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Abstract: The increase in soil salinity due to human-induced processes poses a severe threat to
agriculture on a regional and global scale. Soil salinization caused by natural and anthropogenic
factors is a vital environmental hazard, specifically in semi-arid and arid regions of the world. The
detection and monitoring of salinity are critical to the sustainability of soil management. The current
study compared the performance of machine learning models to produce spatial maps of electrical
conductivity (EC) (as a proxy for salinity) in an alluvial irrigation plain. The current study area is
located in the Isparta province (100 km2), land cover is mainly irrigated, and the dominant soils are
Inceptisols, Mollisols, and Vertisols. Digital soil mapping (DSM) methodology was used, referring to
the increase in the digital representation of soil formation factors with today’s technological advances.
Plant and soil-based indices produced from the Sentinel 2A satellite image, topographic indices
derived from the digital elevation model (DEM), and CORINE land cover classes were used as
predictors. The support vector regression (SVR) algorithm revealed the best relationships in the study
area. Considering the estimates of different algorithms, according to the FAO salinity classification,
a minimum of 12.36% and a maximum of 20.19% of the study area can be classified as slightly saline.
The low spatial dependence between model residuals limited the success of hybrid methods. The
land irrigated cover played a significant role in predicting the current level of EC.

Keywords: soil salinization; digital soil mapping; CORINE; human-induced salinization; irrigation-
associated salinity; agricultural regions; sentinel 2 MSI; environmental covariates; remote sensing;
Mediterranean region

1. Introduction

The increase in soil salinity seriously threatens agriculture on a regional and global
scale [1]. Soil salinization caused by natural and anthropogenic factors is an essential
environmental hazard, especially in arid and semi-arid regions of the world. There is
a consensus on the need for the most accurate determination and monitoring of soil infor-
mation to support sustainable development within the goals specified by the Sustainable
Development Goals (SDGs) [2].

In soil salinization, a distinction is made between the primary (natural) and secondary
(human-induced) processes [3–5]. In the primary formation process, salinization is asso-
ciated with natural climatic conditions such as a lack of precipitation and an excess of
evapotranspiration in semi-arid and arid climates and with the parent geological mate-
rial [6,7]. The secondary process is caused by human activities such as irrigation and poor
drainage conditions using low-quality irrigation waters [8]. The characteristic cause of soil
salinization relies on the local soil properties of the area and the topography that plays
an active role in groundwater transport processes. These factors vary with climate, land
cover, different agricultural activities, different irrigation methods, and related soil and
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water management practices [9,10]. As a result of irresponsible irrigation and low-quality
irrigation waters, capillarity, the soil dynamic system, is prone to increasing soil salinity on
the soil surface in arid and semi-arid regions [5].

The rise in the frequency of adverse climatic conditions, such as higher temperatures
in summer and changes in precipitation patterns, increased irrigated land to meet the food
demand, especially in Mediterranean regions with arid and semi-arid climates [11,12]. The
combination of the high water-consuming conventional irrigation methods and inadequate
drainage systems will potentially increase soil salinity problems in many arable lands with
climate change on a global scale [13–15].

Irrigation in arid and semi-arid areas is crucial to sustaining agricultural produc-
tion [16]. In the irrigated areas of semi-arid regions, monitoring soil salinity [17,18] is
extremely important to avoid loss of yields and increase degradation processes that can
turn fertile land into badlands in the short term. The soil science community have been
interested in producing the most accurate spatial information on the current state of soil
salinity to warn policy stakeholders that in the near future, irrigated agricultural activities
might suffer from salinity and therefore not be so adapted for food production. At a global
scale, studies have been carried out to guide the management of saline soils better, e.g., the
FAO’s new GSAS (Global Map of Salt-Affected Soils) map v1.0 is a forefront partnership
to foster research on salinity, identifying salt-affected areas and where sustainable soil
management practices should be adopted [19].

The fact that spatial representation in a digital form of the soil-forming factors has
become probable makes the DSM framework effectively usable [20]. The relationship of
socio-ecological differences with irrigation and using land cover classes as a covariate [21]
is being investigated [22]. Furthermore, multispectral satellite images with higher spatial
resolution are used for cost-effective detection and monitoring of the current state of
soil salinity [23]. It is important to know two distinctions regarding remote sensing (RS)
products. Firstly, direct methods can be used in studies to detect and monitor the primary
salinization process based on the reflective properties of salts and crusts on the bare
soil surface [24]. Secondly, areas with and without salt on the bare soil surface can be
discriminated due to the high reflectivity of the salt-covered regions in the visible region of
the electromagnetic spectrum.

However, direct methods are less useful in agricultural areas due to different land
cover types. Therefore, the focus is on indirect RS methods for soil salinity monitoring [5].
Indirect methods such as canopy spectral reflectance can often determine root zone salinity
based on plant growth and health. The visible or infrared spectra reflection usually differs
for healthy and salt-stressed plants. Regression-based machine learning models can be
utilized to predict soil salinity levels from remote sensing imagery if a relationship can be
established between the soil surface EC and the spectral response [5].

Land use/land cover (LULC) maps are critical geospatial data decision makers needed
to monitor environmental change at a regional or global scale and quantify the risk to
sustainable livelihoods and development [25]. These data can be used as environmental
variables in detecting and monitoring the current state of dynamic soil properties in DSM
processes [3,22,26]. Land cover/use information can represent biotic and anthropogenic
activities and the driving forces that are effective in the formation of salinization in the
soil due to a secondary (human-induced) process [3]. Integrated with remote sensing land
cover classes, DSM can provide valuable insights to produce maps of soil salinity and
track changes in soil salinity over time [27]. Land cover data must be known over a long
period to be used as an environmental variable. The availability of spatial data based on
such a long observation reduces the potential to underestimate the spatial variability of the
salinity under the categories [28].

Accurate and reliable case-based DSM mapping studies have been performed using
various combinations of soil formation factors for a quarter of a century, using multiple
machine learning techniques within the framework of DSM [29]. Maleki et al. [30] used
a random forest (RF) model within the framework of DSM to examine the spatial–temporal
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change processes in soil salinity and alkalinity. They determined groundwater properties,
urban structure, and distance from the road as the most influential environmental variables.
Naimi et al. [31] compared the effectiveness of different machine learning algorithms and
environmental covariate scenarios to predict spatial soil salinity by deriving information
from RS data, DEM, and proximal sensing (PS). They reported the best estimation accuracy
for the RF model in the scenario using all environmental variables. In addition, they
said that topography as an environmental variable is of great importance in their study.
Furthermore, Zhao et al. [32] reported the successful integration of soil properties, such as
exchangeable cations and cation exchange capacity [33] as well as soil particle fractions [34],
which may be related to electrical conductivity at different depths, into digital soil mapping
methodology by utilizing proximal sensing techniques.

Hybrid methods can significantly improve modelling results when model residuals
show moderate or spatial solid autocorrelation [35]. Yang et al. [36] compared the multiple
linear regression (MLR) model and the regression-kriging approach and reported that the
regression-kriging method, which considers the model residuals, produces more accurate
model results.

In DSM studies, algorithms that have the capacity to capture linear and non-linear
relationships in the study area are used comparatively, and the maps they produce are
evaluated in the experience of soil scientists [37].

FAO has developed guidelines, and EC can be used as a proxy for salinity [3]. The
science of digital soil mapping is in the development stage in Türkiye, where the current
study is located [38,39]. Studies are rare on the prediction of salinity in areas where irrigated
agriculture has been conducted for many years. However, the use of open-source CORINE
data as environmental variables in EC estimation was not investigated in the country and
Mediterranean biogeography of the study area. Specifically, the current study was carried
out to spatially estimate salinity development in an alluvial plain where there is irrigated
farming. We aimed (i) to determine the value of CORINE land cover class data, which
have been open access for many years, in estimating anthropogenic salinity development,
and (ii) to compare the performance of algorithms (random forests and support vector
regression) based on different mathematical bases to explore the relationship between
soil-forming factors and EC measurements. (iii) In line with the GIS analysis to be carried
out on the obtained digital maps, we also aimed to evaluate the areas with high salinity
risk at the plain scale for spatial decision support.

2. Materials and Methods
2.1. Study Area

The current study area was in the Mediterranean region in the west of Türkiye. This
covers an area of about 100 km2 located between the coordinates of the World Geodetic
System (WGS), bounded by latitudes 37◦50′30′ ′ and 37◦58′00′ ′ N, and longitudes 30◦35′00′ ′

and 30◦46′00′ ′ E (Figure 1). According to the Java Newhall simulation model (NSM),
the study area has a xeric soil moisture regime and a mesic soil temperature regime
(Supplementary Material Figure S1) [40]. The Java Newhall simulation model takes the
weather stations’ monthly average temperature and precipitation data and simulates the
humidity profile’s behavior [40]. Isparta Atabey plain is arable land that has been irrigated
for half a century [41]. The climate type of the region is hot-summer Mediterranean (Csa)
according to the Köppen–Geiger climate classification system, with an average annual
temperature of 12.80 ◦C [42]. The mean annual rainfall and evaporation are 448.83 mm
and 737.18 mm, respectively. In the study area, the central and southwest clayey soil
(associated with USDA soil taxonomy Vertic Haploxerolls and Udic Haploxererts) with
aged alluvial deposits are characterized by its texture. The young alluvial bed region of the
study area is characterized by a partially loamy and coarser soil texture (associated with
USDA soil taxonomy Typic Calcixerepts). Colluvial foothills to the east of the study area
are characterized by a coarser texture [43].
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According to the Newhall simulation model, an acceleration arising from soil capillar-
ity for salinity is expected when unsuitable irrigation activities and low drainage conditions
are combined in the soil’s moisture section during the irrigation period from mid-June to
mid-August (Supplementary Material Figure S1).

The distribution of CORINE land cover classes (CLCC) of the current study area is
given in Figure 1. Approximately 84% of the study area is arable land [44]. In this area,
the crop pattern includes apple, cherry, wheat, sugar beet, walnut, and rose. The current
study area consists mainly of Holocene-aged deposits. This structure is comprised of
Mesozoic–Tertiary limestone surrounding the plain. Alluvial, colluvial, and fluvial deposits
formed on this parent material. These coarse deposits are arranged on limestone hillslopes,
surrounded by fine-structured deposits in the middle of the Atabey plain in the form of
a closed bowl. In the context of geomorphology, the alluvial plain of Atabey is affected by
the sediments of the Akçay River [45].

2.2. Soil Sampling and Analysis

The surface soil samples were collected from the 0–30 cm depth interval, performed
using a stratified (soil series) random sampling method [46]. GPS Magellan eXplorist XL
recorded coordinates for all sampling locations. Ninety-one soil samples were collected
in November 2019, and EC (µS cm−1) was measured by a conductivity meter (Orion Star
A112; Thermo Fisher Scientific, Waltham, MA, USA) in saturated paste [47]. In addition,
the soil saturation percentage (SSP) value was recorded as the amount of water added
divided by the soil weight. Soil texture analysis was carried out in the laboratory via the
Bouyoucos hydrometer method, and clay (<0.002 mm), silt (0.002–0.05 mm), and sand
(0.05–2 mm) were determined as percentages [48]. Cation exchange capacity (CEC) was
measured with reference to the sodium acetate method [49,50]. Soil sampling locations and



Land 2022, 11, 2148 5 of 21

spatial distribution of training set (green circles) and validation set (blue circles) are shown
on CORINE land cover class 2018 data in Figure 1.

2.3. Environmental Covariates

The current study’s topographic variables [51] were derived from DEM, soil and
vegetation-based indices generated from Sentinel 2A-MSI satellite images, representing
organisms, and parent material [52]. CORINE 2018 land cover classes [44], which can play
a dominant role in explaining the variability of human impact at the regional scale in the
EC, were used as environmental covariates. The DSM approach is based on the SCORPAN
concept (soil, climate, organisms, topography, parent material, and spatial location) [20].
Climate variables (C), specific to the study area, are not generally used because they do not
provide sufficient variations. Adequate evidence for this has been carefully presented in
previous studies [53]. Our study chose not to use it due to the low variation, considering
the field size.

2.3.1. Topographic Derivatives

In general, the effect of primary (basic land-surface parameters) and secondary (related
to the concavity and convexity of the surface) topographic derivatives obtained from a digi-
tal elevation model on EC is well defined [54,55]. We integrated primary and secondary
topographic derivatives (Table 1) into the model to evaluate this covariate’s influence on
EC’s spatial distribution. The topographic features of the study area were derived for
DEM resolution of 12.5 × 12.5 m (https://search.asf.alaska.edu/ (accessed on 5 September
2021)) [56]. Following Schillaci et al. [51] and Gruber and Peckham [57], terrain derivatives
were calculated from the DEM and used as the covariates in the modelling process (Table 1).

2.3.2. Remote Sensing-Based Indices

Remote sensing indexes represent organism and parent material for estimating soil
EC in the digital soil mapping methodology [5]. We produced the indices in Table 1, which
are generally used in the literature. Sentinel 2A MSI images were obtained near the soil
samples date November 2019 [58]. The Sentinel 2A MSI spectral wavelength spans from
442.7 to 2202.4 nm and spectral resolution of the bands spans from 10 to 60 m [58]. The
current study used product ID: S2A_MSIL2A_20191116T085231_N0213_R107_T36STH.
S2A is the mission ID, Level 2A denotes the product level, N0213 denotes the processing
baseline number, and R107 defines orbit number [58].

Table 1. Environmental covariates used in this study.

Soil-Forming Factors Environmental Covariates Definition

Topography (R)

Elevation (m) Often indicative of climatic processes.

Slope (%) The variable is the angle formed between any part of the earth and
the horizontal.

Aspect (0◦ to 360◦) The variable was defined as the slope direction.
PRC Profile curvature affects the deceleration and acceleration of the flow.
PLC Planform curvature affects the decomposition and convergence of the flow.

TWI TWI=ln
(

As
tanβ

)
(1)

As, specific catchment area; tanβ, specific catchment area slope; in radians.

Parent material (P) TGSI [59] (Red − Green)
(Blue + Green + Red)

(2)

BI [60]
√

(Blue2 + Green2 + Red2)
3

(3)

Parent material (P) NDCI [61] (SWIR1 − SWIR2)
(SWIR1 + SWIR2)

(4)

Organism (O) NDVI [61] (Near Infrared − Red)
(Near Infrared + Red)

(5)

Anthropogenic factor CORINE LCC Time series land cover class data.

Abbreviations: PRC: profile curvature, PLC: planform curvature, TWI: topographic wetness index, TGSI: topsoil
grain size index, BI: brightness index, NDCI: normalized clay index, NDVI: normalized difference vegetation
index, SWIR: short-wave infrared, LCC: land cover Class.

https://search.asf.alaska.edu/
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2.3.3. Land Cover Class Data

The study area irrigated [41] since 1974 can be spatially represented by the CORINE land
cover class map, which can be accessed from 1990 (Supplementary Material Figure S2) [44]. Ac-
cording to CORINE temporal land cover maps, there is not much variation in permanently
irrigated land class. For this reason, CORINE CLC 2018 data closest to the taking date
of soil samples were used as environmental variables in the modelling process. CORINE
land cover class data were recoded into dummy variables for the modelling process [28,62].
All covariates used in this study were adjusted to the same grid cell resolution and extent
using ArcGIS 10.8 software modules [63]. Here, a 30 m grid was used, and grids were
aligned using nearest neighbor resampling method. The WGS 1984 UTM Northern Zone
36N (EPSG:32636) projection reference system was used in the current study.

2.4. Modelling Process

The flowchart of the current study for producing soil EC maps in the study is presented
in Supplementary Material Figure S3. To create a data matrix, the R Core Environment
Software (version 3.6.1) [64] with the “stack” function of the “utils” package was used in
the environmental covariates as a single layer. The environmental variable values at the
locations of 91 coordinated points were obtained using the “extract” function contained
in the raster package [65]. Descriptive statistics parameters were determined by using the
“describe” function in the “psych” package [66]. To investigate whether there is a significant
correlation between EC and some chemical and physical soil properties (clay, sand, CEC,
SSP) whose relationships with soil salinity are well known [67], Spearman correlations
were calculated via the “cor” function in R Core Environment Software [64].

For modelling process, the sampled dataset was split into two subsets. Data-splitting
ratio of 70% (n = 63) for training and 30% (n = 28) for validation [28]. Similar modelling
strategies have been common in soil salinity mapping studies [68]. The subsets of the
dataset were established through a random sampling process to evaluate the estimation
performance by the regression models.

2.5. Spatial Prediction of Soil EC Using Machine Learning Algorithms
2.5.1. Random Forest Algorithm

The random forest (RF) algorithm—developed by Breiman [69]—has been used many
times as a regression approach for predicting soil EC in DSM studies [30,31]. In this
study, the “randomForest” package [70] was used in the R environment. A tuning vector
was calculated containing the possible values of “mtry”, “ntree”, “nodesize” and then
a repeated 10-fold cross-validation was used for assessing the performance of predicting
EC. “mtry” was searched between 2 and 16 (total covariates number); “ntree” was searched
between 10 and 1000; “nodesize” was searched between 1 and 5 using the expand.grid()
function [71]. As a result, optimal “mtry”, “ntree”, and “nodesize” tuning parameters for
the random forest regression were determined based on the lowest mean square errors of
10, 100, and 5, respectively. Using these specified parameter values, the final RF model
was used to comprehensively estimate the EC spatially at the soil surface. The importance
of the environmental variables used in the model was determined for each model with
the “importance” function available in the “randomForest” package [70]. Two important
measures, %IncMSE and IncNodePurity, are frequently computed. For detailed information
on importance measures, refer to Biau and Scornet [71].

2.5.2. Support Vector Regression

Support vector machine (SVM) is a supervised machine learning method developed
by Cortes and Vapnik [72]. SVM uses learning algorithms based on statistical learning
theory and optimization theory. These theories enable computer programs to learn how
to extensively achieve classification problems, which is one of the first purposes of usage.
Drucker et al. [73] detailed the use of support vector regression. Optimal values for the
cost (C) and gamma hyperparameters in the SVR equations [73] were carefully adjusted
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to obtain accurate modelling results and avoid overfitting. These parameters are used to
define the shape of the hyperplane. These parameters can be searched in a user-defined
hyperparametric range with cross-validation. “svmRadial” kernel method was selected
for support vector regression with radial basis function. A tuning vector was calculated
containing the possible values of “cost” and “gamma”, and then a repeated 10-fold cross-
validation was used for assessing the performance of predicting EC. “gamma” was searched
between 2−8 and 22; “cost” was searched between 2−8 and 210 using “square” sequential
intervals in the expand.grid() function. As a result, optimal “cost” and “gamma” tuning
parameters for the support vector regression were determined based on the lowest mean
square errors, 1 and 0.016, respectively. Using these specified parameter values, the final
SVR model was used to comprehensively estimate the EC spatially at the soil surface. The
modelling process of support vector regression was performed using the “svm” function
in the “e1071” package, which enables the LIBSVM library [74] to be applied in the R
interface [75]. The important variables in the model were calculated and interpreted as
stated in [28].

2.6. Spatial Prediction of EC Using Hybrid Methods (Regression-Kriging)

Regression-kriging (RK) is a hybrid spatial method that optimizes the prediction of
soil properties at unsampled locations [76]. In the current study, the regression-kriging
process performs the summation of the regression value of EC and the kriging values of
model residuals. Summation of the residual kriging to the maps created by the models,
maps of EC value estimated by RF–regression-kriging and SVR–regression-kriging were
generated. The model and performance assessing measure were calculated in the validation
datasets. The equation specific to the current study can be expressed as [77]:

ZRK−RF,SVR = ZRF,SVR(EC) + ZOrdinary Kriging(EC) (6)

where ZRK-RF,SVR is the soil EC value estimated by RK-(RF, SVR), Z,RF,SVR (EC) is the soil
EC value by random forest (RF) and support vector regression (SVR), and ZOrdinary Kriging
(EC) is the kriged residuals of RF and SVR models.

The residuals are accepted errors and constitute the element of a model that cannot
be explained by the deterministic approach [35]. Using ArcGIS 10.8-Geostatistical Wizard
tool [63], range, sill, and nugget values were calculated for the model residuals of the
samples with coordinates in the training set. Semi-variogram model and graphics were
generated through the “gstat” [78] package in the R Core Environment program using
these values. In the spatial variation structure, the semi-variogram for each of the pairs of
points is calculated using the following equation:

γ(h) =
1

2n(h)

n

∑
n=1

[Z(Xi)− Z(Xi + h)]2 (7)

where n is the number of pairs of the sample separated by the distance h and Z (Xi) the
value of sampled point in ith point (i = 1, 2, 3, . . . , n).

The ordinary kriging method was used to predict the data at unsampled locations
by the weighted average of data from neighboring sample points [79]. To estimate model
residuals at unsampled points:

Z(µ) =
n

∑
i=1

λiZ(µi) (8)

where Z(µ) is the estimated value of unsampled point; Z(µi) is the ith point by measured
value; λi is the ith point by undefined weight for the predicted value; n is the number of
sampled values. The spatial distribution maps of model residuals were produced using
ordinary kriging technique with the “gstat” package in R [78].
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2.7. Model Accuracy of Regression-Based Algorithms

Root Mean Square Error:

RMSE =

√
∑n

i=1(Oi− Pi)2

n
(9)

where Oi and Pi are, respectively, the observed and predicted values, and n is the sample
count. The RMSE comparison may be insufficient, especially since values such as soil
salinity, generally reported in dS cm−1 units, are reported as µS cm−1 of EC values in
different studies.

Normalized root mean square error (NRMSE) as a normalization value between
predicted and observed values using dataset descriptive statistics values [80]:

NRMSE = 100×
(

RMSE
Normconstant

)
(10)

In the current study, we used the “nrmse” function in the “hydroGOF” with package
in the R Core Environment program, and NRMSE values were determined. The “Normcon-
stant” is defined as the standard deviation of the observations in the current study datasets.

Lin’s concordance correlation coefficient (LCCC) assesses the strength of the agreement
between the observed and predicted values given as [81]:

LCCC =
2ρσobsσpred

σ2
obs + σ2

pred +
(

µobs − µpred

)2 (11)

where µobs and σobs are the mean and variance of the observed soil EC with the correspond-
ing values of the predicted values being µpred and σpred, and ρ is the correlation coefficient
between the observed and predicted soil EC.

2.8. Salinization Risk Map

“Soil salinity risk maps” were produced by converting the limit values of the noti-
fications into condition expressions in the GIS environment in the latest publication of
FAO, “Mapping of salt-affected soils—Technical Manual” [3]. Pixels with an EC value of
750 µS cm−1 and lower were assigned as “None”, and pixels with an EC value between
750 and 2000 µS cm−1 were designated as “Slight”. Soil salinity risk map was created
using ArcGIS 10.8—Arctoolboox—Spatial Analyst Tools—Map Algebra—Raster Calcula-
tor [63]. Modules in ArcGIS 10.8 software were used for area calculations of soil salinity
risk maps [63].

3. Results and Discussion
3.1. Statistical Description of the Sampled Data

Table 2 lists the descriptive statistics of the EC in surface soil samples in the current
study. The modelling process was carried out throughout in the training set. In the
current training dataset, the EC value showed a wide range of values between 110 and
1692 µS cm−1. The coefficient of variation is 40.49% in the training set and is defined as high
variability higher than the 36% reported by Wilding [82]. In the validation dataset, the EC
value showed a wide range of values between 152 and 2068 µS cm−1, similar to the training
set (Table 2). The coefficient of variation values of the validation set is approximately 50%
higher than the training set.

This situation was not interfered with because the training and validation sets were
randomly divided. Bilgili [18] reported that the EC value showed a very high variation with
a coefficient of 200% in the surface soil samples in the Harran plain, where the irrigated
farming area in the southeast of Türkiye has a semi-arid climate. Additionally, according to
Table 2, it is clear that there is a positive high skewness in the EC data in both the training
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and validation sets of the study area. This solid positive skewness indicates the presence of
several EC values, which are incredibly high relative to the dataset average and, therefore,
may affect the performance of machine learning models. When the density graph of the
calibration and verification dataset is examined (Supplementary Material Figure S4), it is
seen that high EC values are present in both subsets. Since the assumption of normality is
not a requirement in the machine learning models, the transformation is not performed [76].
The descriptive statistics show that the high variations can be attributed to various factors
that affect soil salinity [83]. Indeed, Nosetto et al. [84] reported that land use could exert
effects on salinization that may be even more influential than the widely known effects of
topography and climate.

Table 2. Descriptive statistics of EC and some physical and chemical soil properties.

Variable Dataset Mean SD CV Minimum Maximum Skewness Kurtosis

EC
Training 616.30 249.60 40.49 110.0 1692.0 1.29 4.47

Validation 602.80 366.60 60.82 152.0 2068.0 2.64 9.14

Clay (%)

All

36.91 13.68 37.06 13.28 73.76 0.82 −0.22

Sand (%) 37.29 15.01 40.25 6.35 69.30 −0.34 −0.87

Silt (%) 25.81 7.16 27.74 12.47 51.94 1.13 1.64

CEC (cmolc kg−1) 22.75 6.75 29.67 9.34 40.24 0.71 0.05

SSP (%) 36.76 5.93 16.13 20.50 50.00 −0.18 −0.22

Abbreviations: EC: electrical conductivity (µS cm−1); CV: coefficient of variation (%); SD: standard deviation;
CEC: cation exchange capacity; SSP: soil saturation percentage.

The diversity of land cover in our study area may have caused high variation (Figure 1).
Again, Jiang et al. [85] reported that the high variation of EC in the region of Xinjiang
province in northeast China arises from land use type. Supplementary Material Figure S5
shows boxplot graphs of EC contents according to the CLCC in which the soil samples fall
within the boundaries of our study area. The highest average EC value was obtained in
permanently irrigated lands. It has been under the same land cover for over a quarter of
a century (Supplementary Material Figure S2). Considering the EC values in the pasture-
land cover class, it is noteworthy that it shows high EC values on lands under irrigated
agricultural activities for many years (Supplementary Material Figure S2).

While the SSP values of almost half of the 91 soil samples examined were <40%,
the rest had an SSP > 40%. A level of SSP > 40% indicates that it is mainly associated
with fine-textured soils [86]. This difference is due to the clear separation of two different
physiographic units such as colluvial and alluvial in the current study area. As shown in
Supplementary Material Table S1, EC is strongly correlated with CEC as the Spearman
correlation coefficient is 0.65 (p < 0.05). In addition, there was a strong positive correlation
between SSP and clay content with a Spearman coefficient of 0.81 (p < 0.05), while there was
a strong negative correlation between SSP and sand content (−0.77; p < 0.05). Similar results
were reported by Kargas et al. [86], who have a study area of Mediterranean biogeography
dominated by similar physiography and land use.

3.2. Spatial Prediction of Model Residuals

The model residuals of the two models were investigated with a multidirectional vari-
ogram. The nugget/sill ratio (N:S), which expresses the degree of spatial autocorrelation,
is calculated as 59.35% and 56.14% for SVR and RF, respectively (Figure 2). The sill is the
nugget plus the partial sill. Cambardella et al. [87] reported that if the N:S (nugget/sill ratio)
is less than or equal to 25%, it will decisively mean strongly (S) dependent, moderately (M)
spatially dependent between 25% and 75%, and >75%, weakly (W) dependent. However, it
should be noted that these suggested thresholds are arbitrary, as there are no statistically
defined N:S classes [36]. In our study, it is seen that the model residuals show moderate and
weak spatial relationships in the two algorithms. In contrast to our values, Yang et al. [36]
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calculated the N:S ratio of the model residuals of the MLR as 25.98% in the Heihe river basin
in north-western China. This difference is associated with the performance of different
factors in estimating the environmental variable set that they used in their studies. We
have produced a map of the residuals of two models using ordinary spatial kriging as
a somewhat naive estimator, which provides a geostatistical foundation [35,78].
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Figure 2. Strength of the spatial autocorrelation among evaluated model residuals for EC. SVR:
support vector regression (A), RF: random forest (B).

3.3. Performance of Regression-Based Algorithms and Hybrid Methods

Two algorithms evaluated the model prediction accuracy in training and validation
sets on surface samples. In addition, validation was performed only on the validation
dataset for the hybrid technique (Table 3 and Figure 3) [88].

As for the results, the LCCC values, which assess the agreement between the predicted
and the actual values, were between 0.54 and 0.87 in the training set, while this situation
changed to between 0.18 and 0.28 in the validation set (Table 3). The highest LCCC value
in the training and validation sets was obtained with the RF algorithm (Table 3).

The accuracy of the modelling predictions for the validation and hybrid model valida-
tion sets was further analyzed via the Taylor diagram [89]. The Taylor diagram was used
as a distinguishing tool to analyze the performance of the RF and SVR models to estimate
soil EC in the validation and hybrid model validation datasets. In addition to Table 3, we
report the soil salinity distribution plots measured versus the calculated soil salinity for the
validation and hybrid model validation dataset with different models in Figure 3.

Table 3. Comparison of model performance criteria of different algorithms in predicting EC.

Soil Property Model
Training Validation Hybrid Model Validation

LCCC RMSE NRMSE LCCC NRMSE LCCC NRMSE

EC
SVR 0.50 198.05 79.4 0.25 89.6 0.26 88.7
RF 0.87 102.83 41.2 0.28 85.6 0.29 85.4

Abbreviations: EC: electrical conductivity, LCCC: Lin’s concordance correlation coefficient, RF: random forest,
RMSE: root mean square error, N: normalized, SVR: support vector regression.
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Literature comparisons were made according to NRMSE values because the EC value
can be measured in different units, and conversions are made. Indeed, the NRMSE is related
to the distributions of the training and validation sets. Taghadosi et al. [90] discussed the
results of the MLR and SVR models in their study in which they used the indices calculated
from Landsat 8 OLI and Sentinel 2 data as environmental variables. They received 52%
NRMSE values for the training set in MLR and 44% NRMSE values for the validation set.
They also found NRMSE values of 36% for the training set and 4% for the validation set
using the radial basis kernel function (RBF) of SVR. Although the absence of descriptive
statistics of the training and validation sets in their studies restricts the comparison with
our results, lower NRMSE values compared to our study results may be attributed to
the fact that they may have worked in a more homogeneous field. This inference was
made from the map showing the distribution of soil samples as reported in Figure 2
in [90]. The hybrid approach, which considers the models’ residuals, slightly improved
our model results. It was well known that the spatial autocorrelation degrees of the
model residuals of the samples in the randomly divided training set before modelling
were low [35]. Boudibi et al. [10], in their study using support vector machines (SVM) to
estimate topsoil salinity in the El Outaya plain located in the northeast of Algeria, used
environmental covariates including physical properties of soil, geochemical properties
of groundwater, a digital elevation model, and remote sensing derivatives. They also
evaluated different environmental variable combinations, and NRMSE values (SD was
considered) varied between 57% and 82% for the training set and between 37% and 76%
for the validation set. Considering that the coefficient of variation of EC values in their
study areas is over 100% [10], our results show similarity. The reason for the NRMSE
increases in our validation set in all algorithms in our study is related to the fact that
the coefficient of variation is 50% higher in the validation set than in the training set.
Indeed, Boudibi et al. [10] had lower CV and NRMSE values in their validation sets.
Wang et al. [68] compared the 12 algorithms found in SVR and RF in their study in which
they estimated the soil EC value using climate (land-surface temperature) variables, remote
sensing derivatives, DEM derivatives, and landforms as environmental variables in the
north-western part of the Tarim Basin in southern Xinjiang, China. In their study, NRMSE
values (SD was considered) were 52% and 60% for SVR, and 49% and 56% for RF, in the
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training and validation set, respectively. Although these are highly similar to our results,
the lower NRMSE values can be attributed to the use of their studies, a larger number
of representative environmental variables, and the size of the dataset. Naimi et al. [31]
investigated the effectiveness of five unique machine learning models, including the RF
model, in soil salinity estimation. They reported that the NRMSE value of 34.11% (average,
approximately 22% if SD was considered) produced the most successful predictions. The
efficiency of cross-validation and data-splitting methods can also partially differ [28]. For
sparse datasets, data splitting can be ineffective as the information in the dataset is not fully
utilized for both calibration and validation. Since it is not clear how to divide the dataset,
different methods are compared to confirm map accuracy [91].

3.4. Spatial Patterns of Soil EC Dynamics

The performance of regression models derived from the machine learning algorithm
was analyzed separately for SVR and RF in this study to determine the spatial distribution
of soil EC.

3.4.1. Random Forest

Machine learning techniques such as RF, which can also reveal non-linear relationships,
have been widely used in soil salinity mapping [31,68]. It has produced the most accurate
model results and the most meaningful output soil salinity maps among the algorithms.
These accuracy levels are due to the algorithm’s ability to display non-linear relationships
between land observations and environmental variables. The prediction maps produced
by the RF algorithm show the contribution of DEM (Figure 1b) and land cover variables
to the modelling process. Low EC values are primarily distributed in the eastern parts of
the current study area, where the elevation and slope are relatively high (Figure 4a). These
areas have high slopes and are used as natural pastures. High EC values in depression areas
of the alluvial plain were located in the irrigated agriculture areas that have been prominent
for many years. Some salt discharge is likely added from the northern and eastern regions
to the upper parts of the low-altitude land because of geomorphological characteristics,
which result in the salt accumulation on the upper lands of the study area that have high
slopes and a coarse soil texture [45], and low salt absorbability. Naimi et al. [31] reported
that regions with low EC values were located at higher elevations with steeper slopes and
alluvial ranges when mapping soil salinity in the Afzar region of southern Iran using the RF
model. The minimum and maximum values of the EC values of the training dataset were
110 and 1692 µS cm−1, respectively (Table 2). The RF-RK hybrid method predicted the area’s
minimum and maximum EC values as 172 and 1511 µS cm−1, respectively. In addition,
the moderate spatial autocorrelation of the RF model residuals (Figure 4b) contributed to
a better representation of the minimum and maximum value ranges in the final map. In this
case, it was found to be significant when considered in terms of uncertainty assessment. The
RF algorithm predicted the low EC values appropriately. However, this algorithm relatively
underestimated the high EC values found in small numbers in the dataset (Figure 4c).
Based on the inference information, it determined that the map produced as a result of the
model created by the RF algorithm and the final map created as a result of the summing of
the kriging of the model residuals could predict the areas with high salinization risk more
accurately. However, it should not be forgotten that this accuracy cannot be achieved in
other case studies due to the different effects of soil formation processes in different areas.
For this reason, we want to draw attention to including RF algorithms in the comparative
results of linear and non-linear algorithms in case studies.
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3.4.2. Support Vector Regression

Support vector regression is increasingly used in spatial estimation studies of soil
salinity with its different kernel functions [90,92]. The map produced by applying the
SVR model to the environmental variable set in our study area was partially similar to
the RF algorithm (Figure 4a,d). However, it draws back behind RF in representing the
minimum and maximum values. Again, categorical environmental variables affected the
SVR algorithm more (Figure 4d). Taghadosi et al. [90] reported that the most helpful soil
salinity estimation maps were produced in the study areas due to using the RBF kernel
function in the SVR technique. The weak spatial autocorrelation of the model residuals
of the SVR did not contribute to the improvement in the final map (Figure 4f). The SVR’s
map categorized distinctive areas with low salinity, high slopes, and elevation (Figure 4d,f).
This research focused on comparing the performance of non-linear algorithms and how
to improve the model accuracy and spatial maps of land cover classes based on long-year
observation. We investigated in depth whether the model’s accuracy could describe the
spatial variation in soil properties by environmental variables. Not affected or little affected
soils from salinity were primarily observed in the eastern and north-eastern regions of
the study area. These areas have microclimatic conditions (i.e., owing to the elevation
of higher precipitation), indicating more leaching and less salt accumulation in the soil
surfaces (Figure 4a,d). High soil salinity was observed around the land cover classes where
permanently irrigated. Previously, especially in studies using RS indices, it was estimated
that areas with bare salt cover in lakes where salinity occurs naturally contain high salt. In
contrast, areas with agricultural activity with vegetation were directly defined as salt-free
or slightly salty [23]. Soil salinity predictions are based on determining spectral signatures
from bare surfaces or surfaces with crystals formed in remote sensing images. In this case,
it is not expected that the NDVI value can indirectly determine the salinity level with soil
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samples taken when the annual NDVI is below the average, such as in our study area.
However, our study generally found high EC values in the yearly cereal crops and perennial
vegetation lands that were irrigated for many years with different irrigation methods. In
such a case, the low efficiency of remote sensing data may be increased by the CLCC map.
Habibi et al. [93] reported that plants such as alfalfa and cucurbits are grown in regions
where the soil salinity maps produced by different machine learning algorithms are below
2000 µS cm−1 in their study comparing the distribution of salinity maps under different
land uses in the Saveh plain north of Iran. In our field of study, it is necessary to develop
product strategies in farming, considering the current and future water resources in the
projection for the future. Considering the current spatial distribution of salinity around
permanent irrigated land cover classes, it is presumed that it will cause alternative crop
change in the future.

3.5. Importance of Environmental Covariates for Different Machine Learning Algorithms

The measured importance of the investigated prediction variables in the modelling pro-
cess of two different machine learning algorithms is presented in Supplementary Material
Figure S6. Overall, the CORINE land cover class, RS-based indices, and DEM played an es-
sential role in developing the semi-arid region’s salinity distribution map of the alluvial
plain (Supplementary Material Figure S6). Previous studies have reported that vegetation
and associated covariates significantly affect soil salinity, making it an indispensable guide
variable [94]. The most crucial variable in the %IncMSE significance indicator of the RF
algorithm was always determined to be the permanently irrigated land (Supplementary
Material Figure S6a). Aspect, NDVI, and elevation were at the forefront of ranking the
most critical variables (Supplementary Material Figure S6a). In the %IncNodePurity value,
which considers the squares of the residuals measuring the node impurity, the NDVI and
elevation variables were maximum values. It is expected that the highest NDVI values
were taken from the parcels with permanently irrigated lands in the study area. Lands of
orchards, corn, sugar beet, or alfalfa may have higher NDVI values than bare soil in that
period (October–November) (Supplementary Material Figure S7).

Such a case may cause significant environmental variables along with land cover
classes. When receiving the satellite image, the plants mentioned above are usually in the
permanent crop cover class areas. Except for the coniferous forest northwest of the study
area, the plants mentioned earlier may be present in the parcels with high NDVI values
(Supplementary Material Figure S6). Although we studied on a flat alluvial plain, our
results expressly indicated that topographic features contribute to explaining the variability
of surface soil salinity (Supplementary Material Figure S6). The increasing accessibility
and quality of remote sensing products with multispectral features [95] with advancing
technological advances shows promise for soil salinity estimation. However, topographic
variables need to be included in the modelling process. Considering the %IncMSE value,
which considers the changes in the mean square errors of the permutation-based variables
in OOB, it is seen that the land cover classes representing the land use are the most critical
variable. It should be emphasized that the effect of land use on salinization forecasting in
agricultural areas may be more substantial than the controls of climate and topography on
salinity at short distances [84]. Organic or inorganic fertilization, irrigation strategies, and
crop rotation affect mineral input into the soil and surface deposition of EC in the local soil
environment, resulting in significant differences in EC between different land use types.
Considering the variables necessary for the support vector regression model, elevation
and slope were determined (Supplementary Material Figure S6c). The CLCC categorical
variables (Supplementary Material Figure S5) with codes 231, pastures, and 243, which
have the lowest EC values, were higher (Supplementary Material Figure S6c). Taghizadeh-
Mehrjardi et al. [94] and Abdullah et al. [96] described that covariates such as slope and
NDVI are essential for soil surface salinity mapping. Since it is scarce in the literature,
our study provides pioneering information demonstrating the effectiveness of land cover
classes. Considering the importance levels in modelling, it can be expressed that RS-based
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indexes can create noise in areas with mixed land uses, and a more generalizing structure
of land cover classes can improve salinity estimates using non-linear modelling algorithms.

3.6. Salinity Risk Assessment

Strategic sustainable agriculture can be found in the current study area because the
ground is generally almost flat, and different water resources and different irrigation
methods are used effectively. Tillage agriculture is suitable in our study area, and no severe
salinization problem has been detected yet. However, future concerns may arise in land
cover classes where irrigated farming activities have been carried out for many years. This
situation constitutes the primary motivation source of our work. Information sharing is
essential for detecting or monitoring the development of salt-affected soils. Soils where
salinity development is present can be determined using a parameter such as soil EC [3].
Risk maps showing the status of salinity problems in the area mapped in our current study
area can be helpful for spatial information (Figure 5). The classification of the soil EC maps
was produced as a result of the estimation capabilities of different algorithms with GIS
tools; small risk areas were defined in various sized areas in the study area. Areas at risk of
“slight” salinity were determined by the SVR in a minor area, while the highest by the RF
(Figure 5 and Supplementary Material Figure S8). As a result of estimating the EC using
the RF algorithm, the high EC values of the “Coniferous Forest” land cover class in the
northeast of the current study area caused it to be classified as “slight” on the risk map.
This is due to the RF algorithm associating the EC values with the NDVI values. This area
is not an expected “slight” risk situation in the natural environment. The common aspect
of the risk maps generated as a result of the two models is the determination of the “slight”
salinization status in the permanently irrigated areas.
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3.7. Challenges of the Case-Based Studies and Outlook Perspectives for Salinity Status Detection

Previously, researchers, for instance, Aksoy et al. [23], reported that mapping topsoil
EC via multispectral satellite data could be applicable. However, the heterogeneity of the
study area can significantly limit or increase the effectiveness of remote sensing data. If
a salinity estimation study is carried out on the edge of a saline lake, in areas where the
lake becomes smaller and land increases over time due to the decrease in precipitation and
the ever-increasing evaporation rate, direct remote sensing methods through the reflection
of salt crystals on the surface can be used effectively. Therefore, using a multidate series
of multispectral satellite data is recommended to better represent spatial heterogeneity in
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areas such as our study area, where various agricultural activities have been carried out for
many years [97]. In our study, the leading issue is investigating the effectiveness of land
cover data for many years. In the current study area, where irrigated farming activities
have been available for many years, different socio-cultural effects have shaped the land
cover. Land cover classes have been prioritized to reflect these socio-cultural effects. In this
regard, using single-date satellite data close to the soil sampling date constitutes one of the
study’s main limitations.

We report that it does not make much sense to find out whether there is a spatial auto-
correlation among the model residuals and to add these residuals with hybrid modelling
techniques in the absence of spatial autocorrelation.

To comprehend the process of land deterioration and formulate efficient remediation
strategies in light of the unpredictability of the future climate, it is of utmost impor-
tance to know the probability of the occurrence of salt-affected soils on the scale of the
spatio-temporal distribution [14]. Therefore, determining soil EC values is progressively
significant for studies to obviate soil salinization [15]. Proven methods are needed to map
the spatial variability of soil EC and to manage the processes that drive soil salt transport
into the root zone.

The risk of soil salinization caused by decreased water quality and increased soil
salt concentrations is one of the greatest dangers to the long-term viability of agriculture
that relies on irrigation. This risk ultimately results in lower crop yields and the initiation
of processes that result in soil degradation. One of the most significant land-disturbing
threats to harm soil fertility, stability, and biodiversity is soil salinization [14]. In the
agricultural areas of the Mediterranean region, especially with summer warming being
40% faster than the global average [13], there is a higher risk of salinization in conditions of
inadequate water management due to climate change. This form of soil deterioration in
the Mediterranean region may become widespread in the next years. The long-term use of
unsuitable irrigated agriculture, which is essential for food security (SDG 2) and adequate
drinking water (SDG 6), is threatened by salinization. Due to climate change, salinization
may enhance a higher problem in Mediterranean regions [98].

The spatial distribution of the salinity process of soils relies not only on factors such as
land topography and climate but also on land use, which includes the human factor. Our
current study reveals the effectiveness of land use by considering the long-term records
of land cover in modelling. A suggestion for outlook-dedicated works on salinity is that
studies should be performed to compare the potency of global land use/land cover data [25]
as an open source in predicting salinity development [96].

Spatial pixel size of public or commercial satellite images has significantly progressed
in the current century [95]. Thus, the commercial PlanetScope [99] is advised to use satellites,
which can extend open access to spatial and radiometrically higher resolution scientific stud-
ies that can better exhibit the heterogeneous situation of salinity in agricultural areas [100].

To achieve the sustainability of agricultural systems with intensive irrigated farming
activities dominant in the Mediterranean biogeography, it is necessary to determine the
current situation of soil salinity in the best way possible. To this end, it is also necessary
to understand the complex relationship between salinity parameters, including salinity
chemistry (Cl−, SO4

2−, HCO3
−, and Na+, Ca2+, Mg2+), and to identify the relevant chemical

and mineralogical processes operating in soil water systems [67,86].
EC may change over time. Our research focuses on increased EC values due to

irrigation, causing salinity areas to form. For this reason, more than one measurement and
systematic modelling study will be the most appropriate methodology for future studies.

4. Conclusions

This current study examined the spatial assessment of the current soil EC using
machine learning models in a semi-arid region of Türkiye, and environmental variables
based on long-year observation in an alluvial plain irrigated for half a century. The SVR
produced the most valuable and accurate maps by demonstrating the effectiveness of
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the LCC variable. In the current study area, LCC showed higher efficiency in modelling
processes than RS and topographic features indicating the effect of long-term human
activities. Although the satellite image was obtained from the barest period of the soil
surface, a low correlation was found between the soil surface reflection and the EC value.
The salt accumulation has not reached a level to affect the reflectance of soil surface
morphology. Therefore, our results showed that land cover classes had a more substantial
influence than other environmental variables in modelling anthropogenic soil salinity. We
were recommended to combine land cover classes, RS data, and topographic features
to reflect long-year field observations. The generated methodology would be helpful
on the scale of reconnaissance studies to identify hot spots that may develop a salinity
hazard because these data types are open-source and can be used for soil salinity in future
projections. As a result of the study, it is possible to foresee the integration of topographic
features, land cover classes, and RS data can be used successfully in the projection of other
dynamic soil properties in arable land. Using this approach, information can be primarily
generalized, thereby reducing the time and cost spent on obtaining the result of laboratory
analysis. This approach is an important stage for the prediction of soil properties of land
with no soil information and that is small-scale fragmented.

LCC-based salinization forecasting can give policymakers a chance to plan ahead to
counteract the risks of climate change. As a temporal variable, CORINE may offer a chance
to take this approach.
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Comparison of EC values of soil samples according to land cover classes; Figure S6: Variable
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Spearman correlation coefficients among the EC and some physical and chemical soil properties for
all soil samples.
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on the Seasonal Salt Dynamic in the Harran Plain, South-Eastern Turkey. Irrig. Drain. 2010, 59, 465–476. [CrossRef]

18. Bilgili, A.V. Spatial Assessment of Soil Salinity in the Harran Plain Using Multiple Kriging Techniques. Environ. Monit Assess
2013, 185, 777–795. [CrossRef] [PubMed]

19. FAO GSASmap v1.0, Global Map of Salt-Affected Soils. Available online: https://www.fao.org/3/cb7247en/cb7247en.pdf
(accessed on 7 September 2022).

20. McBratney, A.B.; Mendonça Santos, M.L.; Minasny, B. On Digital Soil Mapping. Geoderma 2003, 117, 3–52. [CrossRef]
21. Mponela, P.; Snapp, S.; Villamor, G.B.; Tamene, L.; Le, Q.B.; Borgemeister, C. Digital Soil Mapping of Nitrogen, Phosphorus,

Potassium, Organic Carbon and Their Crop Response Thresholds in Smallholder Managed Escarpments of Malawi. Appl. Geogr.
2020, 124, 102299. [CrossRef]

22. Bakacsi, Z.; Tóth, T.; Makó, A.; Barna, G.; Laborczi, A.; Szabó, J.; Szatmári, G.; Pásztor, L. National Level Assessment of Soil
Salinization and Structural Degradation Risks under Irrigation. Hung. Geogr. Bull. 2019, 68, 141–156. [CrossRef]

23. Aksoy, S.; Yildirim, A.; Gorji, T.; Hamzehpour, N.; Tanik, A.; Sertel, E. Assessing the Performance of Machine Learning Algorithms
for Soil Salinity Mapping in Google Earth Engine Platform Using Sentinel-2A and Landsat-8 OLI Data. Adv. Space Res. 2022, 69,
1072–1086. [CrossRef]

24. Bannari, A.; Abuelgasim, A. Potential and Limits of Vegetation Indices Compared to Evaporite Mineral Indices for Soil Salinity
Discrimination and Mapping. SOIL Discuss. 2021, 1–48. [CrossRef]

25. Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global Land Use/Land Cover with Sentinel 2
and Deep Learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels,
Belgium, 11–16 July 2021; pp. 4704–4707. [CrossRef]

http://doi.org/10.1016/j.rse.2019.111260
http://doi.org/10.1016/j.geoderma.2022.115988
http://doi.org/10.1002/ldr.4211
http://doi.org/10.1016/BS.AGRON.2021.03.001
http://doi.org/10.1016/j.jhydrol.2012.02.016
http://doi.org/10.1016/j.quaint.2020.11.005
https://www.fao.org/3/cb4809en/cb4809en.pdf
http://doi.org/10.3390/HORTICULTURAE3020030
http://doi.org/10.1007/s11631-020-00444-0
http://doi.org/10.1007/s10584-011-0344-x
http://doi.org/10.1073/pnas.1222475110
http://doi.org/10.1038/s41558-018-0299-2
http://doi.org/10.1073/pnas.2013771117
http://www.ncbi.nlm.nih.gov/pubmed/33318212
http://doi.org/10.1016/B978-0-12-818032-7.00012-6
http://doi.org/10.1002/ird.157
http://doi.org/10.1002/ird.507
http://doi.org/10.1007/s10661-012-2591-3
http://www.ncbi.nlm.nih.gov/pubmed/22415846
https://www.fao.org/3/cb7247en/cb7247en.pdf
http://doi.org/10.1016/S0016-7061(03)00223-4
http://doi.org/10.1016/j.apgeog.2020.102299
http://doi.org/10.15201/hungeobull.68.2.3
http://doi.org/10.1016/j.asr.2021.10.024
http://doi.org/10.5194/soil-2021-55
http://doi.org/10.1109/IGARSS47720.2021.9553499


Land 2022, 11, 2148 19 of 21

26. Zhang, T.T.; Zeng, S.L.; Gao, Y.; Ouyang, Z.T.; Li, B.; Fang, C.M.; Zhao, B. Assessing Impact of Land Uses on Land Salinization in
the Yellow River Delta, China Using an Integrated and Spatial Statistical Model. Land Use Policy 2011, 28, 857–866. [CrossRef]

27. Poggio, L.; de Sousa, L.; Genova, G.; D’Angelo, P.; Schwind, P.; Heiden, U. Soil organic carbon modelling with digital soil
mapping and remote sensing for permanently vegetated areas. In Proceedings of the 2021 IEEE International Geoscience and
Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 492–494. [CrossRef]

28. FAO Soil Organic Carbon Mapping Cookbook. Available online: https://www.fao.org/documents/card/en/c/I8895EN/
(accessed on 7 September 2022).

29. Davis, E.; Wang, C.; Dow, K. Comparing Sentinel-2 MSI and Landsat 8 OLI in Soil Salinity Detection: A Case Study of Agricultural
Lands in Coastal North Carolina. Int. J. Remote Sens. 2019, 40, 6134–6153. [CrossRef]

30. Maleki, S.; Fathizad, H.; Karimi, A.; Taghizadeh-Mehrjardi, R.; Pourghasemi, H.R. Monitoring of Spatiotemporal Changes of Soil
Salinity and Alkalinity in Eastern and Central Parts of Iran. In Computers in Earth and Environmental Sciences; Elsevier: New York,
NY, USA, 2022; pp. 547–561.

31. Naimi, S.; Ayoubi, S.; Zeraatpisheh, M.; Dematte, J.A.M. Ground Observations and Environmental Covariates Integration for
Mapping of Soil Salinity: A Machine Learning-Based Approach. Remote Sens. 2021, 13, 4825. [CrossRef]

32. Zhao, D.; Arshad, M.; Wang, J.; Triantafilis, J. Soil Exchangeable Cations Estimation Using Vis-NIR Spectroscopy in Different
Depths: Effects of Multiple Calibration Models and Spiking. Comput. Electron. Agric. 2021, 182, 105990. [CrossRef]

33. Zhao, D.; Li, N.; Zare, E.; Wang, J.; Triantafilis, J. Mapping Cation Exchange Capacity Using a Quasi-3d Joint Inversion of EM38
and EM31 Data. Soil Tillage Res. 2020, 200, 104618. [CrossRef]

34. Zhao, D.; Zhao, X.; Khongnawang, T.; Arshad, M.; Triantafilis, J. A Vis-NIR Spectral Library to Predict Clay in Australian Cotton
Growing Soil. Soil Sci. Soc. Am. J. 2018, 82, 1347–1357. [CrossRef]

35. Hengl, T.; Nussbaum, M.; Wright, M.N.; Heuvelink, G.B.M.; Gräler, B. Random Forest as a Generic Framework for Predictive
Modeling of Spatial and Spatio-Temporal Variables. PeerJ 2018, 2018, e5518. [CrossRef]

36. Yang, S.H.; Liu, F.; Song, X.D.; Lu, Y.Y.; Li, D.C.; Zhao, Y.G.; Zhang, G.L. Mapping Topsoil Electrical Conductivity by a Mixed
Geographically Weighted Regression Kriging: A Case Study in the Heihe River Basin, Northwest China. Ecol. Indic. 2019, 102,
252–264. [CrossRef]

37. Wadoux, A.M.J.C.; Román-Dobarco, M.; McBratney, A.B. Perspectives on Data-Driven Soil Research. Eur. J. Soil Sci. 2021, 72,
1675–1689. [CrossRef]
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Constructed by Different Remote Sensors. Phys. Chem. Earth Parts A/B/C 2022, 128, 103230. [CrossRef]

http://doi.org/10.3390/w14040642
http://doi.org/10.2136/sssaj1994.03615995005800050033x
http://doi.org/10.1016/j.catena.2022.106404
http://doi.org/10.1080/22797254.2019.1571870
http://doi.org/10.1016/j.ecolmodel.2021.109692
http://doi.org/10.3390/rs13020305
http://doi.org/10.1007/s10661-020-08718-z
http://www.ncbi.nlm.nih.gov/pubmed/33184748
http://doi.org/10.1016/j.geoderma.2020.114793
http://doi.org/10.1126/science.abe8628
http://www.ncbi.nlm.nih.gov/pubmed/33737462
http://doi.org/10.1016/j.envdev.2018.12.007
http://doi.org/10.3390/rs12244073
http://doi.org/10.3390/land7040133
https://www.planet.com/explorer/
http://doi.org/10.1016/j.pce.2022.103230

	Introduction 
	Materials and Methods 
	Study Area 
	Soil Sampling and Analysis 
	Environmental Covariates 
	Topographic Derivatives 
	Remote Sensing-Based Indices 
	Land Cover Class Data 

	Modelling Process 
	Spatial Prediction of Soil EC Using Machine Learning Algorithms 
	Random Forest Algorithm 
	Support Vector Regression 

	Spatial Prediction of EC Using Hybrid Methods (Regression-Kriging) 
	Model Accuracy of Regression-Based Algorithms 
	Salinization Risk Map 

	Results and Discussion 
	Statistical Description of the Sampled Data 
	Spatial Prediction of Model Residuals 
	Performance of Regression-Based Algorithms and Hybrid Methods 
	Spatial Patterns of Soil EC Dynamics 
	Random Forest 
	Support Vector Regression 

	Importance of Environmental Covariates for Different Machine Learning Algorithms 
	Salinity Risk Assessment 
	Challenges of the Case-Based Studies and Outlook Perspectives for Salinity Status Detection 

	Conclusions 
	References

