SHPs) data with sufficient spatial resolutions needed
to operate the models at a large scale. These SHPs data are mainly needed by crop growth
and hydrological models because they play a vital role in the soil-atmosphere-vegetation
interactions, which together with other water balance components, such as rainfall, evap-
otranspiration, runoff, ground, and surface water flow, influence the overall hydrological
cycle, and are key in making water available for crops. Therefore, the SHPs, such as the soil
water content at pF0.0 (saturation), pF2.0 (field capacity), and pF4.2 (wilting point), and the
saturated hydraulic conductivity (Ksat) are fundamental for predicting water and energy
exchange processes at the transition zone between solid earth and atmosphere. To be useful,
the data must be sufficiently accurate [2]. Apart from the fact that the spatial resolution of
SHPs datasets available for vast areas such as the Zambezi River Basin (ZRB) is insufficient,
the extensive collection of physical soil data such as SHPs for large territories as the ZRB
is extremely labor-intensive and costly, necessitating the investigation of scientifically valid
alternative approaches such as digital soil mapping (DSM).

The ZRB is the fourth largest basin in Africa, with abundant water and land resources,
and where more than 40 million people live [3,4]. Given the population growth and economic
development, the demand for water and land resources increases. In particular, hydropower
generation and irrigated agriculture demand large quantities of water [3,5]. To analyze the
water–energy–food nexus, and to develop a decision analytical framework in support of
policy and decision makers for the ZRB [6], the hydrological model TOPKAPI [7–9] and
the FAO crop growth model AquaCrop [10] have been used. Process-based hydrological
models such as TOPKAPI and the AquaCrop crop growth model require soil hydraulic
properties as input data, including the saturated hydraulic conductivity and the water
retention characteristics. However, SHPs data with higher spatial resolutions are not available
on a large scale, such as the ZRB, which spans eight African countries, and measuring
them is both expensive and time intensive. Hence, measured data on these soil properties
are normally estimated on a point scale from basic soil data by means of pedotransfer
functions [11]. However, to generate spatial coverages of these soil hydraulic properties
across a large basin such as the ZRB, digital soil mapping techniques can be used.

According to [12], DSM techniques target the generation of coverages of soil prop-
erties at a given spatial resolution, based on quantitative relationships between spatially
explicit environmental data (predictor variables or covariates) and the properties of interest,
observed or measured in the field or in the laboratory. It can be seen as a process whereby
insights from both conventional soil surveys and geostatistical approaches are combined
resulting in a hybrid approach (Figure 1).
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Figure 1. Integration of the SCORPAN model with geostatistical approaches for digital soil mapping
(adapted from: [13]).

Whereas conventional soil survey approaches implicitly account for spatial variation
and auto-correlation of Jenny’s soil forming factors [14]. Ref. [12] further elaborated and
reformulated such approaches into DSM models of the “SCORPAN-SSPFe” type. “SCOR-
PAN” stands for a priori knowledge on the soils (S), besides Jenny’s soil forming factors
climate (C), organisms (O), relief (R), parent material (P) and age (A) and supplemented
with information on the geographic position (N), and “SSPFe” stands for “soil spatial
prediction function with spatially auto-correlated errors”. The SCORPAN (Figure 1) term
also refers to the collection of environmental covariates (predictors in the deterministic
models), which are nowadays widely available as geodatasets, and include legacy soil maps,
climatic data, land cover data often derived from remote sensing data, digital elevation
models (DEMs) and their derivatives, and geological maps [15].

The four most fundamental components in any DSM approach are the response
variable or dependent variable, a model, independent variables (the soil environmental co-
variates) representing the SCORPAN factors, and the SSPFe term. A model must be chosen
to build a map of soil attributes or soil classes scattered throughout a landscape after picking
an ideal set of SCORPAN variables. DSM distinguishes three basic categories of modeling
techniques: (i) geostatistical techniques [16,17] e.g., ordinary kriging, (ii) non-geostatistical
techniques [12,18] e.g., multiple linear regression (MLR) and machine learning (ML) ap-
proaches, which include: artificial neural network (ANN), gradient boosted regression
trees (BRT), random forest (RF), and support vector machine (SVM), and lastly, (iii) hybrid
methods that combine the benefits of the two preceding techniques. Figure 1 depicts the
various approaches, and mentions several techniques, one of which is the geostatistical
ordinary kriging (OK), also known as the best linear unbiased predictor [19]. OK has been
modified to more accurate hybrid algorithms that account for secondary information, the
most flexible of which is residual kriging (RK) [20]. The trend component of the RK model
is typically derived by global linear regression of the soil environmental variables on the
target or dependent variable [18]. Any prediction approach can theoretically be cast in RK
if the linked model residuals are spatially auto correlated. Therefore, the term “residual
kriging” is preferred, even if the same technique has been called “simple kriging with
variable local means” by [21] or “regression kriging” by [20].

ML techniques have been explored and applied successfully for digital quantitative
mapping of soil properties, such as soil organic carbon content and soil texture both over
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large and small areas [12,18,22–25], but have rarely been applied for mapping soil hydraulic
properties across areas as vast as the Zambezi River Basin. However, ML-based evaluations
in water resources have been applied over complex terrain regions such as the ZRB, since
hydraulic/hydrological estimates can be associated with significant errors due to variability
and uncertainty introduced by orographic effects [26–28].

Using DSM techniques that are based on machine learning such as artificial neural net-
work (ANN), gradient boosted regression trees (BRT), random forest (RF) and multinomial
logistic regression, the International Soil Reference and Information Centre (ISRIC) is mak-
ing great efforts to provide global gridded soil data at 250 m × 250 m resolution through its
SoilGrids web interface [29]. However, although SoilGrids provides data on water content
at saturation (pF0.0) and the available water capacity (AWC), it does not provide data for
other soil hydraulic properties, such as saturated hydraulic conductivity, water content at
field capacity (pF2.0), or at the wilting point (pF4.2), which are needed by most hydrological
and crop-growth models. Furthermore, the accuracy of the SoilGrids data is moderate,
with R2 ranging from about 0.30 to 0.80 [29], hence it is advisable to improve on this data
for specific projects. Most DSM projects based on machine learning models have been
conducted in regions in the northern hemisphere and Australia, for which availability of
field measured data is abundant [12,24,30,31], but only few applications of DSM have been
reported for southern countries, such as Zambia in the ZRB. Apart from studies by [29] for
the SoilGrids Database, [32] for projects concerning the Edgeroi district in north-western
Australia across a 1500 km2 area on a spatial resolution of 90 m × 90 m, and [33] for the
5775 km2 Balaton catchment area in Hungary on a spatial resolution of 100 m × 100 m,
studies implementing SCORPAN approaches in DSM to predict soil hydraulic properties
over a vast area such as the ZRB are absent. To fill this gap, the aim of this study was to
identify the best performing ML algorithm for digital mapping of soil hydraulic properties
for the whole ZRB at a spatial resolution of 90 m × 90 m. The purpose was to produce
data layers for Ksat, the water contents at pF0.0, pF2.0, and pF4.2, and the AWC of the
topsoil (0–30 cm) that can be used in hydrologic and crop growth models. The specific
objectives were therefore to:

a. Evaluate the performance of five alternative deterministic DSM models (1) multiple
linear regression, (2) artificial neural network, (3) gradient boosted regression trees,
(4) random forest and (5) support vector machine using easily available environmen-
tal covariates.

b. Verify whether the performance can be improved by accounting for the spatial auto-
correlation among residuals from all five deterministic models, and by conducting
residual kriging.

c. Establish the most appropriate technique after comparing the prediction performance
of all five deterministic models each with and without related residual kriging.

2. Materials and Methods
2.1. Study Area

The Zambezi River Basin is a 1.6 million km2 large basin in southern Africa which
spans eight riparian countries (Figure 2). The seasonal climatic variations are determined
by the movement of the Inter-Tropical Convergence Zone (ITCZ), with the major rainy
season lasting from December to March. Annual rainfall ranges from less than 300 mm in
the south to more than 1200 mm on the northern plateaus, and to more than 2300 mm on the
highlands in Malawi and Tanzania. Mount Mulanje, in Malawi, measuring 3002 m above
sea level, is the highest point in the basin [3]. The western and central parts of the ZRB are
dominated by plains and plateaus [34]. The eastern parts are dominated by mountains,
escarpments, and valleys, which are part of the East African Rift valley system [35,36].
The plateaus and plains of the western part of the basin are dominated by formations of
the Karoo system. The Karoo formations are continental sediments, which include shales,
mudrocks, sandstones, and basalt outflows [37]. In the western plains, these formations
are covered by the Kalahari sands, which are Quaternary aeolian deposits [35]. Native
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semi-deciduous woodland occupies more than half of the land area, followed by native
grassland used for animal husbandry, semi-deciduous shrubland, agricultural crop land,
water bodies, urban areas, and wetlands, in that order [38].

Figure 2. The Zambezi River Basin and location of (i) the soil profiles in the African Soil Profile
database (n = 55 in red), for which soil hydraulic data are available, (ii) own soil sampling points in
the Upper-Mulungushi subbasin in central Zambia (n = 119 in green), and (iii) of the soil profiles in
the African Soil Profile database (n = 1481 in black), for which soil hydraulic data were estimated
using ANN-PTFs [11].

2.2. Soil Hydraulic Data

In order to train and test the different DSM models, dataset #1 containing estimates
of soil hydraulic data for (n = 1481) georeferenced points (Figure 2) throughout the ZRB
and available in the Africa Soil Profiles Database, obtained from a set of locally calibrated
artificial neural network-based pedotransfer functions (ANN-PTFs) [11]. The calibration
of these PTFs was performed based on dataset #2 and #3. In 2018, a soil sampling and
measurement campaign (Figure 2) was conducted in the 2000 km2 Upper Mulungushi
sub-basin (UMB) of the ZRB, resulting in a dataset containing measured soil hydraulic
properties for depths of 30–40, 60–70, and 100–110 cm at (n = 119) georeferenced point
locations, further termed as the UMB-dataset or dataset #2 (Figure 2). From the same
119 locations and at the same depth layers, we also took undisturbed core samples with
Kopecky rings (100 cm3) for measuring saturated soil hydraulic conductivity, and the water
contents at three matric potentials: pF0.0, pF2.0, and pF4.2. The Ksat was measured in the
laboratory by placing the Kopecky rings with the undisturbed soil samples in a constant
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head permeameter apparatus. The resulting data served the validation of the outcome of
the DSM for water contents at pF0.0, pF2.0, pF4.2, the AWC, and Ksat. In addition, a Legacy
dataset (dataset #3) containing (n = 55) georeferenced points with measured water contents
at pF2.0 and pF4.2 was extracted from the Africa Soil Profiles Database [39,40] (Figure 2).
These were also used to validate the developed DSM maps for the water content at pF2.0,
pF4.2, and for the AWC.

2.3. Environmental Covariates

In DSM studies, it is important to have a good number of all of the SCORPAN factors
for optimal models to be developed, hence, in this study, 67 independent variables (Table 1)
or the soil environmental covariates were considered to represent the five SCORPAN factors
of soil, climate, organisms, relief, and parent materials [12,14]. According to [15,41], in
DSM techniques, the use of many environmental covariates is highly encouraged. These
variables are available as spatial coverages, each with its own spatial resolution ranging
from 20 to 1000 m, over the whole ZRB. All of the covariate layers were projected in the
same cartographic reference system (WGS84/UTM zone 35S), and resampled to a 90 m
spatial resolution using the nearest neighbor approach for categorical covariates and the
bilinear approach for continuous covariates [42]. The soil map, lithology map, land use map,
and the landforms map provided the categorical environmental covariates. The number of
distinct mapping units correspond to the number of classes that were transformed to as
many dummy (indicator, binary) variables. Each dummy variable received a value equal
to one (1) when a given class level was present, and zero (0) otherwise. Table 1 gives an
overview of the 67 covariates that comprised the factors included in the SCORPAN concept
that were used in this study.

2.3.1. Soil (S)

The soil map based on the Harmonized Soil Map of Africa [43] was complemented
with the more detailed soil and terrain maps (SOTER) for Southern Africa [44] and the
SOTER of Malawi [45]. The legend of the map is in accordance with the second edition of the
international soil classification system, “World Reference Base for soil resources” (WRB) [46].
Data on silt, sand, and clay fractions, bulk density, organic carbon content, pH, and the
depth to bedrock, at a spatial resolution of 250 m, and depth layers of 0–30 cm were
downloaded from the SoilGrids database (https://soilgrids.org/ accessed on 18 January
2019) of ISRIC-World Soil Information [29].

2.3.2. Climate (C)

Climate variables, such as those informing about temperature and precipitation
regimes, which are typically employed in DSM techniques, are frequently derived from
long term meteorological station observations. Advances in remote sensing techniques,
on the other hand, can overcome limited access to consistent datasets in specific places.
Products derived from time series of surface moisture, temperature, and evapotranspira-
tion extracted from remote sensing imagery can also be utilized as climate data [47]. In
this study, 19 data layers of bioclimatic variables were obtained from the WorldClim 2.0
dataset, which gathers climate variables worldwide at a spatial resolution of 1 km [48].
Among other climate variables, this dataset provides the average monthly minimum, mean,
and maximum temperature, precipitation, and potential evapotranspiration derived from
observations over the period from 1970 to 2000.

2.3.3. Organisms (O)

This SCORPAN factor encompasses mainly vegetation and human activities. To rep-
resent these, the S2 prototype land cover map of Africa for the year 2016 obtained from
http://2016africalandcover20m.esrin.esa.int/ (accessed on 18 January 2019) was used. It
has a 20 m spatial resolution and features 10 classes (Table 2). Vegetation types over large
areas are commonly mapped from remotely sensed spectral data, hence Enhanced Vegeta-

https://soilgrids.org/
http://2016africalandcover20m.esrin.esa.int/
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tion Index (EVI) images derived from MODIS-imagery at 250 m resolution as continuous
covariates were downloaded from the Land Processes Distributed Active Archive Centre
website [49]. Moreover, the continuous covariate tree canopy area fraction for the year 2000
was obtained at a 100 m spatial resolution [50].

2.3.4. Relief (R)

To account for relief as one of the influential factors for soil hydraulic properties, a
number of attributes were derived from the SRTM-DEM obtained from http://srtm.csi.cgiar.
org (accessed on 18 January 2019) at a spatial resolution of 90 m. Various combinations of
terrain attributes can characterize geomorphic surfaces and describe processes related to soil
development. The DEM was (pre-)processed using the SAGA software version 2.1.4 [51] by
first filling artificial depressions (‘sinks’) using the Planchon/Darboux algorithm [52], and
subsequently smoothened by applying a Gaussian filter [51]. Continuous DEM derivatives,
such as the slope, aspect, profile curvature, plan curvature, slope-length factor (LS-factor),
topographic wetness index (TWI), convergence index, and topographic roughness index,
were derived using the basic terrain analysis tools provided by the SAGA software. Finally,
using the landform classification tool of SAGA, a landform map providing 16 binary
covariates, each corresponding to one landform class (Table 2), was generated.

2.3.5. Parent Material (P)

To incorporate parent material among the covariates, we used a lithology map with
20 legend classes (Table 2), obtained from http://geoportal.rcmrd.org/layers/servir%
3Aafrica_surfacelithology (accessed on 18 January 2019), at a spatial resolution of 100 m. A
selection of the environmental covariates used are displayed in Figure 3. The legend of the
categorical covariates displayed in Figure 3 is in Table 2.

Figure 3. Cont.

http://srtm.csi.cgiar.org
http://srtm.csi.cgiar.org
http://geoportal.rcmrd.org/layers/servir%3Aafrica_surfacelithology
http://geoportal.rcmrd.org/layers/servir%3Aafrica_surfacelithology
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Figure 3. Six out of the total 67 examined SCORPAN covariates: elevation, land use, lithology, mean
annual precipitation and evapotranspiration, and the soil class map. Legend of the categorical maps
(soil, land use, and lithology) is presented in Table 2.

Table 1. Soil environmental covariates and their abbreviations, type, spatial resolution, units and
range of values listed as “SCORPAN factors”.

Abbreviation Covariate Type of
Data

Spatial
Resolu-

tion
Units Range of

Values (ZRB) Source

Soil factor

SOL Soil class map Categorical 250 m RSG 24 classes
Soil Map of Africa;

SOTER SAF &
Malawi [43–45]

SND Sand Continuous “ % 18–95 SoilGrids [53]
CLY Clay “ “ “ 3–72 “
SLT Silt “ “ “ 1–47 “
BLD Bulk Density “ “ kg·m−3 881–1849 “
OC Organic Carbon “ “ “ 30–300 “
PH Soil pH(H2O) “ “ – 4.5–8.5 “

BED Depth to Bedrock Continuous “ m 0–2 “
Climate factor

PET Potential
Evapotranspiration “ “ “ 1000–2500 Global Aridity Index and

PET Database [54]
BIO1 Annual Mean Temperature “ “ ◦C 10–26 WorldClim database [48]
BIO2 Mean Diurnal Range “ “ “ 7–22 “
BIO3 Isothermality “ “ % 52–74 “
BIO4 Temperature Seasonality “ “ – 146–386 “

BIO5 Max Temperature of
Warmest Month “ “ ◦C 17–37 “

BIO6 Min Temperature of
Coldest Month “ “ “ 2–17 “

BIO7 Temperature Annual
Range “ “ “ 14–30 “

BIO8 Mean Temperature of
Wettest Quarter “ “ “ 12–29 “

BIO9 Mean Temperature of
Driest Quarter “ “ “ 8–24 “

BIO10 Mean Temperature of
Warmest Quarter “ “ “ 12–30 “

BIO11 Mean Temperature of
Coldest Quarter “ “ “ 7–23 “

BIO12 Annual precipitation “ 1000 m mm 400–2200 “

BIO13 Precipitation of Wettest
Month “ “ mm 150–650 “
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Table 1. Cont.

Abbreviation Covariate Type of
Data

Spatial
Resolu-

tion
Units Range of

Values (ZRB) Source

BIO14 Precipitation of Driest
Month “ “ “ 0–40 “

BIO15 Precipitation Seasonality “ “ “ 75–136 “

BIO16 Precipitation of Wettest
Quarter “ “ “ 200–1340 “

BIO17 Precipitation of Driest
Quarter “ “ “ 0–126 “

BIO18 Precipitation of Driest
Quarter “ “ “ 74–760 “

BIO19 Precipitation of Coldest
Quarter “ “ “ 0–160 “

Organism, landcover factor

LAN Land use map Categorical 20 m – 10 classes Land Cover data of
Africa [55]

EX1 Enhanced Vegetation
Index (EVI) for Jan. & Feb. Continuous 250 m “ −1–1 MODIS Enhanced

Vegetation Index [56]
EX2 EVI for March & April “ “ “ “ “
EX3 EVI for May & June “ “ “ “ “
EX4 EVI for July & August “ “ “ “ “
EX5 EVI, September & October “ “ “ “ “

Organism, landcover factor

EX6 EVI, November &
December “ “ “ “ “

FORTC Forest Tree Cover “ 90 m % 0–100 Hansen tree cover data
of 2000 [57]

Relief, topography factor

ELE Elevation Continuous 90 m m 0–2500 SRTM void filled
data [57,58]

TRI Terrain Ruggedness Index “ “ “ 0–32 Derived from SRTM data
VTR Vector Terrain Ruggedness “ “ – −0.2–0.60 “
LSF LS-factor “ “ “ 0–11 “
SLP Slope “ “ Radians 0–0.51 “

CRD Local Downslope
Curvature “ “ “ −1.15–0.50 “

UPCUR Upslope Curvature “ “ “ −0.15–0.5 “
DNCUR Downslope Curvature “ “ “ −0.55–0.28 “

MRN Melton Ruggedness
Number “ “ – 0–10 “

SPI Stream Power Index “ “ “ 0–20000 “

TWI Topographic Wetness
Index “ “ – 4–16 “

FOR Landforms map Categorical “ “ 16 classes “
VBF Valley Bottom Flatness Continuous “ “ 0–11 “
CRU Local Upslope Curvature “ “ Radians −0.65–0.62 “

TPI Topographic Position
Index “ “ – −8–10 “

POS Positive Openness “ “ “ 1.2–1.6 “
NEG Negative Openness “ “ “ 1.3–1.6 “

DVM Deviation from Mean
Value “ “ “ −210–218 “

GECUR General Curvature “ “ Radians −0.5–0.6 “
PRCUR Profile Curvature “ “ “ −0.1–0.4 “
PLCUR Plan Curvature “ “ “ −0.4–0.5 “
TACUR Tangential Curvature “ “ “ −0.14–0.2 “

VDP Valley Depth “ “ m 4–1026 “
LOCUR Local Curvature “ “ Radians −0.55–0.68 “
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Table 1. Cont.

Abbreviation Covariate Type of
Data

Spatial
Resolu-

tion
Units Range of

Values (ZRB) Source

CSCUR Cross Sectional Curvature “ “ “ −0.03–0.05 “
CONVI Convergence Index “ “ “ −81–75 “

CNBL Channel Network Base
Level “ “ m 17–1722 “

LNCUR Longitudinal Curvature “ “ Radians −0.05–0.06 “
ASP Aspect “ “ “ 0–7 “

Parent material factor

LIT Lithology map Categorical 100 m – 20 classes Africa Surface
Lithology [59]

Covariates with the same type of data, spatial resolution, units, range of values and source (“).

Table 2. Definition of classes for categorical variables.

Soil
Class/RSG Code Land Use Code Lithology Code Landforms Code

Acrisols 1 Tree Cover 1 Calcareous rocks 1 Very steep slope, high
convexity 1

Alisols 2 Shrubs 2 Karst rocks 2 Very steep slope, high
convexity 2

Andosols 3 Grasslands 3 Calcareous
sedimentary rocks 3 Very steep slope, low

convexity 3

Arenosols 4 Croplands 4 Meta-sedimentary
rocks 4 Very steep slope, low

convexity 4

Calcisols 5 Vegetation/Wetlands 5 Alkaline intrusive
volcanic rocks 5 Steep slope, high convexity 5

Cambisols 6 Sparse
vegetation 6 Silicic rocks 6 Steep slope, high convexity 6

Chernozems 7 Bare areas 7 Meta-igneous
rocks 7 Steep slope, low convexity 7

Durisols 8 Built up areas 8 Ultramafic rocks 8 Steep slope, low convexity 8

Ferralsols 9 / / Extrusive volcanic
rocks 9 Moderate slope, high

convexity 9

Fluvisols 10 Open water
bodies 10 Colluvium

sediments 10 Moderate slope, high
convexity 10

Gleysols 11
Water saturated

and Organic
sediments

11 Moderate slope, low
convexity 11

Histosols 12 Aeolian sediments 12 Moderate slope, low
convexity 12

Leptosols 13 Alluvium-(Fan
deposits) 13 Gentle slope, high convexity 13

Lixisols 14 Alluvium-(Fluvial
deposits) 14 Gentle slope, high convexity 14

Luvisols 15 Alluvium-(Beach &
coastal deposits) 15 Gentle slope, low convexity 15

Nitisols 16 Alluvium-(Saline
deposits) 16 Gentle slope, low convexity 16

Phaeozems 17 / /
Planosols 18 Alluvium-(other) 18

Podzols 19 Volcanic-(Ash
mudflow) 19

Regosols 20 Water bodies 20
Solonchaks 21

Solonets 22
Umbrisols 23
Vertisols 24
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2.4. Covariate Selection

All the soil environmental covariates were in the GeoTiff raster format, and all data pre-
processing, model training, testing, and validation were performed by means of R-software,
version 3.5.0 [60]. The 67 environmental covariate layers were first reprojected into the
WGS84/UTM zone 35S coordinate system, and then resampled to a 90 m spatial resolution.
Using the raster package and stack function of the R-software, a RasterStack dataset consist-
ing of all 67 covariates was created. A RegressionMatrix for each dependent or response
variable was created by overlaying the georeferenced point dataset carrying the response
variables, that is, the hydraulic soil properties estimated by means of the ANN-PTFs for the
soil samples in dataset #1 (n = 1481, displayed in Figure 2), with the RasterStack dataset,
and using the extract function of the R-software. Therefore, this RegressionMatrix consisted
of the value of a response variable (n = 1481) for a depth of 30 cm on the one hand, and
the corresponding pixel values of all the 67 environmental covariates used in this study on
the other hand. From the RegressionMatrix, for each response variable at the 30 cm depth,
potential covariates were selected by using the backward-stepwise selection of the Akaike
Information Criterion (AIC) R package [61], and by testing 67 possible models until the AIC
stopped decreasing. As a result, for each response variable, we selected the model with the
potential covariates that had the lowest AIC number.

2.5. Deterministic SCORPAN Models, Training, and Testing

Once the potential covariates were selected for each of the dependent variables, the
RegressionMatrix was randomly split into a training (70%, n = 1037, dataset #1a), and a
test dataset (30%, n = 444, dataset #1b). With these datasets, and for each response variable
at the 30 cm depth, five deterministic models, namely multiple linear regression (MLR)
in R, artificial neural network (ANN) (using the neuralnet R package), Gradient boosted
regression trees (BRT) (using the gbm R package), random forest (RF) (using the randomForest
R package) and support vector machine (SVM) (using the e1071 R package), were trained
and tested. To avoid over-fitting, we used the default meta-parameters in the models, such
that no model tuning was performed, apart from adjusting the number of trees (n.trees)
in the BRT model from 100 to 500 to match the same default number of trees as in the RF
model. The default meta-parameters included the number of neutrons and hidden layers,
such that one neutron with one hidden layer were the default meta-parameters for the
ANN; the n.tree, shrinkage, and interaction depth for the BRT; the mtry and n.tree for the
RF; and the gamma and cost function for the SVM as some of the key meta-parameters
that were used in default mode. The performance of all the models was evaluated using
the coefficient of determination (R2), the mean absolute error (MAE), and the root mean
squared error (RMSE). Models that had high R2, low MAE, and low RMSE were well
performing. Furthermore, the potential covariates that were selected in the model training
and testing were ranked according to their order of importance relative to the particular
response variable using the relative importance function of the random forest model.

2.6. Spatial Autocorrelation and Model Validation

In DSM approaches, apart from the SCORPAN term, there is also the SSPFe (soil spatial
prediction function with spatially auto-correlated errors) term to consider (Figure 1, [12]). It
has been suggested and demonstrated [18] that adding model residuals to the deterministic
component improves model performance [12]. Therefore, after training and testing each
of the deterministic models, the model residuals were obtained by subtracting the model
estimations from the reference value of each response variable. We then checked for spatial
autocorrelation of the residuals by drawing semi-variograms using the gstat R package [62].
In case spatial autocorrelation was observed in the model residuals, a raster coverage in
GeoTiff format of the model residuals was generated using ordinary kriging (OK) [20,63–65].
The kriged map of the model residuals was then added to the deterministic estimations
of the training and testing models, and their performance was again evaluated using R2,
MAE and RMSE.
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The trained and tested models built from the potential covariates were subsequently used
to estimate coverages of the dependent variable for the whole ZRB using R’s predict function
and the RasterStack dataset consisting of all the 67 covariates, whereby only the potential
covariates selected were used in the prediction. If there was no spatial autocorrelation, we
predicted for the whole ZRB straight away, and then subsequently validated this hydraulic
soil property map. However, if spatial autocorrelation was observed in the model residuals,
then the kriged model residuals were added to the deterministic estimations for the whole
ZRB. After this addition, maps in raster and GeoTiff formats of each response variable for
30 cm depth were created. Finally, to validate this hydraulic soil property map, it was overlaid
with the validation point datasets consisting of the measured hydraulic soil properties data of
each response variable in dataset #2 (n = 119) obtained from the Upper-Mulungushi subbasin,
and dataset #3 (n = 55) retrieved from the African Soil Profile database (Figure 2). Finally, the
R2, MAE, and RMSE were computed for the 55 + 119 (n = 174) data points.

3. Results
3.1. Selected Covariates

As an illustration, the results of a random forest model in Figure 4 present the twenty
highest ranked covariates out of the 67 candidate predictor variables (Table 1). Variables
are ranked in terms of importance on the y-axis (with variables of highest importance at
the top), with a mean decrease in accuracy (%IncMSE) should that particular variable be
removed from the random forest model on the x-axis. The mean decrease in accuracy
(%IncMSE) shows how much the model accuracy would decrease if we were to leave out a
particular variable. For the water content at pF0.0, pF2.0, and pF4.2, sand content (SND),
silt content (SLT), climate variables such as average annual rainfall (BIO12), and mean
annual reference evapotranspiration (PET) and temperature variables such as the minimum
temperature of the coldest month (BIO6) were among the highest ranked covariates. Clay
content (CLY), soil organic carbon content (OC), and elevation (ELE), followed by climate
variables such as the mean temperature of the coldest quarter (BIO11) were the most
important covariates for the AWC, while for Ksat, sand content, the reference soil group
arenosols (SOL with code 4) (Table 2), and climate variables, such as the average annual
rainfall and the mean temperature of the coldest quarter, were among the most important
covariates (Table 1).

3.2. Spatial Autocorrelation

We also observed spatial autocorrelation of the residuals for each of the five models
that were developed for the water content at pF0.0, pF4.2, and the AWC. For the water
content at pF2.0, spatial autocorrelation of the model residuals was only observed with the
RF model. Furthermore, there was no spatial autocorrelation of the model residuals for all
five models for Ksat. As an illustration, Figure 5, shows the semivariograms of the model
residuals for all five models for the water content at pF0.0 in the topsoil (0–30 cm). For
the ANN model, model residuals exhibited spatial autocorrelation up to a range of about
9.8 km. The range in the variograms of the BRT, MLR, RF, and SVM model residuals was
about 7.6, 10.6, 7.1, and 10.3 km, respectively (Figure 5).

3.3. Model Performance Evaluation

The evaluation of the performance of the five DSM models each without and comple-
mented with residual kriging was based on comparing the R2, MAE, and RMSE for the training
(dataset #1a), test (dataset #1b), and validation data sets (datasets #2 and #3) (Figures 6–8).
Overall, the lowest RMSE, the lowest MAE, and the highest R2 were observed in the training
and test data sets after adding the kriged model residuals to the deterministic models.
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Figure 4. The 20 most important covariates for each of the 5 response variable expressed in terms of
%IncMSE, as derived from a random forest model. Abbreviation of the covariates are given in Table 1.
Panel (a) shows the covariates for response variable pF0.0, panel (b) for pF2.0, panel (c) for pF4.2,
panel (d) for AWC and panel (e) for Ksat.

For the water content at pF0.0 and pF2.0, the R2 ranged from 0.60 to 0.80 for all five
models in both training and test data sets before adding the model residuals. After adding
the model residuals, the R2 went up to around 0.95 for all five models in training and test
data for the water content at pF0.0 (Figure 6). For pF2.0, the R2 after adding the random
forest residuals went up to around 0.95. There was no spatial autocorrelation at pF2.0 for
the other four models, while for the water content at pF4.2 and the AWC, the R2 ranged
from 0.40 to 0.60 for all five models in training and test data sets before adding the model
residuals, while after adding the model residuals, the R2 increased to about 0.70 to 0.85 in
training and test data. No spatial autocorrelation was present for Ksat for any of the five
models. The R2 ranged from 0.40 to 0.75 for all five models in training and test data sets.
Overall, for all of the response variables, and looking at the validation data sets, the R2 was
rather erratic, although it stands out for the RF model (Figure 6). Figures 6 and 8 display
the RMSE and MAE showing high, therefore worse, values for the validation data sets and
lower, hence better, values for the training and test data sets with model residuals. The
lowest values for the RMSE and MAE in the training, test, and validation datasets for the
RF model depict a better performance of this model than the other four models.
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Figure 5. Spatial autocorrelation observed in the model residuals for the water content at pF0.0 in the
topsoil (0–30 cm) depth layers. (a) ANN, artificial neural network; (b) BRT, gradient boosted regression
trees; (c) MLR, multiple linear regression; (d) RF, random forest; (e) SVM, support vector machine.

3.4. Digital Soil Maps

Since the random forest method complemented with residual kriging proved to have
the best predictive power for all considered hydraulic properties, we used this approach
to elaborate maps of estimates of the water content at pF0.0, pF2.0, pF4.2, and AWC at a
depth of 30 cm and with a spatial resolution of 90 m (Figure 9) for the whole ZRB. Since the
saturated hydraulic conductivity residuals of the random forest model were not spatially
autocorrelated, the estimates of the saturated hydraulic conductivity were mapped based
solely on the random forest deterministic model. The resulting digital maps show that water
content at pF0.0, pF2.0, pF4.2, and the AWC have lower values in the southwestern part of
the basin, and higher values in the north central and southeastern part of the ZRB. On the
contrary, the saturated hydraulic conductivity has higher values in the southwestern part of
the basin, and lower values in the north central and southeastern part of the basin (Figure 9).
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Figure 6. Coefficients of determination (R2) for the five DSM models applied to the training sets
without residuals (black), training sets with residuals (grey), test sets without residuals (orange), test
sets with residuals (brown), and the validation data sets (red). ANN, artificial neural network; BRT,
gradient boosted regression trees; MLR, multiple linear regression; RF, random forest; SVM, support
vector machine. Panel (a) shows the response variable pF0.0, panel (b) for pF2.0, panel (c) for pF4.2,
panel (d) for AWC and panel (e) for Ksat at a depth of 30 cm.
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Figure 7. Root mean squared error (RMSE) for the five DSM models applied to the training sets
without residuals (black), training sets with residuals (grey), test sets without residuals (orange), test
sets with residuals (brown), and the validation data sets (red). ANN, artificial neural network; BRT,
gradient boosted regression trees; MLR, multiple linear regression; RF, random forest; SVM, support
vector machine. Panel (a) shows the response variable pF0.0, panel (b) for pF2.0, panel (c) for pF4.2,
panel (d) for AWC and panel (e) for Ksat at a depth of 30 cm.

Figure 8. Cont.
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Figure 8. Mean absolute error (MAE) for the five DSM models applied to the training sets without
residuals (black), training sets with residuals (grey), test sets without residuals (orange), test sets with
residuals (brown), and the validation data sets (red). ANN, artificial neural network; BRT, gradient
boosted regression trees; MLR, multiple linear regression; RF, random forest; SVM, support vector
machine. Panel (a) shows the response variable pF0.0, panel (b) for pF2.0, panel (c) for pF4.2, panel
(d) for AWC and panel (e) for Ksat at a depth of 30 cm.

Figure 9. Cont.
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Figure 9. Soil hydraulic properties at 30 cm depth for the Zambezi River Basin. The data has a spatial
resolution of 90 m, and the maps were generated using a random forest regression model based on
legacy soil data, complemented with own field data, and environmental covariates reflecting soil
classes, climate, landcover, relief, and lithology.

4. Discussion

According to [12], kriging of model residuals improves overall DSM performance.
This was also confirmed in this study, where we observed that kriging of the deterministic
model residuals considerably improves the performance of the DSM. We observed that
the R2 increased on average by more than 40%. Other studies dealing with soil hydraulic
properties, such as SoilGrids [29], also found the RF model (overall average R2 = 0.61) to
perform better than other machine learning techniques for estimating water content at
pF0.0 and the AWC. Ref. [33] also found that RF as a deterministic model complemented
with residual kriging performed better for estimating water content at pF2.0 and pF4.2,
with a RMSE ranging on average between 2 to 7 (Vol %), which was also the range found in
this study. Still, in our study, the addition of the kriged model residuals to the deterministic
model estimations led to a higher increase of the R2, as compared to previous studies.

Although the relative performances were rather erratic in the validation dataset
(dataset #2 and dataset #3) of Figures 6–8, the RF model was still better than the other
models. This rather erratic performance on the validation dataset could be related to the
relatively small size (n = 119, dataset #2) of the validation set coming from a relatively
smaller sub-basin (2426 km2), which was less heterogeneous than the whole Zambezi River
Basin (1.6 million km2), represented by a sample size (n = 1481, dataset #1) used for the
training and test datasets. Furthermore, dataset #1 was already a smoothened dataset of
point location estimates generated through artificial neural network-based pedotransfer
functions (ANN-PTFs) [11], while datasets #2 and #3 encompass measured soil hydraulic
property values obtained from Upper Mulungushi subbasin and the African Soil Profile
database, whereby the sampling and measurement techniques were comparable but not
completely identical between the datasets. Although we did not perform an error propa-
gation analysis and uncertainty quantification in this study, we realize that there are error
propagations and uncertainties starting from our three datasets all the way through to our
models and modelling techniques.
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Sand, silt, clay content, and soil organic carbon content as soil environmental covari-
ates, climate variables such as the average annual rainfall, the average annual reference
evapotranspiration (ETo), and the mean temperature of the coldest quarter, as well as topo-
graphic elevation, are all strong predictors of water content at pF0.0, pF2.0, pF4.2, the AWC,
and Ksat. Moreover, the sand, silt, clay content, and soil organic carbon content layers
are obtained from the SoilGrids databases, hence are themselves the result of machine
learning based DSM. Inevitably, they contribute to error propagations to our estimated soil
hydraulic properties.

The water retention or water content at pF0.0, pF2.0, pF4.2, and the AWC have predom-
inately lower values and higher Ksat values in the southwestern part of the basin, where
sandy soils are dominant, where lower rainfall and slightly higher evapotranspiration and
temperature also prevail. In contrast, higher values for the water content at pF0.0, pF2.0,
pF4.2, and the AWC, as well as lower Ksat values, are obtained in the north central and
southeastern part of the basin, characterized by slightly higher rainfall, potential evapotran-
spiration, and temperature. Furthermore, soils with high clay, silt, and soil organic carbon
content are dominant in valley bottoms, wetland areas, and the delta region, which are soils
with high values of the water retention. The highest Ksat values are mostly found in the
Arenosols and Podzols soil groups in the southwestern region of the basin, which also have
lower clay, silt, and soil organic carbon concentrations, as well as very high sand content.
In the northcentral and southeastern parts of the basin, dominated by the soils of Alisols,
Andosols, Fluvisols, Histosols, Umbrisols, Gleysols, and Vertisols which are predominately
found in the valley bottoms, wetland or dambo areas, as well as in the delta region, high
water retention and lower Ksat values are mostly associated with soils with higher clay, silt,
and soil organic carbon concentrations, as well as much lower sand content.

5. Conclusions

In this paper, we evaluated the performance of 10 approaches for the digital mapping
of 5 soil hydraulic properties throughout the Zambezi River Basin. The ten approaches
consisted of multiple linear regression, artificial neural network, gradient boosted regres-
sion trees, random forest, and support vector machine as the deterministic component
of DSM, combined or not combined with the kriging of the model residuals. A total of
67 freely available soil environmental covariates were considered, from which 20 potential
covariates were selected to train, test, and validate each of the 10 approaches. The sand,
silt, clay, and soil organic carbon content of the topsoil and average annual rainfall, average
annual reference evapotranspiration, and mean temperature of the coldest quarter, as well
as the elevation, were all pertinent predictors for each of the hydraulic properties.

Spatial autocorrelation of the model residuals was only observed in the random forest
model for the water content at pF0.0, pF2.0, pF4.2, and the available water capacity. There
was no spatial autocorrelation of the model residuals for any of the five models for the
saturated hydraulic conductivity. Once spatial autocorrelation in the model residuals was
confirmed for the random forest model, the kriged model residuals were added to the
model estimations, and this addition resulted into a better performance of the deterministic
models, whereby the R2 was observed to improve substantially.

The overall best DSM approach was found to encompass random forest as a determin-
istic model, complemented with residual kriging. With this approach, we developed maps
of soil hydraulic properties at a depth of 30 cm with a spatial resolution of 90 m for the
whole Zambezi River Basin, with R2 ranging from 0.40 to 0.80 in the training and test data
sets before adding model residuals, and from 0.80 to 0.95 after adding model residuals. The
random forest model was found to be the best performing model after comparison, for the
depth of 30 cm, with multiple linear regression and three other ML techniques for water
content at pF0.0, pF2.0, pF4.2, the available water capacity, and saturated hydraulic conduc-
tivity. The resulting maps can be used by hydrologists and agronomists, as well as other
researchers and extension workers conducting various land performance or environmental
impact studies in the Zambezi River Basin.
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