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Abstract: Hong Kong and Shenzhen have entirely different land-use development policies, resulting
in a disparity in the increase rate of impervious surface area. Impervious surface estimation is
a significant method for evaluating urbanization, so that countries and cities can deal with their
growing populations. The impervious surface area was estimated through Landsat Thematic Mapper
(TM) image extraction, the V-H-L-S (vegetation, high-albedo, low-albedo, and soil) model, and linear
spectral un-mixing analysis (LSUM). Changes in fractions of endmembers over periods of time
were identified and employed to analyze changes in land use and land cover (LULC). The research
adopting the V-H-L-S model for classifying land cover and exploring the association of change in
impervious surface areas and socio-economic growth over a period of time is limited. In this study,
impervious surface estimations for Hong Kong and Shenzhen in 1995, 2005, and 2016 were compared,
selecting vegetation, high-albedo, low-albedo, and soil as endmembers. The change rate of the
fractions in the four endmembers was calculated to identify changes in land use and land cover
during these three specific time periods. The impervious surface was determined to constitute a
combination of high-albedo and low-albedo. Moreover, a proportional relationship exists between
the increase in impervious surface area, population rate, GDP, and GDP per capita in both Hong Kong
and Shenzhen. However, there was a difference in the increase in impervious surface area between
Hong Kong and Shenzhen due to the different land-use policies in the country’s two systems.

Keywords: impervious surface; V-H-L-S model; linear spectrum un-mixing analysis; endmember;
urbanization

1. Introduction

Land-use policy has had a significant influence on urban development, as well as the
spatial distribution of impervious surfaces within countries, which has been a major factor
in controlling the rate and pattern of urbanization [1,2]. There are impervious surfaces [3],
a significant element in evidencing urbanization [4], in a variety of countries, and there
are cases in which water cannot penetrate through the outermost surface material to the
soil beneath. Asphalt, brick, and concrete are impervious materials used in infrastructure,
which can indicate the development of urbanization, resulting in an increase in land
for buildings, especially residential, commercial, and industrial, along with roads for
connecting the infrastructure.
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Remote sensing constitutes a common approach to assess impervious surface changes,
and its validity and reliability in conducting impervious surface assessments have been
proven by many previous studies using Landsat and other satellites [5,6]. The V-I-S
(vegetation-impervious surface-soil) model is a conceptual model for analyzing urban
environments [7], which assumes that the surface cover of land is composed of vegetation,
impervious surface, and soil, which provides a foundation for analysis of urban geography,
biophysical geography, and human systems. For example, impervious surfaces have
continued to increase due to rapid urbanization, resulting in a decline in the amount of
vegetation. Moreover, human–land interaction drives the change in land use and global
processes, such as biodiversity loss and ecosystem degradation. Appropriate management
and policies on human–environment interaction could be implemented to prevent any
environmental problem or inadvertent impact. The model could also be applied to observe
the ratio of land and sea, as water is excluded in the model. The V-I-S model is not a holistic
analytical model for urban land use, since it only provides three classifications of land cover.
An impervious surface is an endmember, which comprises a wide variety of materials [8],
such as asphalt, concrete, and brick, to construct roads, buildings, and infrastructure.

The V-H-L-S model was developed by modifying the V-I-S model [9,10], in which the
impervious surface’s components were divided into two sub-components, corresponding
to more spectral characteristics (i.e., H for high-albedo and L for low-albedo). The V-I-S
model is undoubtedly a useful foundation for classifying the urban morphology within
and between cities [11]. Combining high-albedo and low-albedo impervious surfaces can
cause concern when analyzing the land types for special infrastructure and residential uses.
The change in residential land use may be associated with the growth of population in
certain areas. However, high-albedo can reflect this feature. For example, in the study
of Shih et al. [12], the V-I-S model could not identify the types of urban land uses. The
development of the V-H-L-S model is critical in the meticulous classification of urban land
uses. Furthermore, the reduction in noise in Landsat images through minimum noise
fraction (MNF) transformation, which is a crucial step providing six eigenvalues, aims to
enhance the images’ significant features. For acceptable eigenvalues with MNF values
greater than 1.0, the larger the eigenvalue, the better the spatial features of the selected
endmember. Although, as indicated, many previous studies address impervious surface
estimation [13,14], no comparison has yet been performed regarding the role of land-use
policies in impervious surface dynamic analysis between two systems in one country, such
as in Hong Kong and Shenzhen, China.

Hong Kong and Shenzhen are experiencing a dramatic population growth rate due
to urbanization. The favorable economic development of the two cities is perhaps the
main factor leading to their expanding populations. However, Hong Kong and Shenzhen
approach land-use policy in totally different ways. While Shenzhen has experienced a
tremendous increase in its urban area, Hong Kong has witnessed a very small increase in
the urban area. This phenomenon demonstrates the concept of “one country, two systems,”
which has resulted in a remarkable difference in the urban spatial development and the
distribution of impervious surfaces between the two cities. This difference also reflects the
stark contrast between the land policies in two systems in one country. Socio-economic fac-
tors, including population density and unit area gross domestic product, are the significant
factors influencing a city’s impervious surface areas [15,16]. Therefore, this study sought
to: (1) estimate urban impervious surface area and analyze the spatial distribution of Hong
Kong and Shenzhen from 1995, 2005, and 2016; (2) explore the association between the
impervious surface area change, population, gross domestic product (GDP), and GDP per
capita of Hong Kong and Shenzhen from 1995, 2005, and 2016; and (3) compare the change
over time of perspectives on urban areas and socio-economic data between Hong Kong
and Shenzhen.
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2. Materials and Methods
2.1. Study Area
2.1.1. Hong Kong

Hong Kong is located at the southern end of China, is bounded by the coastline to the
east, south, and west (Figure 1), and the total area (land and sea areas) is approximately
2755 km2. In 2016, the population was 7.34 million. Rural areas and mountains constitute
most of the geography; more than 75% of the land area has not been developed for urban
utilization due to its topography. In addition, the city exhibits extremely high density, with
more than 7 million people, and the projected population in 2031 is 8 million [17]. Thus, the
density problem in Hong Kong is becoming increasingly serious with its limited terrestrial
area. Government legislation regarding rural park protection makes it difficult to develop
more flat land for urban use. The city also has a high population growth rate, as economic
development is strong with the implementation of laissez-faire capitalism [18], positive
non-interventionism, its favorable geographic location, and effective information flow. In
the 1960s, Hong Kong started to develop light industry, and large numbers of factories
were built to fulfill manufacturing demand. However, since inland China implemented the
“reform and opening-up” policy, providing a cost incentive to businesses, many businesses
relocated to the mainland to establish factories for production. Due to the departure of its
manufacturing base, financial and service industries constitute a large percentage of all
industries in Hong Kong. Moreover, according to the ranking of city competitiveness in
China [19], Hong Kong was ranked number one.

 

Figure 1. Study areas of Hong Kong (red) and Shenzhen (blue). Figure 1. Study areas of Hong Kong (red) and Shenzhen (blue).

2.1.2. Shenzhen

Shenzhen is in the southern part of China, adjacent to the northern region of Hong
Kong (Figure 1). The total area of Shenzhen is approximately 3140 km2, including land and
sea areas, with a population of approximately 11.91 million in 2016 [20]. This constitutes a
dramatic increase from the 1995 population of 2.39 million, and the projected population in
2030 is approximately 12.67 million. Due to the 2003 cancelation of the policy requiring a
permit to purchase a house for permanent residence, the annual population growth rate
has been approximately 9–10%. To accommodate this rapid population growth, authorities
transformed the hills and rural parks into flatlands and built residential buildings over these
areas. The amount of urban area in Shenzhen, therefore, has continued increasing under
the official policy. In the 1980s, Shenzhen was developed as the first special economic zone
in China with innovative technologies, finance, logistics, and culture as main industries.
The aggregate economic volume of Shenzhen ranked second in the Guangdong Province
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and fourth in China overall, and the scale of financial assets of Shenzhen was ranked
third in China. Network and technology industries, for instance, Alibaba, Baidu, and
Tencent, as well as education and research and development have developed rapidly. In
addition, the new Shenzhen Bao’an International Airport, in operation since 2013, is the
first transportation system to offer comprehensive service in China.

In this study, changes in impervious surface area for Hong Kong and Shenzhen were
identified through satellite images and a comparison between the two cities. Regarding
data about changes in impervious surface area in Hong Kong and Shenzhen, relationships
between the change in urban areas, land-use development policies, population growth,
and economic development were analyzed using GDP and per capita GDP data.

2.2. Data Sets

The current investigation utilized images from Landsat Thematic Mapper (TM) data
for 1995, 2005, and 2016. The dates of a spatial resolution of 30 m × 30 m Landsat TM
images with less cloud cover in 1995, 2005, and 2016 were 2 November, 23 November, and
7 December, respectively (see Table 1). In addition, SPOT and Google Map images, as well
as statistical data from Hong Kong and Shenzhen, were employed in data validation and
comparison.

Table 1. Data information of Landsat TM images.

Year 1995 2005 2016

Date 2 November 1995 23 November2005 7 December 2016

Sensor Type Landsat5 TM Landsat5 TM Landsat8 OLI

2.3. Methodology

Figure 2 shows the procedures of processing the Landsat TM images and extracting
impervious surfaces with ENVI software. An atmospheric correction of Landsat images
was performed to enhance visibility and increase accuracy for the selection of endmembers.
A water mask, which was created for the sea area, water area, and the regions outside of
the study areas, was required to cover Landsat images. Subsequently, MNF transform,
producing six layers, demonstrated the contribution rate of the dimensionality of each
layer [21]. The results of MNF component 1, MNF component 2, and MNF component
3 were applied to the 2D scatter plot to identify the four endmembers, similar as the
previous studies [13,14]. As a result, the linear spectral un-mixing analysis was conducted
to generate the five fraction’s images, corresponding to vegetation, high-albedo, low-albedo,
and soil, and root mean square error (RMSE), in which impervious surface was determined
by superimposing the images of high-albedo and low-albedo fractions. Albedo is a measure
of reflectivity that depends on the amount of light being reflected or absorbed by a surface
or material. Shallow objects or surfaces reflect more radiation, resulting in high-albedo,
and darker objects absorb more radiation and reflect less light, resulting in low-albedo. The
values of high-albedo ranged between 0.4 and 0.7, and the values of low-albedo ranged
between 0.04 and 0.4 [22].

In addition, SPOT and Google Earth images were used to validate the fraction’s image
of impervious surfaces in the selected areas in Hong Kong and Shenzhen [14]. Imagery
resolution in SPOT and Google Earth ranges from 6 m to 10 m and from 15 m of resolution to
15 cm, respectively. An urban socio-economic comparison was also performed to elucidate
the cause of the change in impervious surface.
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Figure 2. Procedure of impervious surface estimation.

2.3.1. Linear Spectral Mixture Analysis

Linear spectral mixture analysis (LSMA) is a methodology for resolving pixel mixture
problems in impervious surface analysis. A study of LSMA [23] reported that endmem-
bers constitute the composition of surface materials in the land cover in certain pixels.
Endmembers that exhibited homogenous spectral on the imagery were considered to be
the same type of surface material. Because of its ability to overcome the heterogeneous
spectral mixing challenge, a wide variety of land estimations have been performed utilizing
the LSMA model, such as vegetation cover, impervious surface, and change detection.
Indeed, previous studies extracted impervious surfaces with one endmember or more than
one endmember [6,24–26]. The LSMA model was also applied to calculate the fraction of
endmembers in a mixed pixel and formula for LSMA:

Ri = R
N

∑
i=1

fmRmi + ei (1)

N

∑
m=1

fm = 1; fm > 0(2) (2)

rms =

√
1
n

n

∑
i=1

e2
i (3) (3)

where Ri is the reflectance of mixed image spectrum at each band i; fm is the fraction filled by
the endmember; Rmi is the reflectance of each endmember at each band; ei is the reflectance
in band b without being modeled; n is the number of image bands; and m is the number of
endmembers.

The estimation of the endmember spectra and the number of endmembers constituted
an essential step for analyzing an image in terms of mixtures. The estimation process
contained image processing, endmember selection, spectral un-mixing, and evaluating
fraction images [14]. In addition, a trial-and-error method was required to obtain the
correct number of endmember spectra. Spectral mixing analysis was adopted to resolve
the inverse problem to identify fractions of the spectra, which were in proportion to the
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amount of endmembers in the pixel. Furthermore, singular value decomposition in ENVI
software was employed to handle the least-square problem, in which the number of bands
was greater than the number of endmembers. Since endmember selection could affect
the result of the LSMA model, at most, four endmembers were identified from the 2D
scatter plots after the extraction process of minimum noise fraction [27]. However, the
30 m spatial resolution of the remote sensor data of Thematic Mapper was too coarse for
urban study [28]. Medium resolution remote sensor data were utilized in pixel mixing for
urban environment analysis [29,30]. To overcome the pixel mixing problem, linear spectral
mixture analysis (LSMA) was adopted for extracting information from the data.

2.3.2. Accuracy Assessment

The determination coefficient (R2), root mean square error (RMSE), and mean absolute
errors (MAE) were employed to discern the accuracy of impervious surface estimation [6].
The equations for RMSE and MAE are as follows:

RMSE =

√
∑N

i=1(Xi −Yi)
2

N
(4)

MAE =
1
N

N

∑
i=1
|Xi −Yi| (5)

where Xi is sample i’s estimated fraction of impervious surface; Yi is the actual fraction of
impervious surface; and N is the number of selected samples [5]. Overall, the higher the
value of R2, the more reliable the results; and the smaller the values of RMSE and MAE, the
more accurate the estimation [31–33].

3. Results
3.1. Minimum Noise Fraction

Figure 3a–f and Table 2 show that the eigenvalue of MNF components 1 to 6 in 2016
were 44.36, 17.32, 6.53, 3.70, 3.02, and 1.53, respectively, in which the contribution rates were
58.02%, 22.65%, 8.54%, 4.84%, 3.95%, and 2.00%, respectively. All eigenvalues of the MNF
components were greater than 1. MNF component 1 had the largest eigenvalue, which
demonstrated the highest data dimensionality and the clearest spatial characteristics. MNF
component 2 showed the high-albedo and low-albedo endmembers. MNF component 3
indicated the soil and vegetation endmembers.

Table 2. The eigenvalues and contribution rates of MNF components.

MNF 1 MNF 2 MNF 3 MNF 4 MNF 5 MNF 6

Eigenvalue 44.36 17.32 6.53 3.70 3.02 1.53

Contribution rate 58.02% 22.65% 8.54% 4.84% 3.95% 2.00%

3.2. Endmenber Selection

High-albedo refers to a high reflectance, due to some special-material buildings and
different infrastructures, while low-albedo mainly contains residential buildings, shade,
and water. Vegetation indicated grass and trees, and soil land comprised bare soil, sand or
rock, and construction areas. A water mask is required to be applied in advance to attain
more accurate results.

Figure 4a–c shows the selected endmember’s scatter plots, in which MNF1-MNF2 is
corresponding to high-albedo, low-albedo, and vegetation, while MNF1-MNF3 to vege-
tation, low-albedo, and soil, and MNF 2-MNF3 to high-albedo, low-albedo, and vegeta-
tion [14]. The noise fraction, i.e., heterogeneous spatial-spectral signs, is represented by
black dots diffusing at angles of the triangle.
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Figure 3. MNF components: (a) MNF Component 1; (b) MNF Component 2; (c) MNF Component 3;
(d) MNF Component 4; (e) MNF Component 5; (f) MNF Component 6.

Figure 4. Two-dimensional scatter plot of MNF1–MNF2 and the reflectance of the four endmembers:
(a) 2D scatter plot of MNF1-MNF2; (b) 2D scatter plot of MNF1-MNF3; (c) 2D scatter plot of MNF2-
MNF3; (d) the reflectance of the four endmembers.
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Figure 4d shows the reflectance of the four endmembers. From band 1 to 4, high-
albedo showed the highest reflectance, soil exhibited the second-highest reflectance, low-
albedo showed the third-largest reflectance, and vegetation exhibited the lowest reflectance.
In band 5, vegetation exhibited the largest reflectance, soil showed the second-largest
reflectance, high-albedo exhibited the third-largest reflectance, and the lowest reflectance
was shown by low-albedo. Figure 5 shows an example of the water mask in 2016.

Figure 5. An example of the land area of Hong Kong and Shenzhen in 2016 after the water
was masked.

3.3. Linear Spectral Un-Mixing

Linear spectral un-mixing approach was applied to analyze the following five layers:
low-albedo, high-albedo, vegetation, soil, and root mean square error (RMSE) [14,27,34,35].
The bright area indicated the infrastructures for the high-albedo layer, a high density of
residential buildings in the urban area for the low-albedo layer, the bare area and rock for
the soil layer, and the mountain, grass, and trees for the vegetation reflectance layer.

Table 3 presents the rates obtained with linear spectral un-mixing analysis, which
is consistent with and supports the previous results in the same selected study areas in
Shenzhen and Hong Kong [13,14]. Regarding Shenzhen and Hong Kong, in 2016, Figure 6a–
d presents the examples of the results of the linear spectral un-mixing analysis.

Table 3. The proportion of high-albedo, low-albedo, soil, and vegetation of Hong Kong and Shenzhen
in 1995, 2005, and 2016.

Study Area Type/Year 1995 2005 2016

Hong Kong High-albedo 12.34% 12.63% 12.94%

Vegetation 47.24% 46.69% 46.27%

Low-albedo 24.12% 25.18% 25.56%

Soil 16.30% 15.50% 15.24%

Shenzhen High-albedo 17.40% 21.47% 25.60%

Vegetation 34.99% 33.42% 33.94%

Low-albedo 24.33% 27.57% 37.36%

Soil 23.28% 17.53% 10.37%
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Figure 6. Linear spectral un-mixing of Hong Kong and Shenzhen in 2016: (a) high-albedo; (b) low-
albedo; (c) soil; (d) vegetation.

3.4. Impervious Surface Estimation

Impervious surface estimation was obtained from the combination of high-albedo and
low-albedo, in which the brighter the area, the higher the fraction of impervious surface.

Figure 7a–c shows the impervious surface proportions of Hong Kong and Shenzhen
in 1995, 2005, and 2016. Over each decade, the impervious surface area of Shenzhen
rose markedly, while that of Hong Kong increased only slightly. The impervious surface
proportions of Hong Kong in 1995, 2005, and 2016 were 36.64%, 37.80%, and 38.49%,
respectively, with the increase rates of 3.68% from 1995 to 2005 and 1.83% from 2005
to 2016, and the average increase rate from 1995 to 2016 was 5.5%. The impervious
surface proportions of Shenzhen in 1995, 2005, and 2016 were 15.38%, 19.62%, and 25.23%,
respectively, with an increase rate of 27.57% from 1995 to 2005 and 28.59% from 2005 to
2016, and the average increase rate from 1995 to 2016 was 64.04%.

Figure 7. Impervious surface fraction of Hong Kong and Shenzhen: (a) 1995; (b) 2005; (c) 2016.

The increase in impervious surfaces in Hong Kong was mainly caused by reclaimed
areas, i.e., Pillar Point (Figure 8a) and the Hong Kong Disneyland Resort (Figure 8b) from
1995 to 2005, and the northeastern part of Chek Lap Kok and the seawall of the Hong
Kong-Zhuhai-Macau Bridge (Figure 8c) from 2005 to 2016. The increase in impervious
surfaces in Shenzhen was due to land creation [36], i.e., the central, eastern, and western
part of the Bao’an District (Figure 9a) and the expansion of the Longgang District (Figure 9b)
from 1995 to 2005, and the southeastern part of the Nanshan District (Figure 9c) and the
southeastern part of the Yantian District (Figure 9d) from 2005 to 2016.

3.5. Accuracy Assessment

Figure 10 shows the assessment of accuracy using root mean square error (RMSE) in
the fifth layer of the linear spectral un-mixing analysis [14]. The level of acceptance should
be less than 0.02. The mean value of the RMSE was 0.0045 in 1995, 0.0035 in 2005, and
0.0013 in 2016. Therefore, a high accuracy level was achieved.
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Figure 8. The increase in impervious surface areas of Hong Kong: (a) Pillar Point; (b) Hong Kong
Disneyland Resort; (c) the Hong Kong-Zhuhai-Macau Bridge.

Figure 9. The increase in impervious surface areas of Shenzhen: (a) the central, eastern, and western
part of the Baoan District; (b) the expansion of the Longgang District; (c) the expansion of the
southeastern part of the Nanshan District; (d) the southeastern part of the Yantian District.

Figure 10. RMSE (root mean square error) results in 2016.

The RMS value was high in the region of 0–0.0045 in 1995, 0–0.0035 in 2005, and
0–0.0013 in 2016. Normally, Shenzhen was mainly located in between the high-albedo
and soil regions, as high-albedo was complex, and soil contained different materials. In
comparison, Hong Kong was distributed mainly in between vegetation and low-albedo
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regions for the fact that the mountains exerted a shading effect on some vegetation areas
that would be classified as low-albedo. Consequently, accuracy might have been influenced,
as ascribed to the increased complexity of endmember classification.

To validate the results, SPOT images with a spatial resolution of 10 m × 10 m dimen-
sions and Google Earth images were utilized to assess the accuracy of the results. The real
fractions of endmember fractions were digitized through the examples of SPOT images
and Google Earth images (Figure 11).

Figure 11. Random samples of Landsat TM, SPOT, and Google Earth images.

A total of 100 random-sampling, 3 × 3 pixel Landsat TM data were chosen for com-
parison with the equivalent location of Google Earth images (Figure 12), which shows the
residual analysis and calculated RMSE and MAE of impervious surface estimation in 1995,
2005, and 2016.
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Figure 12. Regression results and residual results: (a,b) 1995; (c,d) 2005; (e,f) 2016.

Figure 12a,c,e shows the results of the regression model for the actual value and
predicted value in 1995, 2005, and 2016 [8]. Table 4 shows that the value of R2 of the
Landsat TM images was 0.97 in 1995, 0.95 in 2005, and 0.96 in 2016, which was acceptable.
The values of RMSE (Equation (4)) and MAE (Equation (5)) were 3.67% and 2.98% in
1995, 6.36% and 4.49% in 2005, and 4.92% and 4.12% in 2016. The residual analysis is
demonstrated in Figure 12b,d,f, and the value range was between 0.2 to −0.2.

Table 4. The value of R2 of the Landsat TM image in 1995, 2005, and 2016.

1995 2005 2016

Value of R2 0.97 0.95 0.96

n = 100 RMSE = 3.67%,
MAE = 2.98%

RMSE = 6.36%,
MAE = 4.49%

RMSE = 4.92%,
MAE = 4.12%

Similar to the previous studies [13,14], the highest amount of error of more than 70%
in most samples was underestimated when compared with the actual fraction, although
some sample fractions of soil and vegetation were overestimated, which should be lower
than 0.25 of the abundance rate. The result was affected, since the shade portion of soil
and vegetation may have been considered as low-albedo. Relatively high accuracy was
reflected from the statistics of R2, RMSE, and MAE (see Table 4).

4. Discussion
4.1. Change Related to Land Use and Land Cover
4.1.1. Change in the Fractions of Endmembers and Impervious Surfaces

Hong Kong had an increase of 4.82% in the high-albedo fraction, a decrease of 2.05%
in the vegetation fraction, an increase of 5.96% in the low-albedo fraction, and a decrease of
6.51% in soil (Figure 13). Regarding Shenzhen, high-albedo increased by 47.16%, vegetation
dropped by 30.16%, low-albedo rose by 53.58%, and soil decreased by 55.47% (Figure 13).
The overall increases in the impervious surface fractions of Hong Kong and Shenzhen were
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5.58% and 50.90%, respectively (see Figure 14). The expansion in high-albedo, low-albedo,
and impervious surfaces in Shenzhen was greater than in Hong Kong from 1995 to 2016.

Figure 13. Trend of high-albedo, low-albedo, soil, and vegetation for Hong Kong and Shenzhen.

Figure 14. Trend of impervious surface for Hong Kong and Shenzhen.

4.1.2. Change in the Trend of Land, Sea, and Impervious Surface

Figure 15 presents the trends in Shenzhen and Hong Kong for change in the land,
sea, and impervious surface. The calculated total areas of Hong Kong and Shenzhen were
2755 km2 and 3140 km2, respectively, which comprised areas of land and sea. Table 5
shows the percentages and areas of land, sea, and the impervious surface of Hong Kong
and Shenzhen. Regarding Hong Kong, from 1995 to 2016, land area rose 12.04%, sea area
decreased 4.74%, and impervious surface increased 5.57%. Shenzhen had an 8.37% growth
in land area, a 10.92% decline in sea area, and a 50.91% growth in impervious surface area
from 1995 to 2016. Hong Kong and Shenzhen have distinctly different land policies and
thus, Hong Kong had a slight increase in urban areas and Shenzhen had a dramatic increase
in urban areas from 1995 to 2016 (Table 5).
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Figure 15. Trends of land, sea, and impervious surface.

Table 5. Percentage and area of land, sea, and impervious surface of Hong Kong and Shenzhen.

Study Area Type/Year 1995 2005 2016

Hong Kong Land 36.21%
997.59 km2

38.94%
1072.80 km2

40.57%
1117.70 km2

Sea 63.79%
1757.41 km2

61.06%
1682.20 km2

59.43%
1637.30 km2

Impervious
surface

36.46%
362.72 km2

37.80%
405.51 km2

38.49%
430.20 km2

Shenzhen Land 56.61%
1777.55 km2

61.28%
1924.19 km2

61.35%
1926.39 km2

Sea 43.39%
1362.44 km2

38.72%
1215.80 km2

38.65%
1213.61 km2

Impervious
surface

41.72%
741.59 km2

49.04%
943.62 km2

62.96%
1212.85 km2

4.2. The Relationship between Impervious Surfaces, Gross Domestic Product, and Population

Figure 16 illustrates the population trend of Hong Kong and Shenzhen in 1995, 2005,
and 2016. The population of Hong Kong constitutes an increase rate of 10.55% from 1995
to 2005 and 7.78% from 2005 to 2016. The overall rate of Hong Kong’s population growth
from 1995 to 2016 was 19.16% [37–39]. The population of Shenzhen exhibited an increase
rate of 246.44% from 1995 to 2005 and 43.84% from 2005 to 2016, and the overall population
rate increase was 398.33% [40–42].

The GDP trend of Hong Kong and Shenzhen in 1995, 2005, and 2016 is presented in
Figure 17. The GDP of Hong Kong exhibited an increase rate of 31.10% from 1995 to 2005
and 76.27% from 2005 to 2016, and the overall GDP rate increase was 131.10%. The GDP of
Shenzhen exhibited an increase rate of 327.38% from 1995 to 2005 and 443.18% from 2005 to
2016, and the overall increase rate was 2221.43%.
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Figure 16. Trend of population in 1995, 2005, and 2016.

Figure 17. Trend of GDP in 1995, 2005, and 2016.

Figure 18 shows the trend of GDP per capita of Hong Kong and Shenzhen in 1995,
2005, and 2016. The GDP per capita of Hong Kong exhibited an increase rate of 18.59%
from 1995 to 2005 and 63.55% from 2005 to 2016, and the overall increase rate was 93.95%.
The GDP per capita of Shenzhen exhibited an increase rate of 23.36% from 1995 to 2005 and
277.60% from 2005 to 2016, and the overall increase rate was 365.80%. Table 6 summarizes
the population, GDP, GDP per capita of Hong Kong and Shenzhen in 1995, 2005, 2016.
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Figure 18. Trend of GDP per capita in 1995, 2005, and 2016.

Table 6. Population, GDP, GDP per capita of Hong Kong and Shenzhen in 1995, 2005, and 2016.

Type/Year 1995 2005 2016

Hong Kong Population
(Million) 6.15 6.78 7.31

GDP
Billion HKD) 761 1291 2397

GDP per capita
(Thousand

HKD)
123.73 190.41 327.91

Shenzhen Population
(Million) 2.39 5.98 10.75

GDP
(Billion RMB) 79 342 1750

GDP per capita
(Thousand RMB) 33.05 57.19 162.79

Hong Kong exhibited a steady increase in population from 1995 to 2016, and Shenzhen
had a sharp increase in population growth from 1995 to 2016. The GDP and GDP per capita
of Hong Kong and Shenzhen from 1995 to 2005 increased steadily, and from 2005 to 2016
they increased sharply. The growth of population, GDP, GDP per capita, and the two study
areas showed a positive correlation. The increase in population growth in Hong Kong, as
well as GDP, was probably due to the strong economic development in the free market,
taxation, and service industries [43,44]. The increase in population and GDP in Shenzhen
was probably attributable to reform and opening contributing to the rapid development of
financial industries and information technologies industries [45]. To cope with the increas-
ing population, more areas in Hong Kong and Shenzhen were developed into urban areas.
However, the increase in impervious surface area in Hong Kong was relatively smaller
than that in Shenzhen, which was ascribed to an entirely different land-use development
strategy. In Hong Kong, protection of the ecological environment constituted the core value
of the land-use development [46], and thus, reclamation was the main strategy to develop
more available land and solidify the coastline against erosion. On the other hand, the
land-use development strategy of Shenzhen was land creation [36], which removed soil
and mud on the hillsides to create flat land that could be developed into urban areas.
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The land-use policies in Hong Kong and Shenzhen possess some unique aspects. For
example, Hong Kong’s government protects high ecological land areas, resulting in land
limitations. Consequently, they employ the strategy of building high-rise buildings to catch
up with the rapid population growth. However, the highly dense buildings of the city
result in an urban heat island effect [47], which leads to health problems. On the other
hand, the land-use policy of Shenzhen’s government is characterized by the destruction
of biodiverse living areas [48]. Moreover, the conversion of land use results in increasing
amounts of greenhouse gases. Although Shenzhen’s land-use policy could meet the needs
of the population, the ecological environment and biodiversity are at risk.

Many trees and shrubs have been planted in residential areas, as well as on the rooftops
of some commercial buildings and residential buildings. These areas may be impervious
surfaces; however, they could be mistakenly estimated as vegetation. The mistaken clas-
sification between low-albedo and vegetation might influence the amount of impervious
surface area. Due to the hilly characteristic of Hong Kong, the enormous mountains gener-
ated shade over their surrounding areas, which were classified as low-albedo areas, which
affects the estimation of the impervious surface fraction. Moreover, different sea levels at
different times affected the total land area being recorded by remote sensors.

4.3. Limitations and Future Research

This study is not without limitations. The discrepancy between actual areas and
estimated areas of four types of land cover is possibly due to the low spatial resolution of the
extracted Landsat images, ebb and flood tide affecting the water level, or the environmental
green in residential areas. Since Landsat satellite images were taken in different periods
of time in 1995, 2005, and 2016, the water level at different periods, e.g., morning tides
and evening tides, changes the areas of land cover. Skyrise greenery, including green roofs
and vertical greening, is the trend of urban design in Hong Kong, and thus, some urban
areas may be classified as vegetation. Regarding future research, classifying land cover
based on the V-H-L-S model classification can be developed as a framework for sustainable
development analysis. The accuracy of the land-cover classification method used in this
study can be assessed in future studies. Furthermore, researchers can compare the accuracy
of using the V-I-S model and V-H-L-S model in classifying the land cover to identify
which approach is better. High spatial resolution Landsat images, such as SPOT or other
advanced satellite imagery, are recommended for application in future studies to improve
the classification of land use and land cover and prevent the erroneous classification due to
shade. The socio-economic factors in this study include land policies, population growth,
GDP, and GDP per capita. The relationship between other socio-economic factors, for
instance, lifestyle, purchasing power and educational level, and urban areas expansion can
be explored in a future study.

5. Conclusions

Landsat satellite images can be applied to estimate impervious surface changes in two
systems’ big cities of one country, such as Hong Kong and Shenzhen. The land areas and
impervious surfaces of Hong Kong and Shenzhen increased between 1995 and 2016, which
exhibited an inverse proportional relationship with sea area, indicating land reclamation.
However, reclamation in Shenzhen was very small from 2005 to 2016 compared to Hong
Kong. In addition, the increase in impervious surface areas had a positive correlation with
population, GDP, and GDP per capita. Urbanization was probably due to the increase in
the population rate and optimistic economic development. However, the increase in urban
area development would be governed by land-use development policies. Reclamation for
the increase in land use constitutes a primary strategy in Hong Kong due to the promotion
of ecological protection. Conversely, land creation in Shenzhen transformed the mountains
or other types of land use to flat land for the development of urban areas. Because of the
completely different land-use policies and restrictions, Hong Kong only exhibited a slight
increase in impervious surface area, while Shenzhen showed a relatively greater increase in
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impervious surface area. The challenge for Hong Kong is that a much denser city resulted
in an urban heat island, and the challenge for Shenzhen is that land with ecological values
was eradicated by urbanization.

While Shenzhen experienced a tremendous increase in the urban area, Hong Kong
had a small increase in urban areas under urbanization. This phenomenon demonstrated
the concept of “one country, two systems”, which resulted in a radical discrepancy in urban
spatial development and distribution of impervious surfaces between the two cities. This
difference in the distribution of impervious surfaces in Hong Kong and Shenzhen also
reflects the discrepancy of land policies.
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