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Abstract: Coherent improvements in crop varieties and crop husbandry and soil management prac-
tices are needed to increase global crop production in a sustainable manner. However, these practices
are often discussed separately, and as a result there is little overview. Here, we present a database
and synthesis of 154 meta-analysis studies related to ten main crop husbandry and soil management
practices, including crop type and rotations, tillage, drainage, nutrient management, irrigation and
fertigation, weed management, pest management, crop residue management, mechanization and
technology, and landscape management. Most meta-analysis studies were related to tillage (55),
followed by crop type and rotations (32), nutrient management (25), crop residue management (19),
and irrigation and fertigation (18). Few studies were related to landscape management (6) and
mechanization and technology (2). In terms of outcome, studies focused on crop yield and quality
(81), soil quality (73), and environmental impacts (56), and little on economic effects (7) or resource
use efficiency (24). Reported effects of alternative practices, relative to conventional practice, were
positive in general. Effect sizes were relatively large for environmental effects (nutrient leaching,
greenhouse gas emissions), and small for soil quality (except for soil life) and crop yield. Together,
meta-analysis studies indicate that there is large scope for increasing cropland productivity and
minimizing environmental impacts. A roadmap is provided for integration and optimization of all
ten practices, and recommendations are formulated to address the gaps in meta-analysis studies.

Keywords: crop residue; crop rotation; crop yield; environmental effects; irrigation; nutrient manage-
ment; resource use; soil-improving cropping systems; soil quality; tillage

1. Introduction

Global yields of main crops (wheat, rice, maize, and soybean) have increased by an
average 1 to 2% per year during the last decades [1,2], in response to the increasing global
food and feed demands, and facilitated through technological improvements. Forecasts
suggest that mean crop yields per ha of cropland have to increase by as much as 2.4%
per year to be able to meet the food and feed demands by the human population in 2050,
also because further expansion of global cropland area and/or increased frequency of
harvesting are not feasible [3,4]. The slow-moving mean increase in global crop yields
during recent decades are in part related to areas where crop yields have been stagnating
and to areas where crop yields have not increased at all or have fallen. Recent analyses
suggest that crop yields are not increasing on 25 to 40% of the harvested global cropland
area [1]. Yield increases of wheat, maize, and rice tend to be lowest in low-income countries
because of lack of resources and poor crop husbandry practices. In high-income countries,
yield increases may be less than average when actual yields approach attainable crop yields,
suggesting that yields reach biophysical limits [5,6]. Crop yields may also stagnate in
some countries because of climate change and environmental regulations [7–9] and soil
degradation [10–12].
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The yield increases per unit of surface area during recent decades have mainly been
the result of improved germplasm and improved crop husbandry and soil management
practices, including inputs of fertilizers, irrigation, and pesticides [13]. Availability of high-
yielding cultivars, fertilizers, irrigation water, and pesticides are commonly considered to
be the dominant yield-controlling factors, next to climate and soil quality. However, the
importance of precise timing and careful execution of the various crop husbandry practices
in the proper order should not be neglected [13]. The crop husbandry and soil management
practices together determine how far actual crop yields deviate from attainable crop yields
and from potential crop yields [14]. Attainable crop yields, defined as the best yield
achieved by the best farms through skillful use of the best available technology [14], are on
average 70 to 80% of the potential yield. Potential crop yields are commonly defined as the
yields obtained when cultivars adapted to the local environmental conditions are grown
with minimal stress, achieved with best management practices [11,15,16]. Actual yields on
farmers’ fields range from 30 to 100% of attainable yields, depending on region [1].

Crop husbandry and soil management practices also influence the environmental
sustainability of crop production systems, especially in cases where the pressures to increase
crop yields are high. Concerns have arisen about intensive crop production systems with
poor crop husbandry and soil management practices, as these pollute groundwater and
surface waters with nitrogen (N), phosphorus (P) and pesticides, and emit greenhouse
gases and ammonia (NH3) into the atmosphere [15–17]. There are also concerns about soil
degradation through processes such as erosion, salinization, compaction, and declines of
soil organic matter content and soil biodiversity [10]. The United Nations (UN) Sustainable
Development Goals (SDGs) address essentially all of these concerns and indirectly guide
the actions of nations in the pursuit of a more sustainable world. Of the 17 SDGs, at least
five have a direct relation with cropping systems and soils, while others have a more
indirect relation [18]. SDG-2 aims to ‘end hunger, achieve food and nutrition security, and
promote sustainable agriculture’ and is key to the success of the SDG agenda [19].

While there are several spatially explicit assessments of changes in crop yields over
time (e.g., [2,20], there are no spatially explicit, integrated assessments of the sustainability
of crop husbandry and soil management practices. The main reason for this lack of
assessments is the diversity of crop husbandry and soil management practices, and the
lack of methods and procedures for making such integrated assessments. Wezel et al. [21]
analyzed 15 agroecological cropping practices qualitatively in terms of possible advantages
and drawbacks, for temperate areas. Others have reviewed the impacts of one or a few
specific crop husbandry practices (e.g., [22–24], often on the basis of a meta-analysis of
published studies. There is as yet no coherent overview and comparison of the effects of all
main crop husbandry and soil management practices.

The aim of this study was to provide a review of crop husbandry and soil management
practices on the basis of meta-analysis studies. Meta-analysis papers commonly analyze
and synthesize many experimental studies related to topical research questions and/or
ambiguous research findings. The term ‘meta-analysis’ was first used in 1976 and referred
to ‘the statistical analysis of a large collection of analysis results from individual studies
for the purpose of integrating the findings’ [25,26]. Most meta-analysis studies related to
crop husbandry and soil management practices date from the last 10 to 20 years, and the
cumulative number has increased exponentially (Figure 1).

Thus, our main hypothesis is that meta-analysis studies summarize and synthesize
vast amounts of research results, and unravel underlying mechanisms of variations, and
thereby provide overview. By reviewing and synthesizing meta-analysis studies related
to several crop husbandry and soil management practices, we aimed to (i) summarize the
main impacts of these crop husbandry and soil management practices, (ii) identify the
most topical research areas, and (iii) suggest guidelines for ‘sustainable cropping systems’.
The crop husbandry and soil management practices examined were assessed in terms of
(a) crop yield and quality, (b) soil quality, (c) economic effects, (d) resource use efficiency,
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(e) environmental effects, and (f) human health impacts. However, none of the reviewed
studies addressed human health impacts; as a consequence, this aspect is not reported here.
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Figure 1. Exponential increase in time of published studies used in our overview (the bar left of
2000 refers to all studies before the year 2000). In total 163 unique studies (peer-reviewed publications)
were used: 154 meta-analysis studies and 9 reviews.

2. Materials and Methods
2.1. Data Collection

We reviewed meta-analyses studies related to crop husbandry and soil management
practices (henceforth ‘practices’). A total of ten main categories of practices were examined:
(1) crop type and crop rotations including intercropping, cover crops, (2) nutrient manage-
ment, (3) irrigation and fertigation, (4) controlled drainage, (5) tillage practices, (6) pest
management, (7) weed management, (8) crop residue management including mulching,
(9) mechanization including precision technology, and (10) landscape management, in-
cluding hedgerows, tree lines, buffer strips. These ten categories of practices relate to the
main crop yield defining, limiting, and reducing factors [11,15,16], and with climate-related
factors (not included here) have very dominant effects on crop yield and quality, soil quality,
and the environmental impacts of crop production.

For each of these categories, quantitative effects of specific practices were distilled
from the meta-analysis studies. In most studies, an improved or modified practice was
compared with the conventional practice. We focused on the following five outcomes
(impacts): (a) crop yield and quality, (b) soil quality, (c) farm income, (d) resource use
efficiency, and (e) environmental effects. We attributed the indicators that were used in the
meta-analysis to these five outcomes. For crop yield and quality, farm income, and resource
use efficiency, a limited number of straightforward indicators were used commonly, but for
soil quality and environmental effects a wide range of indicators have been reported. We
made no selection in these indicators. We focused on effect sizes defined as the standardized
mean difference between the effect of a specific treatment practice relative to that of the
control treatment. It is often given as the response ratio (RR) which is the ratio of the effect
of a specific treatment (Xt) and the control treatment (Xc), with or without natural log of
the ratio.

We collected data from peer-reviewed meta-analysis publications only. The publica-
tions were identified using the online database Scopus (https://www.scopus.com/sources,
accessed on 5 May 2021) within the period 1997–2020. Publications were searched using
the keywords “meta-analysis” and the results were refined using additional words—“crop
type”, “crop rotation”, “nutrient management”, “fertilization”, “irrigation”, “fertigation”,
“drainage”, “tillage”, “pest management”, “disease management”, “weed management”,
“crop residue management”, “mulching”, “mechanization”, “landscape management”,
“hedgerows”, and “buffer strips”. These keywords were searched for in the title, abstract,

https://www.scopus.com/sources
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and keywords. Additionally, we used the forward and backward snowballing technique
when applicable and a few review studies that presented quantitative data, such as a
meta-analysis, were included as well. Further information about the selection and analysis
of data is provided in the Supplementary Materials.

A list of abbreviations used in this publication is given in Table A1 (Appendix A).

2.2. Data Compilation and Analysis

Data from the meta-analysis studies were compiled in Windows Excel. The region of
the study, the specific practice, the conventional (control) practice, the results, the units and
the number of observations were recorded. No further data processing and analyses of the
data were undertaken. The Windows Excel database, with all results extracted from the
meta-analyses studies, is in the Supplementary Materials.

3. Results
3.1. Overview

Table 1 presents an overview of the meta-analysis studies across categories of practices.
Most of the meta-analysis studies dealt with tillage practices (55). Crop type and crop
rotations (32), nutrient management (25), irrigation and fertigation (18), and crop residue
management (19) have also been analyzed frequently. In contrast, only two studies related
to mechanization and (precision) technology.

Table 1. Summary of the number of reviewed meta-analysis studies across crop husbandry and
soil management practices, and across aspects (outcome). Note that the sum of the studies for the
different aspects can be larger than the number of meta-analysis studies since some studies reported
on several aspects.

Number of Meta-Analysis Studies per Aspect

Crop Husbandry and Soil
Management Practices Total Crop Yield &

Quality
Soil

Quality
Resource Use

Efficiency
Economic
Aspects

Environmental
Impacts

1 Crop type and crop rotations 32 12 12 2 1 14
2 Nutrient management # 25 12 9 0 1 7
3 Irrigation and fertigation 18 12 2 11 0 4
4 Drainage 6 1 1 0 1 4
5 Tillage 55 19 36 5 2 14
6 Pest management 7 3 3 0 0 1
7 Weed management 4 2 2 0 0 0
8 Crop residue and mulching 19 14 5 6 1 8
9 Mechanization and technology 2 3 1 0 1 0
10 Landscape management 6 3 2 0 0 4

Total 174 & 81 73 24 7 56
#: one reference included the human health related aspect survival time of zoonotic pathogens; &: The total
number of studies reported here consisted of 163 unique publications, some of which considered more than one
crop husbandry or soil management practice.

Most meta-analysis studies examined the effects of specific practices on crop yield and
quality (81). For soil quality (73 studies), soil organic matter content was the main focus. For
environmental effects (56 studies), the focus was mainly on greenhouse gas emissions and
nitrate leaching. Resource use efficiency was examined mainly for irrigation and fertigation,
nutrient management and tillage. Only seven meta-analysis studies included economic
aspects (Table 1).

The meta-analysis studies reviewed covered a large number of experimental studies
and practices in different parts of the world. Each meta-analysis study was based on a
large number of underlying studies (on average more than 100; range 8 to 678). In order
to attain an impression of how often literature sources have been used in multiple meta-
analysis studies, we collected and examined the literature sources of the 55 meta analyses
on tillage. In most cases, references to the original studies were provided in the supporting
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information, but for seven out of the 55 meta-analyses studies no references were made
available. For the remaining 48 studies we collected in total 5465 references to original
studies. These were then manually checked on replicate use. Over two-third of these
references were used only once, 26% of these were used in two meta-analysis studies, 4%
were used three times, and 2% were used four times. Three references were used in seven
meta-analyses studies. We conclude that essentially all meta-analyses related to tillage
were based on unique studies, which replicated use of original studies is relatively small
(given the large number of meta-analyses related to tillage), and that the results of these
meta-analyses are largely independent on each other therefore. We did not check repeated
use of original studies for other categories of practices.

3.2. Crop Type and Crop Rotation

Selecting the proper crop varieties and crop rotations is often farm and region-specific
and key to successful crop farming. Crop rotation is the practice of planting different crops
sequentially on the same field, mainly to combat pest and weed pressures and improve
soil quality, and thereby to enhance crop yield sustainably. Crop rotations have been the
subject of many meta-analysis (Table 1), whereby almost equal attention has been given
to crop yield, soil quality, and environmental effects, but little attention to the economic
aspects and to resource use efficiency. Specific crop varieties and cultivars have not been
the subject of meta-analysis.

Effects of crop rotation, intercropping, and cover crops on crop yield, soil quality, and
the environment were positive in almost all studies (Figure 2). Pre-crops before wheat [27]
and especially legumes as pre-crops [28] had positive effects on wheat yield, soil quality,
and pesticide use [29]. However, effects of pre-crops depend on the nitrogen fertilization
rate: yield benefits are highest under low nitrogen fertilization [28]. Indeed, interactions
with other crop husbandry and soil management hold for many crop rotation effects;
nutrient management, irrigation, pest, disease, and weed management all have a large
impact on the effect size of crop rotations [30–32].

The simultaneous cultivation of two or more crop species within one field for at least
a part of the growing period (intercropping) also has positive effects on crop yield, but the
effect size strongly depends on the crop types and intercropping patterns [30,33]. Growing
cover or catch crops after the main crop reduces soil erosion and nitrate leaching and
contributes to soil carbon sequestration [34,35], but requires labor and the suppressive
effects on pest, diseases and weeds are not always positive. Growing mixtures of varieties
of cereals [36] or mixtures of grasses [37] has positive effects on yield (stability) and nitrogen
use efficiency.

Effects of crop rotations on GHG emission are variable [38]; this holds also for the
effects on cover crops on GHG emissions [39].

3.3. Nutrient Management

The 25 meta-analysis studies related to nutrient management have paid more or less
equal attention to crop yield and quality, soil quality, and environmental effects, but little
or no attention to economic effects and resource use efficiency (Table 1). Almost all studies
reported significant positive effect sizes of the studied nutrient management practices
relative to conventional practices (Figure 3).

A main focus has been the characterization of differences between fertilizer types,
especially between organic and mineral fertilizers [65,66,78,80] and between ‘conventional’
fertilizers and fertilizers with inhibitors [71,74], in relation to fertilizer effectiveness, soil
quality, and environmental impacts. Deriving the optimal nutrient application rates have
been the topic of many experimental studies in the past, and this has also been the subject
of several meta-analysis studies [64,68,70]. Better timing of fertilization and placement
of fertilizers gave positive effects on yields in most cases [75,84]. Soil liming increased
crop yields, especially when pH was low [67]. Positive effects of organic soil amendments
and mineral fertilizers on soil biological activity and microbial biomass were found, while
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the response of soil enzyme activity depended on enzyme type [68,70,80,81]. Nitrous
oxide emissions from cropland increase with nitrogen fertilization, but the increase can
be mitigated through better compliance with fertilizer recommendations, and the use
of nitrification inhibitors and biochar [72]. Slurry acidification, deep placement, and
urease inhibitors decreases ammonia emissions from slurries and urea fertilizers applied
to soil [76,86]. No meta-analysis studies related to the effectiveness of manure products
from different manure processing techniques [87]. Increasing grazing intensity of pastures
increased C, N, and P losses from these pastures ([83] as well as the transfer of zoonotic
pathogens to water courses [77]). Only few studies pointed at the effects of interactions
between categories of practices, including interactions between intercropping, tillage, and
fertilizers types in fruit yield [63], interactions between fertilization, and irrigation in fruit
yields [70,88] and in maize yields [70].
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3.4. Irrigation and Fertigation

A total of 18 meta-analysis studies related to irrigation and/or fertigation, mainly
examining the effects of irrigation methods and amounts on crop yield and water use
efficiency for different cropping systems and regions (Table 1). The relative strong focus
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on water use efficiency reflects that irrigation water is a scarce resource. Most studies
reported positive effect sizes of irrigation practices on crop yield and water use efficiency
relative to conventional irrigation practices (Figure 4). Effect sizes of water productivity of
optimal irrigation and deficit irrigation ranged from 20 to 80%. However, some studies also
reported negative effects of deficit irrigation practices relative to conventional irrigation
practices, possibly because irrigation was reduced too much in deficit irrigation treatments.
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[r]: [70].



Land 2022, 11, 255 11 of 31

Two meta-analysis studies examined the effects of irrigation method on emissions of
N2O [89,90], while one study examined flood irrigation practices on emissions of methane
from paddy rice [91]. Two studies examined effect of irrigation on soil respiration and soil
carbon contents [92,93]. Only two studies pointed at large effects of interactions between
irrigation and fertilization in water use efficiency and nutrient use efficiency [70,88].

3.5. Controlled Drainage

Effects of controlled drainage on the loss of water, nutrients, and greenhouse gases
were assessed through six meta-analysis studies (Table 1). Controlled drainage is defined
as the use of adjustable head structures to prevent discharge when the water table is lower
than the outlet elevation. In this way the loss of water and nutrients may be altered,
depending on the target. The quantitative effects of controlled drainage on reducing
drainage volumes, N losses, and methane emissions were relatively large (range 17 to 85%)
(Table 2). Generally, controlled drainage resulted in reduced drainage volumes, depending
on soil type [105]. Controlled drainage also reduced N-losses via drainage water to surface
water [106–108] and methane (CH4) emissions from peat lands [109]. No impact on yield
was found by [108]. Alternating wetting and drying cycles in paddy rice greatly decreased
CH4 emissions, but increased N2O emission; yet total greenhouse gas emissions decreased
through improved water management [110].

Table 2. Controlled drainage: effect sizes as reported in meta-analysis studies. See also Table S4.

Parameter Comparison of Treatments Main Results

Yield Drainage vs. none not significant [e]
Economic benefit Drainage vs. none 9 to 37 $ ha−1 yr−1 [c]

CH4 emission from
paddy rice field

Wetting and drying vs.
continuous flooding

−35% [f]
−29% for CH4+N2O (net GWP) [f]

CH4 emission from peat Drainage vs. none −84% [a]
Drainage volume Drainage vs. none −47% [b]; −17% to -85% [d]; -19% [e]

N-load Drainage vs. none −41% [c]; −18% to −85% [d]; −32% [e]
P-load Drainage vs. none −19% [e]

[a]: [109]; [b]: [105]; [c]: [106]; [d]: [107]; [e]: [108]; [f]: [110].

3.6. Tillage

Tillage refers to the preparation of the soil for growing crops, with or without incorpo-
ration of crop residues in the soil and/or weed control. In conventional or traditional tillage
(TT), the topsoil (usually the upper 15 to 25 cm) is turned and/or milled. Conservation
tillage (including no-tillage (NT) or reduced tillage (RT)) is the practice of minimizing soil
disturbance, whereby crop residues commonly remain on the soil surface to protect the soil,
while herbicides or precision mechanical weeding tools are used to control weeds. Tillage
practices are debated because of high fossil energy and labor costs, and their effects on soil
erosion, crop yield, soil organic carbon, and soil biodiversity. This debate is reflected in
the high number (55) of meta-analysis studies (Table 1). The focus of most meta-analysis
studies has been on soil quality (36), followed by crop yield effects (19) and environmental
effects (14). Two studies synthesized economic implications of different tillage practices
(Table 1). Of the total number of studies, 20 were global studies, 14 studies related to (parts
of) China, 5 to the Mediterranean, 3 to US, 1 to South Asia, 1 to Brazil, 1 to Europe and
none to Africa.

Overall, conservation tillage decreased crop yields, increased soil organic carbon
contents in the topsoil, increased soil biodiversity and the abundance of soil organisms,
and increased N2O emissions relative to conventional tillage, but the magnitude of the
differences depended on climate and the particular study (Figure 5). Yield penalties of
no-till depended on crop residue return and crop rotation and were larger in tropical than
temperate regions, and tended to decrease with an increase in the duration of no-till [22,111].
The South-Asian study was probably the most integrated one, as it examined effect sizes
of crop yield, water use, soil organic C sequestration, emissions of CO2, CH4, and N2O,
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and economic costs [112]. The cost of production was significantly lower under no-till than
under conventional tillage in all the selected crops, and the net economic returns increased
by 5 to 32%. Manley et al. [113] examined the economic cost of soil carbon sequestration
in the US through no-till. They found that the additional carbon sequestration of no-till
compared to conventional till was small and variable, and as a result, the net economic
benefit also varied widely.
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Figure 5. Overall response ratios reported in meta-analysis studies on tillage grouped per area of
interest (light green: agronomic; light blue: soil quality; light orange: resource use efficiency; light
brown: economic (no data); light yellow: environmental impacts). The management or treatment
comparison is indicated outside the y-axis and the variable to which the data refer are listed inside the
y-axis (abbreviations can be found in Table A1). Green bars indicate improvement, red bars indicate
worsening. See also Table S5. [a]: [112]; [b]: [61]; [c]: [123]; [d]: [123]; [e]: [124]; [f]: [125]; [g]: [124];
[h]: [120]; [i]: [115]; [j]: [118]; [k]: [119]; [l]: [126]; [m]: [127]; [n]: [63]; [o]: [128]; [p]: [129]; [q]: [130];
[r]: [131]; [s]: [132]; [t]: [133]; [u]: [49]; [v]: [114]; [w]: [134]; [x]: [53]; [y]: [135]; [z]: [122]; [aa]: [136];
[ab]: [137]; [ac]: [138]; [ad]: [139]; [ae]: [140]; [af]: [117]; [ag]: [74]; [ah]: [141]; [ai]: [142]; [aj]: [113];
[ak]: [143]; [al]: [116]; [am]: [111]; [an]: [22]; [ao]: [121]; [ap]: [144]; [aq]: [24]; [ar]: [145]; [as]: [146];
[at]: [147]; [au]: [148]; [av]: [149]; [aw]: [150]; [ax]: [151]; [ay]: [152]; [az]: [153].
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Several studies found positive effect sizes of no-till versus conventional till for number
of earthworms and for the diversity of the (micro) biological community (e.g., [114–116]).
No-till tended to increase the bulk density in the lower part of the topsoil (10–20 cm) and
the water infiltration rate significantly [117,118]. However, no-till combined with occasional
conventional tillage decreased soil bulk density compared to conventional tillage [119].
Effects of no-till on erosion are strongly affected by crop type and soil surface mulching; on
average no-till and conservation agriculture reduced erosion [120,121], but pesticides in
runoff tended to increase [122].

3.7. Pest Management

Pest management refers to the control of the number of undesirable organisms
(pathogens, pest organisms) below an acceptable threshold, which is often based on eco-
nomic principles. Methods of control can be crop rotation, chemical, biological, physi-
cal/mechanical, and/or genetic. There are often interactions with crop residue manage-
ment, tillage, nutrient management, irrigation, and landscape management [154]. We found
seven meta-analysis studies related to pest management (Table 1), of which three were in the
context of comparing organic versus conventional agriculture (Table 3). Muneret et al. [155]
found that organic farming experiences higher levels of pest infestation, but is able to match
or outperform conventional pest control practices against plant pathogens and animal pests.
Lesur-Dumoulin et al. [156] found that yields in organic horticulture were on average 10 to
32% lower than yields in conventional horticulture (Table 3). Garratt et al. [157] observed
that organic farming practices can increase natural enemy numbers and also pest responses.
Fertilization tends to increase insects and fungal plant pathogens [158,159]. Biofumigation
through incorporating Brassicaceae plants and crop residues, which release glucosinolates
and isothiocyanates, in soil reduced pest abundance and subsequently increased crop
yield by 30% [160]. Anaerobic soil disinfestation, through temporal soil sealing follow-
ing incorporation of labile organic carbon in the soil, is also effective against soil borne
pathogens [161]. Furthermore, it has been indicated that addition of organic amendments
and improving soil quality and biodiversity may result in fewer pests [162].

Table 3. Pest management: main effects as reported in meta-analysis studies. See also Table S6.

Parameter Management Practices Result

Yield Biofumigation Abs. diff.: 29% [a]
Yield Anaerobic soil disinfestation Abs. diff.: 30% [b]

Suppression of pathogens Anaerobic soil disinfestation Abs. diff.: 70% [b]
Yield Organic/conventional Ratio: 0.83 [c]

Disease severity response by
fungal plant pathogens Fertilized vs. unfertilized Increase 0.3 ± 0.1 [d]

Change in insect population Fertilization Increase/decrease 175/78 [e]
Change in pest population Organic/non-organic Increase/decrease 42/26 [f]

[a]: [160]; [b]: [161]; [c] [156]; [d]: [159]; [e]: [158]; [f]: [157].

3.8. Weed Management

Weed management refers to the control of the number of weed plants (especially
noxious weeds) to below an acceptable threshold, as weeds compete with the crop for light,
water and nutrients. Weed management often includes a number of methods, including
crop rotation/intercropping/cover crops, soil cultivation (weeding, hoeing), mulching
(crop residues or plastic covers), herbicides spraying, and burning. We found four meta-
analysis studies related to weed control (Table 2).

Verret et al. [163] found that intercropping with legume companion plants enhanced
weed control, generally without reducing the yield of the main crop (Table 4). Cover crops
can also decrease the incidence of weeds and may have other ecosystem services [164].
Crop rotation with different planting dates and crop diversification, combined with limited
soil disturbance, can disrupt weed-crop associations in addition to reducing yield loss
and rebuilding soil fertility [165–167]. Glyphosate is the most used chemical weed control
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agent [168], but is debated because of its effects on soil biodiversity and soil microbial
respiration [169] and human health [168].

Table 4. Weed management: main effects as reported in meta-analysis studies. See also Table S7.

Parameter Comparison of Treatments Result

Weed biomass
Legume intercropping vs.

conventional, both non-weeded
and weeded

−56%, −42% [a]

Weed density, biomass
Parasitic nematodes Cover crops vs. traditional tillage −10%, −5%,

+29% [b]
Number of studies with

increase soil organic matter
Reduced tillage vs.
traditional tillage +40 and −7 out of 78 studies [c]

Soil microbial respiration
Soil microbial biomass

Glyphosate vs. no use, <10 mg kg
Glyphosate vs. no use, >10 mg kg

logarithm of ratio:
0.064 ± 0.126, 0.04 ± 0.09 [d]

[a]: [163]; [b]: [53]; [c]: [170]; [d]: [169].

3.9. Crop Residue Management

Crop residues may be left on the soil surface, incorporated in the soil, burned or
removed from the field for use as livestock feed or biofuel. Evidently, there are trade-offs in
managing crop residues [171]. Conservation agriculture promotes the return of the crop
residues to the soil to increase soil quality and reduce soil erosion, often in combination
with zero-tillage or reduced tillage (Section 3.6). In this review, we distinguished crop
residue management as a separate management practice, because of the relatively large
number (19) of meta-analysis studies related to just crop residues (Table 1). Crop yield,
water and nitrogen use efficiency, emissions of N2O, and soil carbon sequestration were the
main topics of these studies.

In most cases, crop residue management and mulching increased crop yields, and
water and nitrogen use efficiencies by 0 to 50% (Figure 6). Mulching greatly reduced soil
evaporation and thereby provided a greater fraction of soil water to the crop, which boosted
crop yields. Crop residue return has a positive effect on soil carbon sequestration and soil
microbial activity, but N2O emissions increased as well. Nine out of the 19 meta-analysis
studies dealt with soil mulching effects in China, as it is a common practice in dry-land
farming in China (and India). One study examined the performance of biodegradable
plastics to determine the optimal type of mulching for maize, wheat, potato, and cot-
ton [172], and another [173] compared the performance of biodegradable films relative to
polyethylene films.

3.10. Mechanization

Mechanization has greatly increased labor productivity in modern crop production
systems, especially during the last century, and thereby has greatly contributed to farm-
scale enlargement and withdrawal of labor from agriculture [189]. However, mechanization
has also contributed to increased fossil fuel use and increased soil compaction [190]. During
the last decades, research emphasis has shifted to precision technology, controlled traffic,
and robotization. However, only two meta-analysis studies have touched mechanization,
precision technology and robotization (Table 1). Ampoorter et al. [191] concluded on the
basis of an analysis of 11 studies with 35 forest stands that mechanical harvesting of trees
has led to the compaction of the top 30 cm of forest soils, with the largest effects on the top
10 cm. One study was of a different nature: It examined the change in the ratio of maize
grain yield to labor input following the introduction of specific sustainable intensification
practices technologies in sub-Saharan countries [192]. No firm conclusions could be derived
because of lack of sufficient empirical studies.
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treatment comparison is indicated outside the y-axis and the variable to which the data refer are listed
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Land 2022, 11, 255 18 of 31

3.11. Landscape Management

Landscape management is a relatively new concept and has increased in importance
following the approval of the UN Sustainable Development Goals and the recognition
that the landscape is often the best scale for managing interactions, synergies, and trade-
offs for natural resource management [193–195]. Landscape management in the context of
sustainable food production may include hydrological measures, terracing, hedgerows, tree
lines, wind breaks, flower strips, corridors, and agroforestry, depending on the landscape,
environmental conditions, and stakeholders.

We identified six meta-analysis studies related to landscape management practices
(Tables 1 and 5). Three of these quantified the benefits of windbreaks on crop yields [196–198].
Three studies analyzed the effects of hedgerows and flower strips on pollination, pest
control, and crop yield [197–199], and two studies analyzed the effects of hedgerows on
runoff and erosion [198,200]. Both large positive effects and negative effects have been
reported (Table 5).

Table 5. Landscape management: summary of the results as reported by meta-analysis studies. See
also Table S9.

Parameter Management Practices Result

Crop yield increase Wind breaks

Spring wheat +8%, winter wheat +23%,
barley +25%, oats +6%, rye +19%, millet

+44%, corn +12%, alfalfa +99%, hay
+20% [a]

Crop yield
Hedgerows vs. control; next to hedge

until twice the height; beyond twice the
height until 20 times the height

−29%, +6% [b]

Soil organic matter in crop field Hedgerows vs. control 6% [b]
Interception of N, P, suspended solids from

soil surface flow
Hedgerows
Grass strips

69%, 67%, 91% [b]
67%, 73%, 90% [b]

Crop yield Hedge rows, flower strips vs. none ns [c]
Pest control Hedge rows, flower strips vs. none ns, −16% [c]
Pollination Hedge rows, flower strips vs. none ns [c]

Abundance, richness of pollinators in crop Flower strips vs. none ns, ns [d]

Pollinator species richness

Effect of agri-environment management,
type landscape:
Small, simple

Small, complex
Large, simple

Large, complex

Hedge’s d:
sign. [f]

ns [f]
sign. [f]
sign. [f]

Soil SOM, total N, total P, alkali N,
available P, readily available K,

total K
Hedge rows vs. none Hedge’s d sign. [e]

Hedge’s d ns [e]

[a]: [196]; [b]: [198]; [c]: [197]; [d]: [199]; [e]: [200]; [f]: [201].

4. Discussion
4.1. Main Findings

Most meta-analysis studies reported positive effects of alternative/improved practices
relative to conventional practices. The 32 studies related to crop type and crop rotation
clearly indicated the positive effects of crop rotations versus continuous cropping, legumes
in crop rotations versus no legumes in crop rotations, intercropping versus monocultures,
and cover cropping versus no cover cropping on crop yield and soil quality. Positive effects
of especially cover crops and perennial crops on erosion control and minimizing nitrate
leaching were also found, depending on, e.g., N fertilization.

The 25 studies related to nutrient management examined a diversity of nutrient
sources, and application methods, timing, and strategies. Most studies reported positive
effects of alternative/modified practices on crop yield and on minimizing environmental
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pollution, relative to conventional practices. Impacts of nutrient management strongly
depended on environmental conditions.

The 18 studies related to irrigation and fertigation focused on the method, timing
and volume of irrigation. Drip irrigation, deficit irrigation, and subsoil irrigation were all
effective in increasing water use efficiency compared to sprinkling irrigation and especially
flood irrigation. No economic assessments were made, and long-term impacts on soil
quality and environmental pollution were also not reported.

Six studies related to drainage, with a focus on controlled drainage in response to
variable rainfall patterns. Results indicate that controlled drainage increased farm income
when compared to no human-induced drainage.

A total of 55 meta-analysis studies were devoted to tillage practices. Reduced tillage
tended to reduce crop yields, but increased farm income (one study only), water use
efficiency, soil carbon contents, and emissions of nitrous oxide (N2O), which is a potent
greenhouse gas. Reduced tillage in combination with crop residue return (mulching) and
crop rotation had a slight positive effect on crop yield compared to conventional tillage.

Most of the seven studies related to pest management compared organic farming and
conventional farming management practices. In general, organic farming management
practices greatly decreased the use of pesticides, but lowered crop yields as well, depending
on crop type and rotation, N application rate, soil quality, and (soil) biodiversity.

The four studies related to weed management did not provide a coherent view.
Legume intercropping, cover cropping, and reduced tillage had positive effects on soil
carbon contents but the effects on weed and crop yield were not clear.

The 19 studies related to crop residue management and mulching in dryland and/or
irrigated conditions reported in general positive effects of mulching on crop yield and
water use efficiency, but also increases in N2O emissions, which are unwanted.

The six studies related to landscape management reported positive effects of wind-
breaks and hedgerows on crop yields and erosion control, but depending on site specific
conditions, and provided that the surface area of windbreaks and hedgerows is in balance
with the cropping area.

Evidently, most of the studies reported positive effects of the examined alterna-
tive/improved practices, relative to the common practice, on either crop yield, soil quality,
resource use efficiency, and the environment (decreased emissions). While global assess-
ment studies often paint rather pessimistic views on the state of food production, agricul-
ture, and the environment [10,16,202–204], it is clear that the 174 studies reviewed here
present a picture of optimism and hope. Indeed, there is large body of scientific/empirical
evidence that some specific practices are more effective than others, i.e., have positive effect
sizes relative to conventional practices (Figures 1–6; Tables 2–5), and that these positive
effects may contribute to the sustainability of crop and food production. However, large
steps still have to be made to integrate, optimize, and transfer the scientific findings of
meta-analysis in current practice. We note that only few meta-analysis studies examined
interactions between categories of practices, while essentially no meta-analysis study made
in-depth comparisons at cropping system level in which all ten categories of crop hus-
bandry and soil management practices had been optimized. Hence, there is need for further
integration and optimization of all ten crop husbandry and soil management practices,
and show the effectiveness of optimized practices through experimental studies and ul-
timately meta-analysis studies. There is also a need to transfer the positive messages of
meta-analysis studies to practice through demonstration, extension services and possibly
economic incentives. Cropping systems with all crop husbandry and soil management
practices optimized may be termed ‘soil-improving cropping systems’, to emphasize the
two-way interaction between soil and crop (see Section 4.3).

4.2. Uneven Coverage of Meta-Analysis Studies

Some crop husbandry and soil management practices have been studied extensively
and repeatedly, while some other practices have received little research attention (Table 1).



Land 2022, 11, 255 20 of 31

Further, most studies have examined the effects of practices on crop yield, soil quality and
environmental effects, while farm income (cost-benefit ratios) and resource use efficiency
have received less attention (and human health aspects not at all). Evidently, the coverage
of meta-analysis studies across practices and outcomes has been uneven; 75% of all studies
addressed four practices, in the order: soil tillage > crop type and crop rotations > nutrient
management > irrigation/fertigation (Table 1).

The large interest in soil tillage (55 meta-analyses studies) is certainly related to the
importance of soil conservation, and the envisaged reduction in soil erosion, net greenhouse
gas emissions, energy use, and labor through minimum or zero tillage. The effect-size of
tillage practices were relatively small (0–10%) for crop yield, modest (0–50%) for greenhouse
gas emissions and nutrient leaching, and relatively large and positive for soil quality,
especially for soil life (0–150%).

The relatively large attention for nutrient management and irrigation/fertigation is
related to the role of nutrients and water in boosting crop yields across the world (e.g., [205],
to the depletion of fresh water resources [206] and rock phosphorus resources [207,208], and
to the ecological impacts of excess nitrogen and phosphorus in the environment [16,209]).
Nutrient and irrigation water inputs often form a relatively large economic cost to farmers,
especially in developing countries, but this aspect has not been addressed.

We found only two meta-analyses related to mechanization and technology in agri-
culture (including forestry). However, several recent textbooks on precision technology
for cropping systems do address the possible economic and environmental impacts of
technological applications for sensing, field operations, and data handling, analysis, and
control (e.g., [210–212]. Indeed, mechanization has revolutionized crop production systems
during the past century but differently in different regions of the world. It has made
large-scale crop production systems possible, has led to an exodus of laborers, has con-
tributed to international trade of food and feed, and has indirectly affected essentially
all crop husbandry and soil management practices. Robotization goes a step further and
may revolutionize crop production systems again in the near future; it also offers the
opportunity the reduce the impact of heavy machines on soil compaction. Keller et al. [190]
estimated that the increase in weight of agricultural vehicles has caused an increase in soil
bulk density, and thereby decreased root growth, crop yields, and soil hydraulic properties.
They speculate that heavy machinery has contributed to yield stagnation and increased
flooding in Europe [190].

We recommend that future meta-analysis studies related to crop husbandry and
soil management practices should pay more attention to the socio-economic impacts of
practices including possible barriers and constraints for their implementation in practice.
Next, we recommend that more emphasis has to be given to interactions between multiple
crop husbandry and soil management practices, and to comparisons of region-specific
optimized packages of these practices. Further, Africa should not be neglected, as much of
the increased food demand (and food production) during the next few decades will occur
in Africa.

4.3. Towards High-Yielding, Soil-Improving, and Environmentally Sound Cropping Systems

The effect of specific crop yield defining, yield limiting, or yield reducing factors
is largest when all other crop yield defining, limiting, or reducing factors are optimal,
i.e., at a level where these do not affect crop yield [213]. This ‘law of the optimum’ may
have also influenced the outcomes of meta-analyses studies; optimality of all factors will
have enhanced the effect size of an alternative practice relative to the control practice, and
vice versa. We have no insight in the degree of optimality of yield factors in the studies
underlying the reviewed meta-analyses, but simply note here that there is often a gap
between actual and attainable yields, and between actual and attainable environmental
performances in practice. These gaps have to be narrowed to be able to produce adequate
amounts of food in a sustainable and region-specific way [214].
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The reviewed meta-analysis studies provide many suggestions for improved prac-
tices, but the optimization of all practices has to be done for specific regions, at farm level
and/or regional levels. The possible steps in the optimization process have been sum-
marized in Figure 7; it provides a roadmap for developing high-yielding, soil-improving
and environmental-sound cropping systems. Steps 1 and 2 deal with the analyses and
description of the current cropping systems, including its socio-economic and environ-
mental environments. Steps 3 to 12 then deal with the selection and optimization of the
10 main specific crop husbandry and soil management practices, while taking the results
of steps 1 and 2 into account. The actual process of optimization will be iterative, until
the most optimal combination of practices has been identified. Variants of this road-map
have been tested within the EU-funded project SoilCare, and results are presented in this
special issue.
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Figure 7. Towards sustainable cropping systems; a step-wise roadmap for developing high-yielding,
soil-improving and environmentally sound cropping systems. The steps (1 to 12) have to be taken in
a consecutive-iterative manner so as to find the optimal combination of practices.

4.4. Concluding Remarks

Crop husbandry and soil management practices are of critical importance for closing
yield gaps, raising farm income and soil quality, and minimizing the environmental impacts
of cropping systems in the world. We identified ten categories of crop husbandry and soil
management practices, based on the concept of crop yield defining, limiting and reducing
factors, and tried to quantify the effects of improved or modified practices relative to
conventional practices, by using results of meta-analysis studies.

Our review was based on the premise that meta-analysis papers and reviews syn-
thesize large numbers of experimental studies related to topical research questions and
important research findings. For example, closing yield gaps and decreasing environmental
impacts are topical, and thus we expected that in the course of the last 20 years when
meta-analysis studies blossomed, a wealth of synthesized information would become acces-
sible to help improve crop husbandry and soil management practices and thereby increase
crop yield and soil quality, and decrease the environmental impact of crop production.
The meta-analysis studies reviewed covered a huge number of experimental studies and
practices in different parts of the world, albeit uneven. The number of studies per category
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of practices seem to reflect topics of hot societal debates and/or studies with controversial
research findings. The number of meta-analysis studies per category of practices seem not
to reflect those topics and practices that have largest impacts on crop yields, soil quality,
and the environment.

Most meta-analysis studies reported positive effects of specific practices relative to
conventional practices, on crop yield, soil quality and the environment. However, most
meta-analysis studies examined single practices, with limited emphasis on interactions
between categories of practices, and on the optimization across practices. Further, the
coverage of studies was uneven, both in terms of practices, sustainability aspects and world
regions. Notably, economic aspects were rarely addressed.

Based on this review, we derived a roadmap with twelve steps for integrating and
optimization of all main crop husbandry and soil management practices, so as to develop
high-yielding, soil-improving, and environmentally-sound cropping systems. We call these
‘soil-improving cropping systems’ to emphasize that cropping systems must maintain and
improve soil quality to remain sustainable. This roadmap has been tested in practice and
some results are presented in other papers of this special issue. We also made a number
of recommendations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/land11020255/s1, Table S1: Cropping: effects on (a) crop yield
and quality, (b) soil quality, (c) economic effects, (d) resource use efficiency, (e) environmental effects,
and (f) human health impacts as reported in meta analysis studies; aoi = area of interest. Table S2:
Nutrient management: effects on (a) crop yield and quality, (b) soil quality, (c) economic effects,
(d) resource use efficiency, (e) environmental effects, and (f) human health impacts as reported in
meta analysis studies; aoi = area of interest. Table S3: Irrigation and fertigation: effects on (a) crop
yield and quality, (b) soil quality, (c) economic effects, (d) resource use efficiency, (e) environmental
effects, and (f) human health impacts as reported in meta analysis studies; aoi = area of interest.
DI = deficit irrigation, PRD = partial rootzone drying, FI = full irrigation, AI = aerated irrigation,
NAI non aerated irrigation, RDI = regulated deficit irrigation, CDI = conventional deficit irrigation,
CI = conventional irrigation, OI = over irrigation, UI = under irrigation, OPTI = optimal irrigation.
Table S4: Controlled drainage: effects on (a) crop yield and quality, (b) soil quality, (c) economic effects,
(d) resource use efficiency, (e) environmental effects, and (f) human health impacts as reported in meta
analysis studies; aoi = area of interest (see Table 1). Table S5: Soil tillage: effects on (a) crop yield and
quality, (b) soil quality, (c) economic effects, (d) resource use efficiency, (e) environmental effects, and
(f) human health impacts as reported in meta analysis studies; aoi = area of interest. NT = no tillage,
TT = traditional tillage, CA = conservation agriculture, RT = reduced tillage, MT = minimum tillage.
Table S6: Pest management: effects on (a) crop yield and quality, (b) soil quality, (c) economic effects,
(d) resource use efficiency, (e) environmental effects, and (f) human health impacts as reported in
meta analysis studies; aoi = area of interest. Table S7: Weed management: effects on (a) crop yield and
quality, (b) soil quality, (c) economic effects, (d) resource use efficiency, (e) environmental effects, and
(f) human health impacts as reported in meta analysis studies; aoi = area of interest. Table S8: Crop
residue management & mulching: effects on (a) crop yield and quality, (b) soil quality, (c) economic
effects, (d) resource use efficiency, (e) environmental effects, and (f) human health impacts as reported
in meta analysis studies; aoi = area of interest. Table S9: Landscape management: effects on (a) crop
yield and quality, (b) soil quality, (c) economic effects, (d) resource use efficiency, (e) environmental
effects, and (f) human health impacts as reported in meta analysis studies; aoi = area of interest.
Table S10: Explanation of the main columns in the accompanying Excel sheet.
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Appendix A

Table A1. List of abbreviations.

Abbreviation Meaning Abbreviation Meaning

abund. Abundance N2O Nitrous oxide (emission)
act. Activity NH3 Ammonia (emission)

AG activity Activity of α-1,4-glucosidase NO3 Nitrate (leaching)
AMF Arbuscular mycorrhizal fungi NOx Nitrogen oxides
aoi Area of interest NUE Nitrogen (nutrient) use efficiency

AWC Available water content OA Organic agriculture
Bact. Bacteria OX activity Oxidative decomposition
BD Dry bulk density P Phosphorus

BG activity Activity of β-1,4-glucosidase part. Particulate
BX activity Activity of β-1,4-xylosidase Penetr. R Penetration resistance

C Carbon PEO activity Peroxidase activity

C-acq. activity Hydrolytic C acquisition
enzymes PHO activity Phenol oxidase activity

CBH activity Activity of β-D-cellobiosidase PLFA Phospholipid fatty-acids
CH4 Methane PMN Potentially mineralizable N
CO2 Carbon dioxide emission PR Penetration resistance
col. Colonies Resp. Respiration

Dehydrog. Dehydrogenase activity richn. Richness
Dens. herb. Density herbivorous insects RO Runoff

diss. Dissolved RR Response ratio: RR = (Xt − Xc)/Xc
div. Diversity SDG Sustainable development goals

Econ. return Economic return seq. Sequestration
EEA Soil extracellular enzyme activity SICS Soil-improving cropping systems
EF Emission factor SMB Soil microbial biomass

EFad Additional N2O emission factor # SMC Soil microbial C
EOC Extractable organic carbon SOC Soil organic C
ET Evapotranspiration or water use Soil T Soil temperature

FNER Fertilizer N equivalent ratio SOM Soil organic matter
GHG Greenhouse gas SON Soil organic N
GWP Global warming potential $ SWA Soil water-stable aggregate

K Potassium TMA Total microbial activity
Ksat Hydraulic conductivity at saturation tot. Total
LER Land equivalent ratio TSS Total soluble solids
Lrv Root length density WP Water productivity

Max. econ. return Maximum economic return WS Water storage
MBC Microbial biomass C WSA Water stable aggregates
MBN Microbial biomass N WUE Water use efficiency
MWD Aggregate mean weight diameter Xc Effect (value) of control treatment

N Nitrogen Xt Effect (value) of specific treatment
#: which is the conservation tillage-induced change in N2O emission compared to conventional tillage when N
fertilizer is applied; $: CH4 and N2O emissions per unit yield.
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