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Abstract: Trade-offs and conflicts among different sectors of production, living, and ecology have
become important issues in regional sustainable development planning due to both the versatility
and limitation of land resources, especially in poverty-stricken mountainous areas. This study builds
an optimization model to assist policymakers in simulating land demand and allocation in the future.
The model takes socioeconomic and demographic development into consideration and couples local
planning policy with land use data from the perspective of system integration. The model was
employed for a case study of Zhaotong city to optimize production–living–ecological (PLE) space.
The results show that the model provides a feasible method to explore the sustainable development
pattern of territorial space, especially in distressed regions.
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1. Introduction

Interactions between human and the environment have attracted increasing attention [1].
In general, cross-sectoral issues involve a variety of social and natural knowledge [2]. Gaps
between natural and social sciences imply that understanding the mechanisms underlying
human–environment systems from a systematic perspective is crucial to sustainable devel-
opment [3]. To a certain extent, several studies have reflected the fact that the problems
are multi-scale and complex while the solutions are diverse [4,5]. Effective domestic pol-
icymaking hinges on diverse stakeholders, which plays a critical role in accelerating the
localization of the SDGs (Sustainable Development Goals, proposed by the United Nations
in 2015) [6]. National development plans for the 2030 Agenda in many countries try to
position human, social, environmental, economic, and institutional objectives at the same
level [7–9]. However, a scientific challenge that obviously exists in sustainable issues is
trade-offs and compensation. The achievement of one SDG is often at the cost of sacrificing
or assisting another [10–13].

By 2020, China achieved the goal of eliminating poverty, which was accompanied by
economic growth and rapid urbanization and contributed to SDG 1 [14,15]. Unfortunately,
inconsistent and rough terrestrial land development patterns in production space and living
space have placed pressure on ecological protection and resource security for ecological
spaces [16–19]. To control the intensity of terrestrial land development and adjust the
spatial structure, the concept of PLE (production–living–ecology) space was proposed in
the report of the 18th National Congress of the Communist Party of China. The objective
is to construct intensive and efficient production space, livable and appropriate living
space, and protected and beautiful ecological space with beautiful mountains and clear
water based on the principle of balancing economic, social, and ecological benefits. It aims
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to delimit the boundaries of multi-function terrestrial land development and establish
a system for future sustainable land development [20]. To a certain extent, PLE space
can be considered a combination of SDG indicators from a land function point of view
(Figure 1). It is highly relevant to the 17 SDGs that involve environmental integrity, social
equity, and economic prosperity, which comprise the triple bottom line approach of human
wellbeing [21,22].
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International academic research has discussed food security [23], tourism [24],
agriculture [25], and urban regeneration [26] under the background of urban sustain-
ability but rarely focuses on PLE space. After all, the concept has been proposed by the
Chinese government in the context of China. Most studies are conducted on a domestic
scope. Huang et al. claimed that the assessment of regional spatial carrying capacity and
suitability is an important guideline for PLE space optimization [20]. Wu et al. indicated
that the carrying capacity determines the upper limit of the PLE space in quantity, while
suitability evaluation is related to the spatial layout structure [27]. Some studies have
provided qualitative and empirical optimization suggestions based on the results of the
carrying capacity and suitability evaluation [28–30]. In general, the suggestions point out
that rules and regulations should be further enhanced and technology standards need
to be improved in the future. However, it is uncertain whether these suggestions are
feasible and effective. It is necessary to develop quantified and visualized tools to simulate
future scenarios, especially for policymakers who face the difficulty of applying social and
ecological approaches to decision-making [31].

Land resources are the most constrained factor for PLE space optimization. One parcel
of land may be used as production space or as living space. In addition, land policy has be-
come an indispensable means of macroeconomic regulation under China’s national policies
because land resources have both natural and economic properties. Therefore, some studies
approach PLE space optimization as a mathematical problem of multi-objective optimization,
guiding maximum economic benefits, social benefits, and ecological benefits [32]. However,
two major gaps remain in the literature. Firstly, multi-objective optimization algorithms still
face some challenges in flexibility and convergence, especially in preference adaptation for
various formulations [33,34]. Secondly, difficulty and complexity increase when referencing
spatial data, although addressing quantitative issues has significant advantages.

The system dynamics model seeks opportunities and ways to optimize the structure
of the system from a holistic perspective based on the feedback characteristics of the
internal components [35–37]. It fills the first gap presented above. In contrast to multi-
objective optimization equations, the system dynamics model simulates the real world by
establishing relationships between social and economic factors. This method can introduce
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more factors and equations and perform dynamic simulations. SD models have been
used in resource management, such as future urbanization and water scarcity [16], energy
consumption [38], and water resource management systems [39]. However, the ability of
the SD model to be applied in spatial allocation is very weak.

As for the other gap, the FLUS (Future Land Use Simulation) model (https://geosimulation.
cn/FLUS.html, accessed on 15 February 2022) is used to simulate human activities and
natural influences on land-use change and future scenarios. The model introduces an
artificial neural network algorithm (ANN)-based probability calculation of suitability for
various land use types based on traditional meta-automata. It proposes an adaptive inertial
competition mechanism based on roulette selection (a stochastic selection method) [40],
which can effectively deal with the uncertainty and complexity of multiple land-use types
when they are transformed under the joint influence of natural effects and human activities,
meaning the FLUS model has high simulation accuracy and can obtain similar results to
the real land-use distribution [41]. To date, the model has been successfully applied in
many cases, such as the simulation of future urban sprawl boundaries [42,43] and the
simulation of flooding risks in rapid urbanization [44]. Furthermore, the input of future
demand for land in the FLUS model can be determined by SD models, which means that
the two can be well coupled. Sustainable development issues require a systematic approach
to integrate various socioeconomic and environmental components that interact across
regional levels, space, and time [45]. Some studies have integrated the idea of system
science into the optimization of resource allocation [46–48] but rarely have focused on
PLE space optimization. This paper aims to build an optimization model based on the SD
and FLUS models, in which PLE space can be planned quantitatively and spatially under
future scenarios.

Trade-offs and conflicts of the PLE function are more obvious and intense in the poor
areas of southwest China. Yunnan Province has the highest number of poverty-stricken
counties and includes Zhaotong city, which is located in Wumeng Mountain and was one
of the 14 concentrated contiguous poverty-stricken areas in China until 2020 (Figure 2).
The GDP per capita is far below the national average level. People’s living standards
and social development are limited by natural geographical conditions and ecosystem
protection [49,50]. It is necessary to balance development and conservation when making
future policies [51]. This paper has two main tasks, one is to develop a model applicable
to the problem, and the other is to use the model to provide solutions for the future
development of Zhaotong city, and attempt to answer the following questions: (1) In this
impoverished region, what is the main trend in PLE space changes over the past few years?
(2) Which scenario can meet the planning target of 2030? (3) How can the development
pattern be optimized?
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2. Methods and Data

This paper aims to build an optimization model based on system dynamics and FLUS
in which land resources can be planned quantitatively and spatially in terms of PLE space.
A system dynamics model is employed to simulate the structure of the PLE space system
and predict quantitative demand in 2030. FLUS is applied to allocate the land parcels at the
spatial scale. The workflow is shown in Figure 3. The work consists of 4 main parts:

(1) Classification of PLE space. PLE space is divided into production, living, and eco-
logical space based on land-use data. Then, space is further divided into subclasses
according to the function assessment, which serves as the basis for the subsequent
PLE space optimization.

(2) Establishment of the SD Model. We simulate the demand quantity of each PLE space
and piece of land in 2030 by constructing a dynamic system model of PLE space,
including the population, economy, and land system.

(3) FLUS Model Settings. We take the quantity of demand obtained by (2) as the input
data of the FLUS model and carry out spatial allocation of various PLE classes.

(4) Constrained scenario design and analysis. Based on verifying the accuracy of the
models in (2) and (3), a variety of future optimization scenarios are designed for
simulation, and the simulation results are evaluated from multiple perspectives.
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2.1. Classification of PLE Space

The classification of PLE space is the basis for the optimization of space layout. For
PLE space optimization, it is necessary to clarify the priority. This study proposes a new
classification system. According to the production–living–ecological function, the first level
of classification was carried out, and then the second category was determined based on
the land-use data from 2010, 2015, and 2018.

2.1.1. Detailed Data Sources

Based on the dataset of the multiperiod land cover dataset of China (MLC), the
classification system of the “PLE space” is established. Detailed data sources are shown
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in Table 1. The MLC dataset was obtained by manual visual interpretation using Landsat
remote sensing image data from the US. The land-use types include the six primary types of
cropland, forestland, grassland, water, residential land, and unused land, and 25 secondary
types. All raster datasets were resampled to 30 m by software Arcgis 10.2. As shown in
Table 1, some datasets that are shared online publicly are limited due to temporal resolution.

Table 1. Data sources for the “PLE Spaces” classification.

Datasets Type Spatial
Resolution Year Data Source

Multi-period land cover dataset
of China Raster 30 m

2010
2015
2018

Resource and Environment Science and Data Center
http://www.resdc.cn/ (accessed on 15 May 2020)

Nature reserve boundary data
of China Shapefile —— 2018

Resource and Environment Science and Data Center
http://www.resdc.cn/ (accessed on 15 May 2020)

Dataset of primary rivers spatial
distribution in China Shapefile —— 2000

Ecological Function Reserves
of China Shapefile —— 2010

Importance of Ecological Service
Functions of China Raster 1 km 2010 Ecosystem Assessment and Ecological Security Database

http://www.ecosystem.csdb.cn/ (accessed on 15
May 2020)Ecosystem Sensitivity of China Raster 1 km 2010

GDP (Gross domestic product) Raster 1 km
2010
2015
2018

Resource and Environment Science and Data Center
http://www.resdc.cn/ (accessed on 15 May2020)

NPP (Net primary productivity) Raster 500 m
2010
2015
2018

LAADS DAAC
https://ladsweb.nascom.nasa.gov/search (accessed on
15 May 2020)

2.1.2. Classification System

As shown in Table 2, according to the importance of ecological functions, ecological
space is further subdivided into four secondary categories: restricted ecological space (ER),
priority ecological space (EP), general ecological space (EG), and accommodated ecological
space (EA). Restricted ecological space refers to areas that perform important ecological
functions and require restricted protection, including national nature reserve areas with
extremely important ecological services, first-class rivers (including waters in the land
cover data collection), and extremely sensitive ecological areas.

Table 2. Relationship between the classification system of PLE spaces and MLC classification.

Class Subclass MLC Classification and Codes

Ecological
Space

Restricted ecological space (ER)
National nature reserves area, extremely important ecological
services areas, first-class rivers area, ecologically extremely
sensitive areas, and waters area (4)

Priority ecological space (EP) High-coverage grass (31), Mid-coverage grass (32), Wooded
land (21)

General ecological space (EG) Shrubland (22), Sparse woodland (23), Low-coverage grass (33)
Accommodated ecological space (EA) Marshland (64), Bare rocky gravel land (66)

Production
Space

Priority agricultural production space (PP) Both arable land (1) and other woodland (24) with
above-average GDP or NPP

General agricultural production space (PG) Both arable land (1) and other woodland (24) with
below-average GDP or NPP

Industrial production space (PI) Other construction land (53)

Living Space Urban living space (LU) Urban building land (51)
Rural living space (LR) Rural settlements (52)

http://www.resdc.cn/
http://www.resdc.cn/
http://www.ecosystem.csdb.cn/
http://www.resdc.cn/
https://ladsweb.nascom.nasa.gov/search
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According to different production functions, the production space is divided into
industrial production space (PI) and agricultural production space (PA). Based on GDP
and NPP, the agricultural production space is further subdivided into priority agricultural
production space (PP) and general production space (PG). The economic value (GDP)
and net primary productivity (NPP) are evaluated, and those that are higher than the
average GDP or NPP are regarded as priority agricultural production spaces, and the others
are regarded as general agricultural production spaces. General agricultural production
space and general ecological space give priority to land conversion in the subsequent
optimization process.

2.2. Establishment of the SD Model

The structure optimization model of PLE space is realized by constructing the system
dynamic model. First, it is necessary to clarify the system boundary and system structure.
The system boundary affects the model’s complexity, and the boundary cannot be too large
or too small. The system structure refers to the variables involved in the model and the
relationship between them. The purpose of this research is to understand the interaction
between the main elements in PLE space. Therefore, the system boundary was confined to
Zhaotong from 2010 to 2017, and the model was constructed by selecting factors related to
population, social fixed asset investment, regional GDP, land resources, and more. The PLE
space system is divided into a population–economy subsystem and a land-use subsystem.
According to data recorded by the Statistical Yearbook of Zhaotong and Statistical Bulletin
of Zhaotong, 33 variables were finally selected. The system structure is shown in Figure 4.
Specific variable names and units are detailed in Table S1 of the supplementary file.

The relationship between system variables and mathematical equations is the core
of the model construction, and it influences the accuracy of the model. In this paper, the
comprehensive empirical method, regression analysis method, logical inference method,
weighted average method, and other methods are used to determine the equation pa-
rameters. Moreover, the Lookup function and conditional function provided by Vensim
software were fully utilized, and 33 groups of equations were finally determined (see
Equations (S1)–(S33) in the methods and data of the supplementary file for details).

The simulated values were compared with the actual values of some variables from
2010 to 2017, and the results are shown in Table S2. The absolute values of the errors
are in the range of 0–5%, which indicates that the constructed model can respond to the
interrelationships among the elements within a reasonable range and can be used for
future simulation.

2.3. FLUS Model
2.3.1. Parameters

The FLUS model is employed to realize the spatial layout of PLE land use. The detailed
theory and process can be found in Liu’s article [41]. Parameters mainly used in the model
are described as follows:

(1) Suitability probability

The suitability probability of different land types on each parcel can be calculated
based on the powerful, intelligent prediction function of the FLUS model’s neural network
by inputting the historical data of driving factors related to land-use evolution. The amount
of future land demand is determined by other methods. In this study, SD is coupled with
FLUS to simulate the spatial layout of the PLE space of Zhaotong city in 2030.

The selection of driving factors is crucial to the ANN-based suitability probability.
This paper references previous literature studies [52–54]. Sixteen driving factors of different
aspects of land use were taken into account, such as topography (including elevation, slope,
and slope direction), natural meteorology (including soil conditions, precipitation, and
annual mean air temperature), and social economy (including population, GDP, distance
from the city center, commuting time). Data sources are shown in Table 3. All raster datasets
were resampled to 30 m by the software Arcgis 10.2.
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Table 3. Driving factors and data sources.

Categories Data Spatial
Resolution Data Source

Terrain and
Landforms Elevation, slope, and direction 90 m Resource and Environment Science and Data Center

http://www.resdc.cn/ (accessed on 2 April 2020)

Soil conditions

Nutrient availability
Nutrient retention capacity
Rooting conditions
Oxygen availability to roots
Excess salts
Toxicity
Workability (constraining field
management)

10 km

Harmonized World Soil Database v 1.2
http://www.fao.org/soils-portal/data-hub/soil-maps-and-
databases/harmonized-world-soil-database-v12/en/
(accessed on 2 April 2020)

Precipitation and
Temperature

Annual average precipitation
Annual average temperature 1 km Resource and Environment Science and Data Center

http://www.resdc.cn/ (accessed on 2 April 2020)

Socio-economic

Population 1 km
The Gridded Population of the World, Version 4 (GPWv4)
https://doi.org/10.7927/H4F47 M65( accessed on 2
Apri 2020)

GDP per capita 1 km

Dryad: Gridded global datasets for Gross Domestic Product
and Human Development Index over 1990–2015
https://doi.org/10.5061/dryad.dk1j0 (accessed on 2
April 2020)

Distance to city center 100 m Euclidean distance calculated using city coordinate data

Travel Time 1 km

European Commission Joint Research Centre Global
Environment Monitoring Unit
http://forobs.jrc.ec.europa.eu/products/gam/(2008)
(accessed on 2 April 2020)

(2) Conversion cost matrix

The cost matrix reflects the conversion rules between different land types, in which
0 means that one type of land is not allowed to be converted to another, 1 means that it

http://www.resdc.cn/
http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.resdc.cn/
https://doi.org/10.7927/H4F47
https://doi.org/10.5061/dryad.dk1j0
http://forobs.jrc.ec.europa.eu/products/gam/(2008
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can be converted. The conversion cost matrix for different land types in this paper varies
during model validation and scenario simulation.

(3) Neighborhood factor values

Referring to the method of Ou et al. [55] and expert empirical knowledge, the neighbor-
hood weights of the nine land types in this paper were determined, as shown in Table 4. The
weight values range from 0 to 1. A value closer to 1 represents a stronger expansion capacity.

Table 4. Neighborhood factor values for different PLE subclasses.

ER EP EG EA PP PG PI LU LR

0.01 0.01 0.01 0.01 0.19 0.67 0.81 1.00 1.00

(4) Other parameters

Another parameter is the time t in the formula, representing the number of iterations.
More iterations mean more time and lower efficiency. To fully carry out spatial simulation
and take simulation efficiency into account at the same time, the number of iterations is set
as 600 and the acceleration factor as 0.5.

2.3.2. Verification

The feasibility and effectiveness of the FLUS model should be verified at first. In this
paper, land use data from 2010 and 2015 are used as the base period data to simulate those
of 2015 and 2018, respectively.

Firstly, the suitability probabilities of different land types in 2010 and 2015 were
calculated using artificial neural networks (ANNs). Accuracy can be measured by the
indicators RMSE (root mean square error), ROC (receiver operating characteristic), and
AUC (area under curve) [41]. Smaller RMSE values and larger AUC values indicate higher
model accuracy. Results showed that the RMSE was 0.2464 in 2010 and 0.2471 in 2015. AUC
values corresponding to the ROC curves are shown in Table 5. ROC curves are shown in
Figures S1 and S2.

Table 5. AUC values based on ANN suitability probability calculation results.

AUC ER EP EG EA PP PG PI LU LR

2010 0.85 0.63 0.61 0.88 066 0.73 0.90 0.97 0.78
2015 0.84 0.63 0.62 0.91 0.68 0.72 0.84 0.98 0.77

Secondly, conversion cost matrices used for verification are obtained from the transi-
tion matrix between the years 2010~2015 and 2015~2018. If there is a conversion happened
between two land classes during the above period, it is assigned as 1; otherwise, it is
assigned as 0. They are shown in Tables S3 and S4, respectively. Other parameters are the
same as those described in the Parameters section.

Results showed that compared with the actual data, the kappa coefficient (an indicator
used to measure accuracy) of the 2015 simulation is 0.91, with an overall accuracy of 93.35%.
The confusion matrix (a specific table layout that allows visualization of the performance
of an algorithm in the field of machine learning) between the actual data and simulation is
shown in Tables S5 and S6. Similarly, the kappa coefficient of the 2018 simulation is 0.85,
with an overall accuracy of 88.99%. Both kappa coefficients are greater than or equal to
0.85, indicating that the FLUS model has high simulation accuracy and can be used for
future simulations.

2.4. Constrained Scenarios

Base scenarios and optimization scenarios are designed to fully simulate the future
PLE space layout of Zhaotong city in 2030. The optimization scenarios include Scenario A,
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in which production and living development are given priority; Scenario B, in which
ecological protection is given priority; and Scenario C, in which both are considered. In
addition, three levels (high level, medium level, and low level) are designed in every
optimization scenario. The details are shown in Table 6.

Table 6. Scenario design and solution code.

Scenarios Name Abbreviations

Base Scenario BS

Optimization Scenarios High level Medium level Low level

Giving priority to production-living
development scenario (A) A1 A2 A3

Giving priority to ecological protection
scenario (B) B1 B2 B3

Both are considered in scenario (C) C1 C2 C3

There are two main aspects in which the above scenarios differ. On the one hand,
the control variables’ values are different in the system dynamics model for quantitative
optimization. On the other hand, the transformation rules are different when using the
FLUS model for spatial simulation.

Five different approaches are chosen as optimization projects in the PLE space system
dynamics model, including land-use efficiency promotion, industrial structure adjustment,
agricultural production space protection, intensive development of construction land, and
controlling population growth. Relevant control variables in the model are listed in Table 7.
The variables associated with the land-use efficiency promotion are mainly related to the
GDP output per land (including GDPPA, GDPPI, and GDPLU). In the base scenario, i.e., at
the previous rate of development, the values are 0.05, 11.58, and 9.10, respectively, by 2030.
Based on the expert experience, on this basis, the optimization is carried out assuming that
at high, medium, and low levels; GDPPA increases by 100%, 60%, and 30%, respectively;
GDPPI increases by 60%, 30%, and 10%, respectively, and GDPLU increases by 120%, 80%,
and 50% respectively. The values obtained are presented in Table 7. The values of the other
variables for the different scenarios are also listed in Table 7.

Table 7. Base scenario and parameter settings at different levels.

Approaches Variables 1 Base Scenario High Level Medium Level Low Level

Land-use efficiency
promotion

GDPPA 0.05 0.05 0.04 0.03
GDPPI 11.58 18.04 14.66 12.40
GDPLU 9.10 11.58 9.47 7.89

Industrial structure
adjustment PPICLA 47 32 36 41

Agricultural production
space protection PPI 2.35 0.85 1.00 1.50

Controlling population
growth PGR 0.85 1.15 1.00 0.85

Intensive development of
construction land LALRPer 0.54 0.90 0.75 0.60

1 Definition of variables can be found in Table S1.

The cost matrix of the base scenario is simple; that is, the urban living land use cannot
be converted into another land use, and the conversion between other different land types
is unrestricted. See Table S7 for the detailed cost matrix. No masking of the restricted area
is performed.

The development scenario of giving production-living development priority (Sce-
nario A) ensures that the improvement of production space and living space is fully
considered. The expansion of production-living space comes at the expense of occupying
ecological space. In the stage of spatial simulation, urban living space cannot be converted
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into others and is the same as priority agricultural production space and general agricul-
tural production space (see Tables S8 and S9 for the detailed cost matrix). At the high and
medium levels, the restricted ecological space vector scope of 2018 is used as a mask area;
that is, the land parcels within the mask scope are no longer involved in the subsequent
land-use conversion process. However, there is no mask at low levels.

The ecological space is fully protected in the context of Scenario B. For spatial simula-
tion, urban living space cannot be converted into other land use and is the same as priority
ecological space and general ecological space (see Tables S10 and S11 for the detailed cost
matrix). Other settings are like Scenario A.

A balanced development scenario (Scenario C) means that the priority ecological
space and priority agricultural production space are fully protected. During the spatial
simulation, urban living space cannot be converted into another land use, and the same
requirements are made for the priority ecological space and priority agricultural production
space (see Tables S12 and S13 for the detailed cost matrix). Other settings are similar to
Scenario A.

Only the industrial production space area, urban living space area, and rural living
space area can be directly obtained from the simulation results of the system dynamic
model. Other PLE space needs to be calculated according to the proportion of subclasses
to the upper-class land in 2018, especially in the base scenario and Scenario B, in which
ecological space protection is given priority. In Scenario A, the areas of priority agricultural
production space and general agricultural production space were the same as those in 2018,
and others were obtained by the above method. In Scenario C, the priority ecological space
and priority agricultural production space were not less than those in 2018, and others
were obtained by the above method.

3. Results
3.1. Spatiotemporal Pattern of PLE Space: Economic Development Is Related to the Decline of
Ecological Space and General Agricultural Production Space

The spatial distribution of PLE spaces is shown in Figure 5. Restricted ecological space
(ER) is mainly distributed in the western part of Zhaotong city, but it is more concentrated
in the southwestern part. The priority ecological space (EP) is distributed in the south
and northwest of the city. The general ecological space (EG) is more scattered. The area
of accommodated ecological space (EA) is small. Priority agricultural production space
(PP) is distributed in the city’s central part and is more concentrated and contiguous,
while general agricultural production space (PG) is in the northeastern part. In addition,
industrial production space (PI), urban living space (LU), and rural living space (LR) are
more scattered.

The land areas of the PLE spaces in 2010, 2015, and 2018 are shown in Table S14.
Detailed subclass areas are shown in Table S15. Table S20 shows that the ecological space
extends over an area of more than 16,200 km2, accounting for more than 72% of the total,
followed by the production space at approximately 6000 km2, accounting for approximately
27%, and then by the living space, the smallest area at only approximately 1%. Among
ecological spaces, the areas of priority ecological space and general ecological space ac-
counted for more than 90%. Living spaces are mainly rural living space, accounting for
approximately 70%.

In terms of changing trends, the ecological space area decreased from 2010 to 2018 but
not significantly. Figure 6 shows that between 2010 and 2018, Zhaotong’s GDP continued
to increase, while at the same time, the space for priority ecological space continued to
decrease. Conversely, production space decreased significantly from 6031 km2 in 2010 to
6000 km2 in 2018, which was mainly due to the decrease in general agricultural production
space. There was a clear trend of growth in living space, from 194.67 km2 in 2010 to
232.97 km2 in 2018, with an increase of approximately 20%. This increase is mainly due to
the expansion of urban living space, which was only 40.78 km2 in 2010, reaching 72.76 km2

in 2018, with an increase of approximately 78%.
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The transfer matrix between 2010 and 2015 is shown in Table S16. The most significant
growth between 2010 and 2015 was in industrial production space, which increased from
15.74 to 32.75 km2. The expansion of industrial production space mainly encroached on
priority agricultural production space (8.69 km2) and priority ecological space (4.96 km2),
accounting for 51% and 29% of the expansion space, respectively. The main distribution of
industrial space is in the central region. The most significant growth between 2015 and 2018
was in urban living space, which increased from 42.97 to 72.76 km2 (Table S17). Urban living
space expansion mainly encroached on priority agricultural production space (16.74 km2)
and industrial production space (12 km2), accounting for 56% and 41% of the total expansion
space, respectively. This change in use was concentrated in the central region.
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3.2. Assessment of the Optimization Scenarios from the View of Total Amount: A High Level of
Development Is More Conducive for Achieving the Planned Target of 2030

The planning goal for economic and social development in the “Urban Master Planning
of Zhaotong City (2011–2030)” was used as a basis for reference. The economic development
target is to reach a regional GDP of 410 billion RMB and a per capita GDP of approximately
67,000 RMB by 2030. For the social development target, the total population is 6.15 million,
and the urbanization rate is 55%.

Based on the constructed SD model of PLE space, the simulated values of the main
variables under different scenarios in 2030 were obtained, as shown in Table S18. This
result indicates that under the base scenario, the regional GDP is 340.508 billion yuan by
2030, with a total population of 6,245,700 people, the GDP per capita of 54,500 yuan, and an
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urbanization rate of 68.33%. This means that under the base scenario, the regional GDP and
GDP per capita cannot meet the planning target, although the population and urbanization
rate can.

As shown in Table S18 and Figure 7, A1, B1, and C1 can meet the planning require-
ments. The remaining six scenarios show the opposite. Under Scenario A1, the regional
GDP is 461.444 billion yuan by 2030, the total population is approximately 6.424 million,
the GDP per capita is 71.8 thousand yuan, and the urbanization rate is 71.27%. Since the
difference between Scenario B and Scenario C is mainly reflected in the constraints on
agricultural space during spatial allocation, the quality is the same. Under Scenarios B and
C, the regional GDP is 460.220 billion yuan, the total population is 6,424,400 people, the
GDP per capita is 71,600 yuan, and the urbanization rate is 71.24%.

Land 2022, 11, x FOR PEER REVIEW 15 of 23 
 

 

Figure 7. Development target in 2030 and simulation results of different scenarios. 

3.3. Assessment of the Optimization Scenarios from the View of Spatial Configuration: High 

Levels of Development Will Lead to Further Expansion of Industrial Production Space and 

Living Space 

The land area of PLE space in 2030 under different scenarios and the changes in terms 

of percentage compared with 2018 are listed in Table 8. Under the base scenario, urban 

living space (LU) is approximately 1.2 times larger than that in 2018, while rural living 

space (LR) decreases by approximately one-third (33.32%). The production land-use area 

shrinks from 6000.09 to 5760.48 km2, a decrease of approximately 4%, and priority agri-

cultural production space and general agricultural production space shrink by 5.91%, 

while industrial production space grows by 3.8 times. This implies that the expansion of 

urban living space and industrial production space is very evident in the base scenario, 

while priority agricultural production space and industrial production space are the most 

occupied. 

Under Scenario A1, because of the protection of agricultural production space, the 

expansion of living space and industrial production space leads to different degrees of 

reduction in ecological space. Ecological space decreases by 1.49%, industrial production 

space and urban living space increase by 241.56% and 194.98%, and rural living space 

increases by 3.7%. Under Scenario B1, there is a slight decrease in ecological space (ap-

proximately 0.01%). The expansion of living space and industrial production space is at 

the expense of agricultural production space, resulting in a 3.66% decrease. Compared 

with Scenario B1, the priority agricultural production space is protected with constraints 

in Scenario C1, leading to the general agricultural production space being further reduced 

by 7.93%. 

Table 8. Land area of the PLE spaces in 2030 and changes compared with 2018 under different sce-

narios. 

 ER EP EG EA PP PG PI LU LR 

2018 1481.17 7000.82 7710.14 11.74 3218.38 2752.14 29.57 72.76 160.21 

BS 1499.88 7089.26 7807.54 11.89 3028.17 2589.49 142.82 161.06 106.83 

Change% 1.26 1.26 1.26 1.28 −5.91 −5.91 382.99 121.36 −33.32 

A1 1481.17 6896.57 7595.33 11.57 3218.38 2752.14 101.00 214.63 166.14 

Change% 0.00 −1.49 −1.49 −1.49 0.00 0.00 241.56 194.98 3.70 

Figure 7. Development target in 2030 and simulation results of different scenarios.

3.3. Assessment of the Optimization Scenarios from the View of Spatial Configuration: High Levels
of Development Will Lead to Further Expansion of Industrial Production Space and Living Space

The land area of PLE space in 2030 under different scenarios and the changes in terms
of percentage compared with 2018 are listed in Table 8. Under the base scenario, urban
living space (LU) is approximately 1.2 times larger than that in 2018, while rural living space
(LR) decreases by approximately one-third (33.32%). The production land-use area shrinks
from 6000.09 to 5760.48 km2, a decrease of approximately 4%, and priority agricultural
production space and general agricultural production space shrink by 5.91%, while indus-
trial production space grows by 3.8 times. This implies that the expansion of urban living
space and industrial production space is very evident in the base scenario, while priority
agricultural production space and industrial production space are the most occupied.

Under Scenario A1, because of the protection of agricultural production space, the
expansion of living space and industrial production space leads to different degrees of
reduction in ecological space. Ecological space decreases by 1.49%, industrial production
space and urban living space increase by 241.56% and 194.98%, and rural living space
increases by 3.7%. Under Scenario B1, there is a slight decrease in ecological space (ap-
proximately 0.01%). The expansion of living space and industrial production space is at
the expense of agricultural production space, resulting in a 3.66% decrease. Compared
with Scenario B1, the priority agricultural production space is protected with constraints in
Scenario C1, leading to the general agricultural production space being further reduced
by 7.93%.
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Table 8. Land area of the PLE spaces in 2030 and changes compared with 2018 under different scenarios.

ER EP EG EA PP PG PI LU LR

2018 1481.17 7000.82 7710.14 11.74 3218.38 2752.14 29.57 72.76 160.21
BS 1499.88 7089.26 7807.54 11.89 3028.17 2589.49 142.82 161.06 106.83

Change% 1.26 1.26 1.26 1.28 −5.91 −5.91 382.99 121.36 −33.32
A1 1481.17 6896.57 7595.33 11.57 3218.38 2752.14 101.00 214.63 166.14

Change% 0.00 −1.49 −1.49 −1.49 0.00 0.00 241.56 194.98 3.70
A2 1481.17 6910.55 7610.73 11.59 3218.38 2752.14 110.44 196.33 145.60

Change% 0.00 −1.29 −1.29 −1.29 0.00 0.00 273.49 169.84 −9.12
A3 1466.79 6932.87 7635.31 11.63 3218.38 2752.14 122.65 176.49 120.67

Change% −0.97 −0.97 −0.97 −0.97 0.00 0.00 314.77 142.57 −24.68
B1 1481.17 7000.36 7709.63 11.74 3100.69 2651.50 100.98 214.58 166.29

Change% 0.00 −0.01 −0.01 −0.01 −3.66 −3.66 241.49 194.91 3.80
B2 1481.17 7012.31 7722.80 11.76 3103.00 2653.48 110.41 196.29 145.72

Change% 0.00 0.16 0.16 0.16 −3.58 −3.58 273.39 169.77 −9.05
B3 1489.38 7039.63 7752.89 11.81 3085.17 2638.23 122.61 176.44 120.77

Change% 0.55 0.55 0.55 0.55 −4.14 −4.14 314.65 142.50 −24.62
C1 1481.17 7000.82 7709.17 11.74 3218.38 2533.80 100.98 214.58 166.29

Change% 0.00 0.00 −0.01 −0.01 0.00 −7.93 241.49 194.91 3.80
C2 1481.17 7012.31 7722.80 11.76 3218.38 2538.10 110.41 196.29 145.72

Change% 0.00 0.16 0.16 0.16 0.00 −7.78 273.39 169.77 −9.05
C3 1489.38 7039.63 7752.89 11.81 3218.38 2505.02 122.61 176.44 120.77

Change% 0.55 0.55 0.55 0.55 0.00 −8.98 314.65 142.50 −24.62

3.4. Optimization Pattern of the Coordinated Development: Production–Living Space Should Be
Given Priority

The spatial optimization efficiency is evaluated by whether the spatial allocation can
reach the future total amount required. When the FLUS model is used for the spatial
layout, the number of requirements may not be reached for the same 600 iterations due
to the different constraint rules. The percentage difference between the actual number of
configurations and the demands is used as the spatial optimization efficiency indicator.

The future demand area of different land types needs to be proportionally converted
to the number of land parcels in the FLUS model for spatial simulation. The gap between
the actual allocation of parcels and the demand parcels is also presented in Table S19. In
the base scenario, the expansion of rural living space far exceeds the planned demand by
approximately 38%. In contrast, the number of allocated parcels of industrial production
space differs from the number of demands by −22.63%, which means that it does not
meet the target. In Scenario A1, 25.37% of the urban living space does not meet the
future demand in the spatial configuration. In Scenario B1, neither urban living space nor
industrial production space meets future needs; for example, the gap in urban living space
is −22.14%. This is more obvious in Scenario C1, where 55.23% of the urban living space
does not meet the demand.

Since the differences in several scenarios are mainly reflected in urban living space
and industrial production space, the central and eastern regions are compared in separate
enlargements (see Figure 8). Compared with 2018, the expansion of urban living space
in the base scenario is mainly in the central region, centering on the original urban living
space and expanding further outward. The expansion of industrial production space is also
distributed in the central part but in a scattered manner around the central city, with the
exception of two concentrated locations in the eastern region (see Figure 8).

Unlike the base scenario, the urban living space expands to the southwest with a
small-scale agglomeration in Scenario A, and the same phenomenon occurs in the eastern
part. In contrast, the expansion of industrial production space tends to extend to the south
compared to the base scenario. The expansion of urban living space is very similar at
different levels under Scenario B. Only Scenario B1 shows a clustering distribution in
the northern part of the original urban living space and a relatively smaller degree of
clustering in the eastern part. However, the industrial production space is not obvious in
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other scenarios except for a more obvious expansion at B1, especially in the northeastern
region. In Scenario C, the expansion of urban living space and industrial production space
is somewhat limited and only slightly expands compared to 2018, again mainly in the
central and eastern regions.
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4. Conclusions and Implications
4.1. Findings

Results show that the model has high accuracy and can be combined with local policy
to simulate the PLE space under future scenarios:

(1) Combined with the actual situation of Zhaotong city, the accuracy of the SD model is
more than 95%. Absolute values of the errors are in the range of 0–5%, which indicates
that the constructed model can respond to the interrelationships among the social and
natural elements within a reasonable range and can be used for future simulation.

(2) The suitability probabilities of different land types were calculated using artificial
neural networks (ANNs). Accuracy in terms of RMSE is both about 0.24. Additionally,
AUC values corresponding to the ROC curves are all between 0.6~1. To a certain
extent, it means that selective factors related to land use suitability are effective and
the ANN method performs well.

(3) In the stage of spatial simulation by FLUS, confusion matrices describe the wrong
allocation between simulated and actual spatial distribution. The related kappa
coefficients are both above 0.85.

As a typical area with a backward economy and limited geographical conditions,
Zhaotong city has unique characteristics of PLE space. Talking about the future develop-
ment direction and whether the planning objectives can be achieved, the model constructed
in this paper gives these answers:

(1) The ratio of ecological space, production space, and living space is approximately
7.2:2.7:0.1. Almost all the production space is agricultural production space, ac-
counting for approximately 99%. Living space is dominated by rural living space,
accounting for approximately 70%. Between 2010 and 2018, Zhaotong’s GDP con-
tinued to increase, while at the same time, the space for priority ecological space
continued to decrease. Zhaotong city has seen a significant expansion of living space
and industry space in recent decades, which has greatly encroached on agricultural
production space, especially in the central region, which is the core of the city.

(2) The planning requirements for 2030 can only be met under Scenarios A1, B1, and
C1. This means that Zhaotong needs further improvements in land-use efficiency,
industrial structure adjustments, and intensive development. However, considering
suitability and space allocation rules, the demand for urban living space and industrial
production space and the spatial allocation of land types could not be fully realized
in the simulation time (600 iterations). Except for A3, where the configuration of all
nine land types could meet the requirements, the demand for urban living space or
industrial production space in other scenarios is far from satisfied.

(3) Production and living space should be given priority in future development. A higher
level of development is still needed in terms of policies and measures. When planning
future PLE space, the layout of urban living space and industrial production space
should be given priority, especially in the central and south-central regions as well as
the eastern region.

4.2. Contributions

The study of the PLE space is important for the planning of regional sustainable devel-
opment. Complicatedly, it involves geographical, ecological, and economic knowledge and
experiments, requiring integrated research. This paper built an integrated optimization
model by which PLE space can be simulated quantitatively and spatially, which enriches
the current study of PLE. Additionally, it can be a powerful tool.

The SD model constructed takes local demographic and economic factors into account
from a system science perspective. The mathematical relationships between the main
factors are quantified by establishing equation and simulation parameters as a way to
simulate the mechanism of urban operation. The FLUS model, based on the suitability
probability using an ANN, is carried out in a roulette wheel way by considering the cost
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matrix, neighborhood influence, and other factors. For example, some constraints, as well
as planning objectives, are embedded into the model in a parametric way, and the land
allocation operations in the actual planning process are restored by different land class
conversion rules.

In contrast to the multi-objective optimization model, which is often used to find the
optimal solution [32], the coupled model in this paper can simulate the urban operation
mechanism at a more microscopic scale and perform dynamic derivation in both time and
space dimensions simultaneously with more flexible parameter adjustment. Moreover, this
paper sets a variety of development scenarios in the form of parameters for the relevant
indicators in local policies and assists in decision-making based on the simulation results.
For Zhaotong city, economic development and environmental protection are advocated
to be given equal importance. For other cities that also face urban development planning
problems, the case study of this paper can provide inspiration.

4.3. Limitations and Future Research

Like all research, there are some limitations to this study. For example, there is no
clearly defined relationship between the urbanization rate and GDP, and the urbanization
rate is influenced by many factors [38,56]. To simplify the SD model, the equation parame-
ters between the two can only be determined using regression analysis and referring to the
development trend of other cities. In addition, adequate surveys involving stakeholders
and local policy can also improve the rationality of the scenario simulation. However, this
requires more comprehensive and in-depth preliminary research, which is also an aspect
that can be considered for further studies.

In addition, only taking Zhaotong, a city located in southwest China, as a case study
is far from enough. For planning problems in other cities with different geographical and
natural endowments, the applicability of the model needs more work to be carried out to
verify the model. Additionally, urban sustainability is a common issue around the world,
but the solutions to different problems need to be contextualized in a variety of ways.
Regardless of the approach taken, the rights of stakeholders should be considered when
making decisions [57,58].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/land11030411/s1, Table S1: Names, units and data sources of the
variables included in the PLE space system dynamics model; Table S2: Comparison of simulated and
real values of some key variables; Table S3: Cost Matrix for the 2015 simulation using 2010 PLE spatial
distribution data; Table S4: Cost Matrix for the 2015 simulation using 2010 PLE spatial distribution
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