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Abstract: The Chengdu Metropolitan Area, located on the eastern edge of the world’s highest
plateau, has experienced a period of integrating urban and rural area development for decades.
With rapid urbanization and population growth, the vulnerability and security of the ecological
environment have become critical aspects to consider in sustainability. Moreover, the presence of
different levels of vitality in the study area has a crucial impact on land-use change. Hence, we
propose a growth boundary study based on the theory of urban vitality and ecological networks.
We focus on identifying the inefficient urban land and urban development potential land, explore
their expansion probabilities to conduct spatial simulations for the next 15 years, and combine the
ecological network to form a reasonable spatial pattern. Results showed that the proposed model
could simulate the urban growth state more accurately within a certain space scale and integrate
different limits and influences to simulate different growth strategies under multiple planning periods.
Thus, the proposed model can be an effective decision support tool for the government.

Keywords: urban growth boundary; urban vitality; PLUS model; ecological network; inventory
development

1. Introduction

Urban sprawl is called inefficient because it generates low-density development that
is “sprawled” over the landscape [1]. In 2016, the United Nations Conference on Housing
and Sustainable Urban Development (Habitat III) was held in Quito, the capital of Ecuador.
The “New Urban Agenda” adopted at the conference stated that “By 2050, the world’s
urban population is expected to nearly double, making urbanization one of the most
transformative trends in the 21st century” and that, “We encourage spatial development
strategies to consider the need for urban expansion . . . to prevent over expansion and
marginalization of cites”. Over the last three decades, China has experienced rapid urban
development and large-scale urban–rural migration. About 75% of China’s population
is expected to live in cities within 20 years, resulting in a stronger demand for transport,
energy, water, and other basic life necessities, which will be a huge challenge for resource
and urban planners [2].

Urban Growth Boundaries (UGBs) are one of the most used policy tools around the
world to control urban sprawl. The practice of UGBs can be traced back to the Greater
London Plan in the 1930s, when large-scale “green belts” were established on the edge of
cities to limit urbanization to a defined area [3]. The concept of smart growth, introduced
to the United States in the 1990s to control uncontrolled urban sprawl, emphasizes envi-
ronmental, social, and economic sustainability and is a compact, centralized, and efficient
program. Under this concept, UGB was proposed as an important policy tool and has since
been used in many countries around the world, including the United States, Canada, Japan,
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and the United Kingdom [3]. Chinese government reformed the spatial planning system
and proposed a new spatial planning requirement, including the implementation of the
“Three Districts and Three Lines” project [4], where delineating UGB plays a key role in
regional spatial planning.

As far as the current research is concerned, cellular automata (CA) are a “bottom-up”
dynamic model that is discrete in time and space. Thus, it is capable of simulating the
spatiotemporal evolution of complex systems [5]. In recent decades, this model has been
widely used by researchers in land-use simulation and urban sprawl studies, thereby be-
coming an important technical approach for delineating urban growth boundaries [6–9].
The research methods based on the CA model can be mainly divided into logistic regres-
sion (LR) and Markov chain (MC), as well as CA combining artificial intelligence (AI)
algorithms [10]. However, given that LR is a linear simulation method that is not able to
simulate complex and nonlinear changes in land use. Hence, recent research focuses on MC
and AI methods. CA-MARKOV simulations require a dataset of land cover representations
of the initial state, a Markov transition matrix, a set of suitability images (one for each land
cover class), multiple iterations, and an adjacency filter. Therefore, transition rules were set
up to develop suitability maps for each simulated land cover using multi-criteria evalu-
ation (MCE) and fuzzy membership for land cover classes [10], which took into account
the influence of various spatial influencing factors on change in land use, but failed to
characterize their influence on the changing process of land use. The artificial intelligence
algorithm combined with CA can take into account random and nonlinear processes in
the process of land-use change, as well as the impact of multiple driving factors on the
temporal and spatial changing process of land use. At present, the main methods used in
this field include ANN-CA, Random Forest (RF), Support Vector Machine (SVM) [11], and
so on—among which ANN-CA has been widely used by previous scholars, as it is based
on artificial neural network (ANN). Considering that the ANN algorithm has proven to be
an effective method to map the complex and nonlinear relationship between historical land
use and various auxiliary data sources [10], it has proven to be highly feasible. For instance,
Tayyebi et al. proposed a method based on an artificial neural network (ANN), GIS, and
RS-UGB model to construct a cluster with 90 growth lines centred on Tehran to simulate
the complex geometric environment of Tehran, Iran [8]; Liang designed a CA simulation
based on the system dynamics (SD) model and an ANN to achieve a bottom-up urban
growth simulation [12]. However, this model still has various disadvantages despite its
advantages in processing complex data. For example, simulation accuracy is limited by the
transformation rules and data mining scale, thus, it is necessary to extract the difference
between the two periods of land-use data before simulation. Meanwhile, the transformation
of land use used increases the computational scale of data and makes the model more
complex [12]. Random Forest (RF) is a reliable non-parametric ensemble model that sits at
the top of the classifier hierarchy. In addition, it uses a guided sampling strategy to create a
“forest” of trees made up of various individual decisions. Each tree is based on a subset
of feature variables and randomly selected observations. The final output RF model is a
policy generated by averaging the decisions of individual trees or by voting [13]. Moreover,
this method has various applications and has been extensively studied. Thus, a genetic
algorithm was used to optimize the model, and an RF model to estimate the possibility
of urban development. However, these existing models are insufficient in the ability to
evolve a certain land-use patch and simulate the spatiotemporal dynamics of multiple
land-use types. Therefore, Liang et al. proposed the PLUS model to solve these problems,
which combines a new Land Expansion Analysis Strategy (LEAS) and CA model based
on multi-type random patch seeds (CARS). This method is superior in use efficiency and
simulation accuracy [14].

Furthermore, in most studies of UGBs, land-use maps derived from remote sensing are
generally used as the only criterion for urban land identification. However, unfortunately, it
is difficult to use them to reflect the use of urban land entities, and the specific conditions of
human activities result in a certain degree of the unsuitability of the simulation of the urban
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growth boundary [15]. Herein, urban vitality is considered to be a necessary condition for
urban success and one of the necessary characteristics to identify a city, with features such
as diversity, high density, and hybridity [16]. In past studies, the amount of urban vitality
was regarded as an important criterion for distinguishing urban and rural areas [17,18]. In
addition, with the development of big data collection and processing technology, human
activity data have become a major data source for identifying urban built-up areas in
recent years, such as point of interest (POI) data, mobile phone signaling data, and water
and electricity data. Meanwhile, Long et al. used mobile phone signaling to evaluate the
implementation effects of urban growth boundary [15,17–19]. Moreover, inventory land
growth has become an important model of urban spatial growth in many areas of the
world, particularly for countries and regions in the middle and late stages of urbanization.
Therefore, we need more accurate ways to identify areas that need to be developed or have
potential growth in future urban expansion. We also regard the evolution of urban growth
boundaries as a dynamic process to achieve more accurate and reasonable guidance for
urban spatial growth.

The research focuses on the Chengdu Metropolitan Area (CMA) in southwest China.
Over the past decade, it has been one of the most rapidly urbanizing regions in the world.
In addition, its location on the eastern edge of the world’s highest plateau, the Tibetan
Plateau, makes it the closest metropolitan area to the roof of the world; it has a considerable
degree of complexity and fragility in the ecological environment. Hence, we must pay
attention to the influence of the ecological environment on urban spatial expansion.

In practice, this study proposes an urban boundary delineation method based on
urban human activities and urban vitality. The objectives are to identify areas with future
development potential and existing urban low-efficiency land for the study area and
incorporate them into the simulation of urban spatial expansion. Combined with the
ecological security system of the ecological network, the random forest method is used in
the PLUS model to calculate the future development probability of each land use. Moreover,
the random seed CA prediction method is used under this constraint to simulate land use
in three periods in the next 15 years. In this way, the urban and ecological spatial pattern of
the study area is optimized, thereby delineating dynamic urban growth boundaries.

2. Study Area and Data
2.1. Research Area

The CMA is located in southwest China and on the east side of Longmen Mountain,
on the eastern edge of the Qinghai–Tibet Plateau, which is the transition zone between the
Sichuan Basin and the Qinghai–Tibet Plateau, as well as the world’s closest metropolitan
area to the roof of the world. Sensitive areas, with more complex geological features and
many seismic fault zones, make it more reasonable to formulate urban expansion strategies
to avoid risky areas. The CMA consists of four cities, namely, Chengdu, Deyang, Meishan,
and Ziyang, with an area of 33,136 km2 (Figure 1).

In recent years, with the implementation of China’s Western Development Strategy
and the Belt and Road Initiative, the region’s urbanization rate has increased from 50% in
2010 to 60% in 2017. In the following 15 years, with the implementation of the “Chengdu–
Chongqing Double Cities Economic Area” strategy, regional development will become an
important step in China’s inland economic growth. Hu presented ideas for Chengdu’s
planning, such as balancing urban and rural development, focusing on efficiency and
equity, paying more attention to citizens’ interests, and coordinating short- and long-term
development [20] Therefore, the CMA needs a UGB policy to define the scope of UGB and
rationally guide the development and utilization of its urban land. The area of built-up
urban areas in China has nearly tripled in the past 15 years, reflecting the significant effect
of CMA’s urbanization. However, the expansion of urban land into metropolitan areas has
occupied agricultural land and ecological space and adversely affected the sustainability of
regional development.
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Figure 1. Location map of the study area.

2.2. Sources of Data

The sources of research data are divided into three categories: land-use map derived
from remote sensing, spatial big data, and other spatial impact factor data. Land-use remote
sensing data come from LANDSAT remote-sensing image data as an information source and
are obtained through manual visual interpretation. Considering the large scope of the study
area, the resolution of the data was adjusted to 300 m × 300 m. As for the spatial big data,
POI data from the AutoNavi map open data platform, involving business, catering, scenic
spots, commercial services, public services, and other points of interest, are geospatial big
data representing real geographic entities. Each piece of data contains attribute information,
such as the name, address, type, latitude and longitude, and administrative area of the
geographic entity. The POI data used in this article come from the Gaode Map Open
Platform (https://map.gaode.com/ (accessed on 10 July 2022) in 2020, and the AMappoi
tool is used to collect the POI data. Each piece of data contains information, such as
name, address, and category, as well as latitude and longitude coordinates. The heat
map comes from the Baidu map open platform, which reflects the population density
clustered in each region. Finally, the calculation results are displayed in different colors
and brightness. Considering the spatial difference in human flow, the Baidu heat map
has strong timeliness and is updated every 15 min. Given the cost of data acquisition,
the thermal data on 1 July 2020, were used. In addition, the night vision remote sensing
data came from the NPP-VIIRS satellite, and the data were carried by the Suomi National
Polar-orbiting Partnership Satellite. Provided by the Visible Infrared Imaging Radiometer
(VIIRS), this satellite has a higher spatial resolution than others, it can detect a weaker light
radiation [21] and its spatial resolution is 500 × 500 m. The population density data are
derived from the WorldPop population dataset.

Other spatial image factor data mainly include spatial data, such as elevation, slope,
land erosion degree, NDVI vegetation coverage, location of seismic fault zone, geolog-
ical disaster occurrence, rivers, roads, ecological protection areas, and planned green
corridor data sets. These data are provided by Data Center for Resources and Environmen-
tal Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn (accessed on
12 July 2022)).

3. Methods

The research is divided into three steps: constructing an ecological network based on
ecological sensitivity evaluation, identifying the scope of built-up areas, and proposing
land-use classification, and simulating the evolution of land use based on PLUS, thereby
delineating boundaries based on the simulation results (Figure 2).

https://map.gaode.com/
http://www.resdc.cn
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3.1. Building an Ecological Network

Owing to the special geographical location of the study area and the sensitive eco-
logical environment, the protection of ecologically sensitive areas is included in the urban
growth forecast within the region. The ecological network concept is a suitable basis for
inserting biodiversity conservation into sustainable landscape development, which can
bridge the paradox between reserve conservation and urban development. The networks
that provide connectivity offer habitats and corridors that help conserve biodiversity [22].

3.1.1. Ecological Sensitivity Evaluation

The ecological sensitivity of the research area must be evaluated to preliminarily
analyze the natural conditions, social economy, and policy factors of the research area and
provide suitable land for future urban land expansion. The land not suitable for urban
expansion was screened out through evaluation. Combined with the actual situation of
the research area, 10 indicators (e.g., topography, ecology, hydrology, land use, and land
coverage) involved in selecting the evaluation system were determined [23–25]. Notably,
the study area is located on the eastern edge of the Tibet Plateau. In addition, geo-logical
disasters, such as earthquakes, occur frequently [26], which have a significant impact on the
local ecological sensitivity and urban development. Therefore, the frequency and spatial
distribution of geological disasters and the distance from the fault zone are also important
indicators in the evaluation. Finally, the indicators are divided into three to five grades
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by the Natural Break method, and the weights are determined by the analytic hierarchy
process (Table 1).

Table 1. Ecological sensitivity evaluation.

Evaluation Items Weight Grade

9 7 5 3 1

Elevation (m) 0.15 2864–6507 1859–2864 1061–1859 589–1061 225–598
Slope (%) 0.15 41.89–82.16 24.1–41.89 13.21–24.1 4.51–13.21 0–4.51

Land Relief (m) 0.1 1555–4980 578–1555 173–578 56–173 0–56
Distance to rivers and

lakes (m) 0.05 0–12075 12,075–28,980 28,980–48,784 48,784–73,901 73,901–123,168

Distance to seismic fault
zone (m) 0.1 0–64332 64,332–96,783 96,783–120,972 120,792–18,993 18,993—264,422

Frequency of geological
disasters in 2020 (times) 0.15 4785–5982 3589–4785 2392–3589 1196–2392 0–1196

NDVI
vegetation coverage rate

(%)
0.1 0.63–0.99 0.52–0.63 0.40–0.52 0.23–0.40 0–0.23

Soil Average erosion
modulus (t/km2 ·a) 0.1 8000–15,000 5000–8000 2500–5000 1000–2500 <200

Land-use types 0.1 Bare land,
wetland –

Farmland,
woodland,
grassland

– Urban land

Identified or planned
ecological spaces Natural reserves, forest parks, planed green corridor

Based on the ArcGIS, the superposition analysis was carried out according to the
above-mentioned determination factor superposition method, and the results of the com-
prehensive ecological sensitivity evaluation of the study area (Table 2) were obtained. Five
grades were used, and the Aggregate Polygons tool was used to aggregate the highly
sensitive patches with a distance of less than 1000 m to form the ecological bottom-line area
of the study area.

Table 2. Classification of ecological sensitivity evaluation results.

Grade Value

Very low 25–59
Low 60–75

Medium 76–95
High 96–119

Very high 119–181

3.1.2. Construction of Ecological Network Based on LCP methods

Recently, the least cost path (LCP) method has been widely used in the process of
ecological network construction. This model considers the geographic information of the
landscape and the behavior of organisms. By referencing relevant literature [23–26] to
the identification of ecological sources, evaluation of landscape resistance, extraction of
ecological corridors, and setting of the corridor width, we propose the following ecological
network construction methods:

1. Identification of ecological sources. The patches of the high and extremely sensitive
areas were sorted from large to small. In addition, the patches with an area ranking
in the top 10% and area not less than 100 ha were selected as ecological sources. The
remaining patches were defined as ecological targets.

2. Evaluation of landscape resistance. Landscape resistance refers to the difficulty
of species migrating among different landscape units. The higher the ecological
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suitability of the patch, the lower the migration cost. When assigning the landscape
resistance, the landscape resistance value of each ecological unit in this study was
determined with reference to the estimation of the ecological diversity value land of
various ecological land in China by Xie et al., and other related studies [27] (Table 3).

3. Extraction of ecological corridors. The cost distance tool in ArcGIS10.5 is used to
calculate the path cost from all ecological sources to the ecological target, and then,
the cost path tool is used to extract ecological corridors.

4. Ecological corridor planning. The green corridor is adjusted according to the actual
situation and divided into three types: landscape leisure green corridor, ecological
protection green corridor, and ecological greenway along the road.

Table 3. Value of migration cost for various land-use types.

Land-Use Type Cost

Urban land 1000
Woodland 1
Grassland 3
Farmland 20

Wetland & rivers 300
Roads 1000

3.2. Identify Urban Built-Up Areas
3.2.1. Generating Kernel Density

The accurate extraction of urban built-up areas has great practicability and is of great
significance for measuring the urbanization process and judging the urban environment.
However, measuring urban built-up areas with a single point of the dataset is difficult [7].
Studies in recent years proved that urban vitality measurement indicators represented by
POI data could better explain the insufficiency of extracting night-time light data (NTL)
and could make the extraction of urban built-up areas more objective and accurate [28].
Heat map data and population density data can extend the perspective to specific human
activities, enhance the accuracy of identification, and make up for the problems of low spa-
tial resolution of NTL, including the inability of POI data to reflect human activities. After
referring to relevant studies, the four data were given equal weights [18,28]. Additionally,
the influence of abnormal pixels on the results was excluded through geometric correction
of NTL data and population density data. Compared with other data, the preprocessing of
POI point data is more complicated. To obtain the density distribution of POI data, the ker-
nel density estimation method is used, which is a high-quality density estimation method
by estimating the density of point features in the surrounding neighborhood through the
kernel density function [29]. The POI kernel density was generated by ArcGIS, and the
same method was used to obtain the heat map data. Finally, the superposition analysis was
used to synthesize the four data to obtain the comprehensive density data, that is, the city’s
vitality value distribution (Figure 3), whose range is between 0 and 10,822.

3.2.2. Extraction of Urban Vitality Area

The generated comprehensive density data are a smooth surface. To obtain more
reflections on the relationship between the density and the contour area, the ArcGIS
extraction contour tool is used to set contour lines with an interval of 100 m (Figure 4a).
After referring to the relevant literature [18,28,29], the Density-Graph (D-G) method was
used to identify the vitality boundary between urban and rural areas. In urban areas,
the comprehensive density is high, and the contour lines are relatively tight, whereas the
density in rural areas is relatively low, and the contour lines are sparser. Given this feature,
the boundary between urban and rural areas is identified by observing the changing law
of density and contour growth. Among them, the area of the closed curve enclosed by
the contour line is Sd, its theoretical radius is

√
Sd, the density value is the abscissa, and

the radius increment is the ordinate to fit the D-G curve [26]. Ultimately, the goodness of
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fit is R2 > 0.9 (Figure 4b). As the density value decreases, the curve keeps rising until a
certain point where the rising rate accelerates. The graph shows that the point lies between
the density values of 7000–7500. Compared with the urban area identified by the remote
sensing image, the range with a contour value of 7500 has a high degree of coincidence
with the recognition range. Thus, it is defined as the dynamic boundary between the main
urban area and the rural area.
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In addition, we observed that for some independent towns outside the main urban
area, we could not extract from them with a unified D-G method because of the large gap
between their density values and the main urban area. Therefore, for such towns, the
Density Counter Tree method is used to extract the city boundaries, which is a method
developed based on local contour trees. This method uses one or more trees to quantitatively
represent a contour map [19].
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3.2.3. Identify Land-Use Types

We compare the identification results with the remote sensing images of urban land
and combine the differences between the two identification results and the actual situation.
Then, we propose the following five new definitions of land-use types:

• Urban vitality land (UVL): The identified vitality areas overlaps with the remote
sensing image of urban land.

• Urban development-potential land (UDPL): UDPL is the land that belongs to the
urban vitality area but not defined as urban land in the remote sensing image and
does not belong to the ecological network. This land-use type is the main source of the
next phase of urban expansion.

• Urban inefficient land (UIL): UIL belongs to the urban land in the remote sensing
image but the vitality value does not meet the urban standard. This area may be a
new urban area under development or a decaying industrial area. We advocate the
renewal of this area to promote the restoration and improvement of vitality.

• Ecological network land (ENL): ENL including the identified ecological network land,
rivers, and lakes prohibit urban development, which includes bare land, forest land,
cultivated land, grassland, wetland, and other land-use types.

• Non-urban land (NUL): Except for all the land-use types mentioned above, NUL,
including forest land, allows urban development, village construction land and others.
As this type of land use does not involve restrictive factors, such as ecological protec-
tion, for the convenience of simulation, it is unified into the same type of land use.

3.3. Urban Expansion Simulation Based on PLUS Mode

To simulate the expansion of various types of land more accurately, we adopted the
Patch-generating Land-Use Simulation (PLUS) model developed by Liang et al. [9].

The PLUS model contains two modules: a random forest framework based on a land
expansion analysis strategy (LEAS); and a CA based on multi-type random patch seeds
(CARS) [14]. The model was available to simulate the change of land-use patches and to
analyze the underlying drivers of land-use dynamics by applying a combination of the
LEAS and CARS. The resulting output by the PLUS model has proved more accurate, had
more reliable spatial patterns, and allowed for important insights concerning the drivers of
land expansion [14,30–32].

In this study, the PLUS model will be used to calculate the expansion probabilities of
the five land use types and to generate the patches with high development probability for
each land-use type to simulate the land-use changes. In addition, we take five years as a
period and control the number of patches of different land-use types in each period based
on different growth strategies in different periods to achieve the goal of dynamic simulation.

3.3.1. Land-Use Expansion Analysis Strategy (LEAS)

The proposed LEAS requires two dates of land-use data as its TAS, thus, in this study,
the land-use maps of 2015 and 2020 were used. We overlaid the two periods of land-use
data and extracted the cells with changed states from the later date of the land-use data,
which represented the change regions for each land-use type. Then, sampling points were
randomly selected and divided into subsets based on their land-use types, which were
separately analyzed using a data mining method [14].

The random forest algorithm is used to generate the factors of each type of land-use
expansion and driving force one by one to simulate the appearance of each land-use type in
the same geographic space probability [30]. Referring to the previous literature [9,14,30–32],
we selected five spatial driving factors: the distance to the road, the distance to the railway,
the distance to the rail traffic, the elevation, and the slope. The random forest parameters
in the LEAS module are set as follows: using the uniform sampling method, the number
of decision trees is 20, the sampling rate is 0.01, and the number of features used to train
the random forest is 5, which is the same as the number of driving factors. The constraint
map is a binary image, where 1 indicates that the land-use type can be converted to other
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land-use types, and 0 indicates that the land-use type cannot be converted to other land-
use types (Figure 5f). The ENL and river wetland land were selected as the prohibited
construction zone. Finally, we obtained the development probabilities of five types of land
use (Figure 5a–e). As we can see, the development of urban vitality areas is more likely
to be closer to the periphery of the city, whereas the development of ecological land is far
from urban areas.
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3.3.2. Predicting Future Demand for Land Expansion

For the future demand simulation of urban land, we forecast in three stages: 2020–2025,
2025–2030, and 2030–2035. We use the Markov method to forecast for each land-use type
and adjust for different expansion strategies in the forecast stage (Table 4). In the past
five years, Chengdu Metropolitan Area’s (CMA) expansion strategy has been based on
inventory development, focusing on the development of potential urban land [33]. In the
2025–2030 time period, urban land redevelopment and urban expansion are equally impor-
tant. Taking a strategy, such as promoting the diversification of land use and enhancing the
vitality of the city, is encouraged. In the time of 2030–2035, the urban expansion will slow
down, and more emphasis will be placed on the development of UIL.

Table 4. Land expansion strategies and demands at each stage.

Period Expansion Strategies
Prediction of the Number of Grids for Each Land-Use Type

UVL UDPL UIL ENL NUL

2020–2025 Incremental expansion first 13,136 4932 4477 193,497 154,597

2025–2030 Incremental and inventory
expansion equally valued 18,293 3565 3352 190,823 154,597

2030–2035 Focus on inventory development 21,704 2194 2302 190,362 154,597

The CARS module is a CA model that includes a patch-generation mechanism based on
multi-type random seeds of land use [14], which integrates the impacts of macro “top-down”
land-use demand and the “bottom-up” simulation on the land system. It incorporates
an innovative multi-type random seeds-generating mechanism to simulate micro-land-
use competition to drive the current land-use amounts to meet the macro-demand under
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the neighborhood effect and development probability (the result of LESA) [32]. Table 5
shows the neighborhood effect weights of various types of land use in CMA, represents
the neighborhood effect of a pixel which is determined by the proportion of land use
of type in the neighborhood of a pixel and the neighborhood weights [32]. When the
neighborhood effect of type land use is zero, the multi-type random seeds-generating
mechanism will generate random seeds of each land-use type through the Monte Carlo
method. Additionally, Table 6 shows the transformation matrix of various types of land
use the value is 0 or 1, the value 0 means it cannot be converted with a specific land-use
type, and 1 means can be converted. Owing to the characteristics of ecological land, it does
not participate in any land conversion.

Table 5. Neighborhood effect weights of various types of land-use.

Land-Use Type Weights

UVL 0.2
UDPL 0.25

UIL 0.2
ENL 0.15
NUL 0.2

Table 6. Transformation matrix of various types of land-use.

UVL UDPL UIL ENL NUL

UVL 1 1 0 0 0
UDPL 1 1 0 0 0

UIL 1 1 1 0 0
ENL 1 1 1 1 0
NUL 0 0 0 0 1

3.3.3. CA Prediction Based on Multi-Class Random Patch Seeds (CARS)

CARS module is a CA model that includes a patch-generation mechanism based on
multi-type random seeds of land use [14], which integrates the impacts of macro “top-down”
land-use demand and the “bottom-up” simulation on the land system. It incorporates
an innovative multi-type random seeds generating mechanism to simulate micro-land-
use competition to drive the current land-use amounts to meet the macro-demand under
the neighborhood effect and development probability(the result of LESA) [14].Table 5
shows the neighborhood effect weights of various types of land use in CMA, represents
the neighborhood effect of a pixel which is determined by the proportion of land use
of type in the neighborhood of a pixel and the neighborhood weights [31]. When the
neighborhood effect of type land-use is zero, the multi-type random seeds generating
mechanism will generate random seeds of each land-use type through the Monte Carlo
method. Additionally, Table 6 shows the transformation matrix of various types of land
use, the value is 0 or 1, the value 0 means it cannot be converted with a specific land-use
type, and 1 means can be converted. Owing to the characteristics of ecological land, it does
not participate in any land conversion.

3.3.4. Model Validation

To verify the prediction accuracy, Kappa and FOM coefficients are used to check
the simulation accuracy. Among them, the Kappa coefficient is a test method used to
evaluate the consistency of the impact classification results. The larger the value of the
Kappa coefficient, the more accurate the result of the land-use simulation [30]. The FOM
coefficient is a performance evaluation method, which is the ratio of the accurately predicted
sample to other samples. A larger FoM value means higher simulation accuracy [30].
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3.4. UGB Delineation

The ecological network is regarded as a restrictive growth boundary, that is, a rigid
growth boundary. Although the use of rigid boundaries brings uncertainty, it is a useful
addition to environmental protection [34]. For the simulated urban vitality land (UVL)
at each stage is the extent of the flexible urban growth boundary. The UIL and UDPL
in each stage are the main space for future urban expansion and redevelopment, which
both participate in the next stage of the space expansion process. The role of the flexible
boundary is to guide urban expansion to take place within the boundary to form a compact
urban space. To form a smooth border, the edge filter is used to remove broken patches and
sharpen the edges of urban cells and convert them to polygons to form smooth boundaries.

4. Results and Analysis
4.1. Ecological Network Construction Results

Through the ecological assessment, 5588.9 km2 of high and extremely sensitive areas
were identified (Figure 6a). The ecological source patches are concentrated in the Longmen
Mountain and Longquan Mountain, and 15 ecological corridors were established for the
other six ecological targets. The width of the ecological corridor varies according to its
different functions. The purpose of the ecological protection corridor is to protect ecological
diversity and reserve enough space for species migration. According to the corridor width
proposed by Roling J, the width of such corridors was 60 m, and the width of the landscape
leisure green corridor and the ecological greenway along the road is 5–15 m according to
the relevant planning [35] (Figure 6b). The reason is that such land is concentrated in the
city center, and the land supply is relatively tight. The ecological network is composed
of ecological sources, ecological goals, and ecological corridors, which are also the rigid
boundaries of urban expansion. They are distributed around the study area and rely
on Longmen Mountain and Longquan Mountain. Each patch is large and concentrated.
The Mt. Longmen fault zone in the transition zone between the Chengdu Plain and the
Qinghai-Tibet Plateau is the largest patch, providing a large area of ecological resources
and ecological security barriers for the urban area. Its network structure is relatively simple,
and Longquan Mountain assumes the role of the ecological center, forming a spatial pattern
connecting the east and west with the Longquan Mountain ecological area as the core,
ensuring the connectivity between various ecological patches. The main components of
the ecological network are cultivated land, forest land, grassland, bare land, and wetlands.
Among them, cultivated land accounts for 52.4%, which is the largest source of land for the
ecological network, followed by forest land, accounting for 38.6%.

4.2. Land-Use Identification Results

A total of 672 km2 of land were identified as UVL, and the urban low-utility land area
was 412 km2 (Table 7), accounting for 38% of the urban area identified by remote sensing.
This area is located on the outer edge of the central urban area of Chengdu, particularly in
the east and northeast of Chengdu, and the southwest. There are more UIL in the central
and western regions. At present, the types of land used in these areas are low-density
residential and industrial areas (Figure 7). Problems exist, such as low development density,
single function, disorderly expansion, and poor appeal to the crowd, and they have great
urban vitality and increased demand. UDPL is concentrated on the outer edge of the central
urban area of Chengdu. This area is close to the main urban area, has close economic ties,
and has good traffic conditions, which is the main direction for future urban expansion.
Moreover, the Jianyang area (Figure 7) located on the south side of Longquan Mountain
is close to Tianfu International Airport. Its comprehensive urban vitality is higher than in
other areas, and it will carry more urban functions in the future. Therefore, this area has
more potential development land.
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Table 7. Area of various land-use types after identification.

Land-Use Type UNL UIL UDPL ENL NUL

Area (km2) 672 412 850 17,509 13,914
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Figure 7. Land-use identification results.

In general, the current CMA urban land-use efficiency is not high, and there are a
large number of low-efficiency lands that need to be improved. For a long time, CMA’s
urban development has ignored human activities and urban vitality, particularly the lack
of reasonable land-use policies, which is mainly reflected in the random conversion of
another land into urban land. For these reasons, urban functions cannot be realized, which
enhances suburban sprawl.
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4.3. Delineation Results of Urban Growth Boundaries

The tree-stage dynamic urban growth boundaries are drawn combined with the PLUS
simulation results (Figure 8 and Table 8). The kappa coefficient of the simulation is 0.948,
the overall accuracy is 94.75%, and the FoM index is 0.122, which is quite efficient for further
analysis. The resulting UGB raster format was converted into a vector format, patches
smaller than 5 km2 were removed, and patches within 2 km were aggregated to form a
continuous growth boundary. Figure 8a–c show the specific conditions of UGB in three
different locations in three time periods. Different spatial expansion strategies were adopted
in each time-period. The low-vitality areas of towns decreased significantly over time,
demonstrating the effectiveness of the simulation with a process of inventory development
behaviors. Moreover, most of the urban-potential development land is converted into UGB.
From the specific perspective, the central urban area of Chengdu (Figure 8a) will be mainly
used for urban development potential in the space expansion in 2020–2025, leaving a large
number of urban low-utility land waiting to be improved. This situation will be improved
in 2030–2035, as inefficient land continues to decrease and urban land further expands
in the northeast direction, gradually integrating with the Deyang area. The Dujiangyan
area (Figure 8b) located in the northwest of CMA has virtually not experienced a spatial
expansion in the 15-year expansion plan. The reason is the stagnation of spatial expansion
caused by too many restrictive factors in the surrounding area, which is inconsistent with
the actual situation and needs to be reconnected. Thus, further improvements will be made
in the following research of the Jianyang area which relies on the international airport; its
(Figure 8c) space expansion is fast and has been in the process of acceleration.
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Table 8. Area of various land-use types after simulation.

Land-Use Type/Year UNL UIL UDPL UNL ENL

2025 (Km2) 1182 443 403 17,415 13,914
2030 (Km2) 1646 321 302 17,174 13,914
2035 (Km2) 2043 287 297 16,816 13,914

4.4. Analysis
4.4.1. Analysis of Land-Use Conversion

Figure 9a shows the flow of land-use conversion during the simulation period from
2020 to 2035. Owing to the new land-use classification, most cultivated land has flowed
to NUL and continued to exist as cultivated land. A considerable part of the cultivated
land has been converted into ENL, reaching 7083 km2. Nearly 80% of the forest land has
been converted into ENL, which is an important part of the CMA landscape pattern. The
land within the UGB range mainly comes from cultivated land, non-urban construction
land, and original urban land. Figure 9b shows the sources of transformation between
dynamic urban land, UIL, and UDPL in three stages. The growth of UVL land mainly
comes from NUL and UDPL. With the implement of planning, the dependence of new
UVL on NUL is gradually reduced. By the end of the planning period, the number of
UIL and UDPL has decreased significantly, which means that most of the UDPL has been
successfully converted into UGB. UIL has also been successfully converted into UGB in
this process, reflecting the success of land inventory development strategy. Through the
analysis of land-use transformation, the transformation of urbanized areas with different
vitality values in the simulation can be seen. Thus, our proposed UGB delineation method
regards human activities as an important factor affecting urban expansion, follows complex
mathematical rules, and regards the simulation of urban growth boundaries as a dynamic
process. Moreover, advocates that low-utility land should be transformed into urban
vitality, which increases the practicality of UGB during implementation.
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4.4.2. Expansion Direction Analysis

As shown in Figure 10, an eight-quadrant map is drawn to compare the expansion
directions of the 2025–2035 simulations for four important cities. For the downtown area of
Chengdu (Figure 10a), the first to eighth quadrants have almost the same expansion trend.
In the Deyang urban area (Figure 10b), the expansion patterns at different stages differ. In
2025–2020, there will be developed in all directions. In 2030–2035, with the development
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of north and east, there will be evident development in quadrants II, V, and VI. For the
Jianyang area (Figure 10c), 2030–2035 year-on-year growth dominates, particularly in
quadrants V, VI, VII, and VIII. The development from 2025 to 2030 is mainly concentrated
in the I, VII, and VIII quadrants. The growth in the south and north directions is more
evident. For the Meishan area (Figure 10c), the growth is more concentrated on the west
side, whereas quadrants V, VI, and others in the east direction show little increase.
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5. Discussion and Conclusions

This study uses a set of research methods to predict the spatial expansion of CMA and
delineate dynamic UGBs for it. Combined with the identification of UIL and UDPL, the two
are included in the urban spatial land. In the prediction simulation of dynamic expansion
and evolution, the ecological network construction technology method is used. Moreover,
the ecological barrier of the CMA is constructed as a rigid boundary to control the growth.
The technical methods include the PLUS model, LCP method, kernel density method, and
D-G model. In short, the model can be applied to cities or metropolitan areas that are in the
middle and later stages of urbanization and have certain spatial continuity characteristics.

Compared with the current UGBs delineation technical methods, this study has made
certain progress: The urban vitality and land coverage are combined to consider the urban
land expansion probability, thereby highlighting the dynamic transformation process of
urban inefficient land and development potential land, which responses to the development
strategy of the inventory expansion in the study area; It highlights the constraints derive by
ecological pattern, ensures the ecological security and provides a considerable amount of
green infrastructure and open space for cities and towns in the metropolitan area. However,
the specific implementation results need further practice verification.

Owing to the data collection and processing technology of big data, through pro-
cessing, the situation of human activities in the geographical space over a period of time
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can be clearly identified. Moreover, through a comparison with remote sensing images,
inefficiencies and vitality in towns and cities can be distinguished. Insufficient areas can
also be identified as NUL with development potential. As a dynamic policy tool, UGB
should not blindly pursue urban extensional growth in the implementation process but
should select appropriate land for appropriate extensional expansion and redevelopment
of inefficient land. This process should also reflect in the process of UGB delineation. This
study selects the CMA as a case, identifies a large number of urban low-efficiency land
and development potential land, and incorporates them into expansion simulation and
UGB delineation. The study also combines ecological sensitivity evaluation to construct an
ecological network as a rigid growth boundary has formed the urban land development
and control strategy and ecological landscape pattern in the next 15 years. Over the course
of a 15-year dynamic simulation, inefficient lands were continuously reduced, meeting a
considerable portion of the urban expansion needs.

When the local government is using the results of this research, it can be combined with
the implementation of territorial spatial planning. Based on China’s newly revised “Land
Management Law”, territorial spatial planning should coordinate the layout of agricultural,
ecological, urban, and other functional spaces, delineate, and implement permanent basic
farmland red lines, ecological protection red lines, and urban development boundaries. Our
study result can serve as a reference for the delineation of urban development boundaries
of the Chengdu metropolitan area. In the process of delimiting the urban development
boundary, we advocate that in the process of delineating urban development boundaries,
five years are used as a planning period, and different development strategies are adopted
for each stage to delineate growth boundaries based on the actual conditions (Figure 10).
Herein, the balance between the two development strategies of inventory development
and incremental development in different stages was highlighted: In the first five years
(2020–2025), the incremental development strategy will continue. The area around the
central urban area of Chengdu and the Jiayang area has a higher expansive potential, and
the government should give priority to the development potential areas of related areas.
Meanwhile, in the second stage (2025–2030), the government should focus on guiding the
slowdown of incremental development, and pay attention to the renewal and development
of areas in the Northeast, West, and South of Chengdu, and take measures to improve
traffic accessibility, enhance the diversity of urban land functions and land-use Intensity,
and so on, to enhance the urban vitality of some regions, hence, to improve the carrying
capacity of the urban population. Moreover, in the third stage (2030–2035), it is expected
that the urbanization process of the study area will enter the later stage, and the incremental
development will further slowdown, particularly in the Central urban area of Chengdu.
Except for some areas (such as Jiayang, Measham, Deyang, etc.) that still have the potential
for extensional growth, the development mode of other areas should be adjusted to the
inventory development mode. However, areas with low density will be redeveloped to
further improve the urban structure and functional layout. In addition, the delineation of
the ecological network is from the perspective of the ecological function of the study area,
and further extends the functionality of the ecological protection boundaries for ecological
function assurance, environmental quality safety, and resource utilization, as well as further
guides urban expansion in the appropriate range. Then, it can form a complete network
with both ecological protection and recreational functions.

In the research, some problems still need to be solved. First, the identification methods
for low-utility land are relatively simple. Owing to the large scope of the study area,
this study lacks detailed research and observation on microscopic land-use and lacks
investigations on the land-use properties, plot ratio, building density, and traffic conditions
of relevant land parcels. Hence, some land use in special circumstances is included in the
low-efficiency land. Therefore, when making a development plan, the land within the
development scope should be re-identified first. Second, the identification and simulation
of small urban patches will have some deviations. Considering their large differences in
scale and vitality from the surrounding central urban areas, using the same parameter
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settings may reduce the accuracy of the simulation. Therefore, this research framework is
more suitable for simulating a single continuous, highly concentrated urban area. Moreover,
separate simulations are required for individual, relatively independent patches.
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