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Abstract: Land subsidence is an ongoing problem negatively affecting Victoria County along the Gulf
Coast. Groundwater withdrawal and hydrocarbon extraction in the County are some of the known
factors behind this geological hazard. In this study, we have used geospatial analysis and a conceptual
model to evaluate land subsidence. A significant decline in the groundwater level in this area was
noted from 2006 to 2016. The decline in the water level correlates with the major drought events along
the Gulf Coast reported in earlier studies. These results are further corroborated by the emerging
hotspot analysis performed on the groundwater data. This analysis divides the study area into
intensifying, sporadic, and persistent hotspots in the northwest region and intensifying, persistent
coldspots in the southeast region of Victoria County. Hydrocarbon production data show high oil and
gas extraction from 2017 to 2021. There are a higher number of hydrocarbon production wells in the
central and southern regions of the County than elsewhere. The conceptual models relate these events
and suggest the existence of subsidence in the County, through which the water and hydrocarbon
reservoirs in the study area may lose their reservoir characteristics due to sediment compaction.

Keywords: land subsidence; groundwater; optimized hotspot; emerging hotspot; conceptual model

1. Introduction

The sinking of the ground surface in comparison with the surrounding land or the
sea level, termed land subsidence, is one of the geohazards affecting both continental
and coastal areas of many countries around the globe. Among many natural and anthro-
pogenic processes contributing to land subsidence are tectonic motion, sea-level rise, and
excessive withdrawal of natural resources such as coal, oil, or gas. The excessive with-
drawal of groundwater is one of the foremost reasons for land subsidence in Houston,
Texas [1], Mexico [2], Tunisia [3–5], Algeria [6], Thailand [7], Italy [8,9], and China [10].
According to some surveys, more than one-third of the world’s population lives in coastal
regions [11]. These coastal areas are more vulnerable than inland areas to natural and/or
anthropogenic hazards such as flooding, hurricanes, changes in the sea level, climate
change, dam construction, and overexploitation of mineral resources [12–16]. In addition
to the Houston Metroplex, the coastal part of Texas is also suffering from land subsidence,
thus exposing the coastal communities of this region to serious geological hazards [17].
Factors behind the subsidence in this area include excessive groundwater withdrawal,
hydrocarbon over-extraction, growth faults, and sediment compaction [1,18–20].

Geospatial analysis is a valuable technique that allows for solving complex, location-
oriented problems by integrating several spatial layers that are somehow related to the
problem. It also generates maps that help visualize the spatial variations with the ap-
plication of different spatial operators on the input layers, which ultimately assist in
improving problem management and decision-making. Spatial analysis has been used in
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many ways in several fields, such as soil sciences [21], groundwater studies [22,23], medical
sciences [24–26], transportation [27,28], e-commerce, and business [29,30]. The emerging
hotspot analysis is an innovative spatial analysis tool that can detect spatial-temporal trends
and varying patterns of different phases in each period; it has been progressively utilized
in multiple scientific disciplines [31–33]. This geospatial technique uses a combination
of two statistical measures, the Getis-Ord Gi statistic to identify the location and degree
of spatial clustering and the Mann–Kendall trend test to evaluate temporal trends across
the time series [34]. The conceptual model is an illustrative image of the groundwater
system in terms of hydrogeologic elements, system boundaries that include inputs and
outputs varying with time, and hydrodynamic and transport properties, as well as spatial
variability [35,36].

Land subsidence is an ongoing problem negatively affecting Victoria County along
the Gulf Coast. A recent publication on subsidence in the Texas Coastal Bend reported
an average subsidence rate of −7.55 to 5.51 mm/yr [37]. The study used interferometric
synthetic aperture radar (InSAR) data from the Sentinel-1 satellite from October 2016 to
July 2019 and revealed the highest subsidence of −15 mm/yr in the south of Victoria [37].
Groundwater withdrawal and hydrocarbon extraction in the County are possible causes of
this subsidence [37].

This research work integrated multiple datasets, i.e., groundwater, hydrocarbon pro-
duction, and conceptual models, to investigate and quantify the role of these factors in
land subsidence in Victoria County. Knowing the factors involved in subsidence, and their
role in the damage caused to buildings and other infrastructure, will help mitigate future
damage and help us plan possible ways to overcome and minimize risk in this region.

2. Materials and Methods
2.1. Materials

Victoria County is situated on the coastal plains of Texas, around 50 miles from the
Gulf of Mexico and 20 miles from the adjacent bay waters. According to the Web Soil
Survey of the United States Department of Agriculture, the topography of this area is flat,
with an average elevation of 95 feet above mean sea level. The coastal region is located
on a passive depositional margin, with the geologic formations primarily composed of
alternating sand, clay layers, and silt, ranging in age from the Miocene to the Holocene [38].
Quaternary deposits and the Neogene sedimentary rocks dominate the study area. Victoria
County is drained by a hydrological network in a northwest–southeast direction (Figure 1).

The hydrogeological setup of the study area is dominated by the Gulf Coast aquifer
system, comprised of three main units: the Jasper, the Evangeline, and the Chicot aquifers
corresponding in age to the Miocene, Pliocene, and Pleistocene/Holocene, respectively
(Figure 2). These aquifers are thick, unconfined, or semi-confined and dip toward the Gulf
of Mexico [39]. The Guadalupe River passes through Victoria County, and Green Lake is
situated in the southern part of this County. The changes in early sea levels, depositional
volumes, and sources led to disjointed sands, gravel, silt, and clay beds. The subsidence of
the depositional basin and growing land surfaces produced many of the Gulf Coast aquifer
units that increase in the thickness downdip. This variation, along with growth faults in
this area, factored into the heterogeneity currently seen in various strata of the Gulf Coast
aquifer system [40].

The multiple datasets used in this study included groundwater well data, hydrocarbon
production, and conceptual models. Groundwater data for 95 wells were obtained from the
Texas Water Development Board (TWBD) [41]. Oil and gas production data were obtained
from the Railroad Commission of Texas, while the oil and gas data for 1932 wells were
obtained from the Homeland Infrastructure Foundation Level [42].
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Figure 1. Map showing the surface geology, hydrological network, and the trend of growth faults 

in and around the study area. 
Figure 1. Map showing the surface geology, hydrological network, and the trend of growth faults in
and around the study area.
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Figure 2. Stratigraphic succession and the hydrostratigraphic divisions for corresponding strati-
graphic units (modified from [40]).

2.2. Methods

The methodology adopted for this study is shown in Figure 3. This study used
advanced geospatial analysis tools on groundwater well data, locations of oil and gas
wells, and production data. This work generated optimized and emerging hotspots to find
statically significant clusters, detailed below.

The groundwater data for Victoria County were used to produce potentiometric maps.
These maps are a valuable tool used by hydrogeologists to deduce useful information such
as the groundwater flow direction and hydraulic conductivity variations [43–45]. After
initial data processing, the potentiometric surface maps were prepared using the inverse
distance weighting (IDW) interpolation method in ArcGIS Pro to illustrate the groundwater
level variations in the County from 2000 to 2021. The IDW is built on the concept of Tobler’s
first law, which states that everything is associated with everything else, but adjacent things
are more interrelated than distinct things [17,44]. The functionality of IDW is based on the
formula presented in Equation (1) [45].

V =
∑n

i=1 vi
1

dp
i

∑N
i=1

1
dp

i

(1)

where d is the distance between prediction and measurement points, vi is the measured
parameter value, and p is a power parameter.

Clustering techniques in data mining, such as density maps (point density and kernel
density), highlight the clusters in a given set of data without defining if the clusters
are statistically significant [46,47]. Clustering of hydrocarbon data was performed using
hotspot analysis, which identifies the locations of statistically significant hotspots (the
areas of high activity) and coldspots (the areas of lower activity) in the data by producing
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z-score and p-values [48]. The Getis-Ord Gi* statistic [49,50] used in the process is given in
Equations (2)–(4):

G∗
i =

∑n
j=1 wi,jxj − X− ∑n

j=1 wi,j

S

√
[∑n

j=1 w2
i,j−(∑n

j=1 wi,j)
2 ]

n−1

(2)

where xj represents the attribute value of feature j, wi,j is the spatial feature i and j, n is
equal to the total number of features, and:

X− =
∑n

j=1 xj

n
(3)

S =

√
∑n

j=1 x2
j

n
− (X−)2 (4)

The Gi* statistic is a z-score so no supplementary calculations are needed. This tool
makes a new output feature class with a z-score, p-value, and confidence level bin for every
feature in the input feature class. The groundwater data also use the emerging hotspot
analysis, which identifies the trends in the data over a timespan. The space-time cube, a
mandatory component required for running an emerging hotspot analysis, is produced
using the groundwater well data. This cube is a descriptive statistic contained in bins, with
the base of every bin representing a geographical location with x and y values and the
height representing time with a z value [51]. A neighborhood distance of 8 km was used in
creating the cube.
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Additionally, optimized hotspot analysis was performed on the hydrocarbon well
data to find the areas of high oil and gas pumping activity. This clustering technique
is an extension of the Getis-Ord Gi* hotspot analysis, which finds the spatial clusters of
statistically significant higher values (hotspots) or lower values (coldspots) as compared
to the surrounding locations in an area using the parameters derived from characteristics
of the input data [52]. Many researchers have increasingly used this statistical method in
many fields [53–58].

Based on the data available and the results obtained, two groundwater conceptual
models, Model-1 and Model-2, were proposed for the Gulf Coast aquifer system in Vic-
toria County. Such conceptual models were designed based on knowledge of the study
area. Development of these models for an aquifer requires the rigorous and meticulous
integration of data, information, and reports relating to aquifers within a study area and
groundwater movements [59,60]. The choice of the geological context and other features
in the development of the conceptual model is critical in determining the consequences
and may have noteworthy monetary results for areas scheduled for development [61]. The
rudimentary components adopted for developing these conceptual models are physical and
appropriate boundary conditions, hydrodynamic properties, and surface and subsurface
water circulation passages. The conceptual models subsequently developed have charac-
teristics such as recharge/discharge zones, groundwater levels, and connection between
sediment compaction, subsidence, and withdrawal points.

3. Results
3.1. Potentiometric Surface Maps

Potentiometric maps of Victoria County showed that the annual groundwater level
from 2000 to 2021 had a common trend of a high potentiometric surface in the northwest
of the County, decreasing toward the southeast. This trend correlates with the flow of
the rivers, including the Guadalupe River, running through the County. The deepest
groundwater level of~28–32 m was observed over a wide area in the northwest of the
County from 2000 to 2003 (Figure 4a–d). However, it was not constant over time and
the water level increased gradually from ~22 m to 20 m during the period of 2004–2009
(Figure 4e–j). The water level went down again from ~22 m to 26 m during the period of
2010–2015 (Figure 4k–p). Finally, the water level rose steadily from ~26 m to 20 m until
2021 (Figure 4q–v). The southeast region of this County had the shallowest groundwater
level, much lower than that of the northwest region, but with a notable rise in groundwater
from ~8 m to 4 m over the period from 2013 to 2021 (Figure 4n–v).

3.2. Emerging Hotspot Analysis

The emerging hotspot analysis showed two new, two intensifying, three sporadic, and
four persistent hotspots in the northwest region of the study area (Figure 5). The two new
hotspots were the statistically significant hotspots in the area, where groundwater level
decline was observed only during the most recent times. The two intensifying hotspots
showed that the groundwater level decline increased over time. The three sporadic hotspots
represented transition in the groundwater level making these on-again and off-again
hotspots. The four persistent hotspots had deep groundwater levels over time. There
were two consecutive, one sporadic, and one oscillating coldspot in the central region
of the County. The southwest part of the County showed five persistent coldspots and
two intensifying coldspots, indicating that the groundwater level was shallow and getting
shallower with time (Figure 5).
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(continued). (u–v) Potentiometric surface maps showing the groundwater decline from 2020 to 2021. 
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drop was not that intense. The overall pattern of the groundwater level in the County was 
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Figure 4. (a–e) Potentiometric surface maps showing the groundwater decline from 2000 to 2004.
(continued). (f–j) Potentiometric surface maps showing the groundwater decline from 2005 to 2009.
(continued). (k–o) Potentiometric surface maps showing the groundwater decline from 2010 to 2014.
(continued). (p–t) Potentiometric surface maps showing the groundwater decline from 2015 to 2019.
(continued). (u–v) Potentiometric surface maps showing the groundwater decline from 2020 to 2021.

The 3D space-time cube derived from the groundwater well data using ArcGIS Pro
was translated into a graph showing the average water level (Figure 6) for Victoria County
from 2000 to 2021. The deepest groundwater level of~17m was observed in 2000. However,
the groundwater level became drastically shallower up to 2006. Afterward, it gradually
dropped until 2010. A groundwater level drop was observed again during 2016, but this
drop was not that intense. The overall pattern of the groundwater level in the County was
an increase over the past 21 years with a prolonged decline effect from 2006 to 2015.
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Figure 5. Results of emerging hotspot analysis for the groundwater transition over the study area
from 2000 to 2021. Blank areas show the water well data were insufficient for the analysis.
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3.3. Optimized Hotspot Analysis

The optimized hotspot analysis revealed three clusters in the study area: Cluster-1,
Cluster-2, and Cluster-3 (Figure 7). Cluster-1 shows the high concentration of oil wells in
the western part of the County. Cluster-2 and Cluster-3 delineate the high concentration
of wells in the southern part of the County. The annual oil and gas production data
were plotted to produce a time-series graph (Figure 8) that shows high extraction of oil
(~1,900,000 BBL) and gas (~1,300,000 MCF) from 2017 to 2021 marked by the red rectangle
in Figure 8.
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Figure 7. Optimized hotspot analysis, depicting the high concentration (cluster-1, cluster-2, and
cluster-3) of oil and gas wells over the County.
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Figure 8. (A). Annual time-series graph of annual oil production in Victoria County over 21 years.
The red rectangle depicts high extraction of oil from 2017 to 2021. (B). Annual time-series graph of
gas production data in Victoria County over 21 years. The red rectangle shows the high extraction of
gas from 2017 to 2021.

4. Conceptual Models

Conceptual Model-1 is our optimum consideration of the natural groundwater flow
system in the study area (Figure 9). It represents how recharge, discharge, groundwater,
surface water communications, and cross-formational flow take place inside the aquifers
and within the confining units of a flow system. The impact of the overexploitation of fluid
resources such as groundwater, gas, and oil is shown in the cross-section of the conceptual
model in the northwest–southeast direction. The agricultural, industrial, and domestic
groundwater usage increased rapidly during the 20th century in Gulf Coast counties.
Groundwater is withdrawn from the three aquifers in semi-confined and confined portions
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of the Gulf Coast aquifer system and oil is withdrawn from deep boreholes (northern
part) and offshore (Gulf of Mexico). The hydraulic pressure on the sediments decreases,
causing the de-watered sediments to compact due to the weight of the overlying sediments.
The clays compact due to the reduced internal pressure in the clays and the overburden,
resulting in land-surface subsidence. If pumping rates are low, this will have little effect
because sand and clay layers are de-watered first and these compact only slightly. The
variability of climatic parameters, climate change, and the tectonic effect (normal faults)
may have important roles in affecting land subsidence in the Victoria area.
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Figure 9. Conceptual Model-1 shows the connection between the surface water and groundwater, 

and the impact of overexploitation. Figure 9. Conceptual Model-1 shows the connection between the surface water and groundwater,
and the impact of overexploitation.

Conceptual Model-2 demonstrates that if fluid extraction continues, groundwater will
start to be drawn from less transmissive clay levels (Figure 10). While sand grains are
round, clay particles are sheet-like. As they become de-watered and compacted, they align
perpendicular to the load applied by overlying sediments. As clay particles line up in the
same direction, the permeability, porosity, and thickness of the clay layer decrease. The
swelling and drying of clays in the study area can disturb its fluid hydrodynamics and
cause serious problems such as piezometric anomalies. The reservoir can lose its reservoir
characteristics due the sediment compaction, which may present an increasing challenge
over time in the study area.
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Figure 10. Conceptual Model-2 reveals that the overexploitation of oil/gas is causing sediment
compaction that leads to land subsidence and risk of flooding/erosion.

5. Discussion
5.1. Groundwater Change

Land subsidence due to water level decline has been occurring in many parts of the
world. One such region is along the Gulf Coast of Texas, covering Victoria County and the
Houston–Galveston area [1,62]. In Victoria County, groundwater is the key water source
for households, agriculture, and industry. In potentiometric surface maps, the variation of
the groundwater level in the County was initially observed to be low, but this decline in
groundwater level changed. A time-series graph is beneficial for determining a change in
the groundwater level. Groundwater level decline that was observed over the period of
2006–2015, both in the potentiometric maps and the time-series graph, could have affected
the stability of the area. A drought period was reported earlier during 2005–2006 and
2007–2009, and the most prolonged drought was observed during 2010–2015 along the
Gulf Coast [63]. During the 2005–2006 drought event, the aquifer storage was as low as
−14 km3, while during the 2007–2009 drought event, the lowest storage was assessed to be
−7.4 km3 [63]. The most important groundwater decline happened during the 2010–2015
drought period, with a water volume change of −3.38 ± 0.43 km3·yr−1. The aquifer storage
reached a very low level in this time period due to the low precipitation and high pumping
rate [63].

Withdrawal of groundwater is one of the reasons for land subsidence due to the
resulting compaction of aquifer systems [64]. The two types of ground motion that typically
happen in such susceptible aquifer systems are (1) deformation and (2) ground failures.
Deformation caused by vertical and horizontal movement of the land surface is the leading
risk related to fluid extraction. Ground failures, such as earth fissures and reactivation
of surface/subsurface faults (growth faults), can be associated with area vertical ground
displacement [65]. Therefore, a drainage model with MODFLOW simulation competencies
will be valuable for regional simulations of groundwater flow, aquifer system compaction,
and land subsidence in this study area.

The emerging hotspot analysis performed in this study showed that the groundwater
level transition is in the northern part of the County and around Victoria City. The overall
trend of the groundwater level in the County was an increase, but the major groundwater
decline (2006–2015) may be a contributing factor to this area’s subsidence. In further studies,
3D finite element numerical modeling can be applied to predict the groundwater level and
land subsidence in future pumping situations [66].

5.2. Hydrocarbon Extraction

Hydrocarbon withdrawal is another contributing factor to land subsidence. Major
subsidence (110 mm/year) in the Goose Creek Oil Field, Houston, has been reported as a
result of oil/gas pumping [67]. The high hydrocarbon production in this area may induce
fault reactivation [68,69] and reservoir compaction [70]. Such reservoir compaction due to
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production can substantially influence the surface/subsurface subsidence [71]. Detailed
studies and modeling, integrated with other mechanisms, are needed to precisely assess
the interaction between these activities and their combined contributions to subsidence
in this area. In this study, the results of the optimized hotspot analysis performed on the
hydrocarbon wells of Victoria County showed a higher number of oil/gas wells in the
central and southern parts of the study area than elsewhere. In the annual time-series
graph, over the period of 2000–2021, high hydrocarbon extraction was noted during 2017–
2021, which could contribute to the land subsidence in this region. The high hydrocarbon
production reduces the pressure of reservoirs in the study area, and pressure changes affect
the original stress field through poroelastic coupling [72,73]. The rate of compaction at
the reservoir level and subsidence are mutually dependent. Forward modeling can be
used if the amount of the reservoir compaction is known, or this can be predicted within
an acceptable confidence level, along with when the existing or future subsidence must
be assessed. Numerous authors have investigated subsidence triggered by hydrocarbon
extraction and proposed approaches for subsidence prediction [74].

6. Conclusions and Recommendations

In this study, we used geospatial analysis and conceptual models to evaluate and
correlate the groundwater level and oil and gas extraction with the land subsidence in
Victoria County. The groundwater level has become shallower in the northwest region
(32–22 m) and in the southeast region (14–6 m), with notable decline, as perceived from
the potentiometric surface maps. The annual time-series graph further corroborated the
results of potentiometric surface maps. It showed that the overall groundwater level has
become shallower in the past 21 years, with a notable decline period (2006–2016) due to a
drought that may have contributed to subsidence in the study area. The emerging hotspot
analysis showed new, intensifying, sporadic, and persistent hotspots in the northwest
region, and persistent and intensifying coldspots in the southeast region. The optimized
hotspot analysis then revealed a high concentration of oil and gas wells in the southern
region of the County and a high level of extraction of oil (1,900,000 BBL in 2018) and gas
(1,300,000 MCF). The conceptual models correlated the water, hydrocarbon extraction, and
sediment compaction with subsidence and suggested that the study area’s aquifers may
permanently lose their characteristics.

To avoid this phenomenon, we suggest:

• controlling the overexploitation of water and pumping of oil and gas;
• minimizing hydrocarbon exploitation or use injection to avoid more subsidence of

land and saline intrusion of aquifers;
• conducting a study of the vulnerabilities of coastal aquifers;
• better planning for the management, development, and sustainability of these coastal

aquifers;
• simulation modeling of these aquifers using MODFLOW and computational methods.
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