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Abstract: Fighting land degradation of semi-arid and climate-sensitive grasslands are among the
most urgent tasks of current eco-political agenda. Particularly, northern China and Mongolia are
prone to climate-induced surface transformations, which were reinforced by the heavily increased
numbers of livestock during the 20th century. Extensive overgrazing and resource exploitation
amplified regional climate change effects and triggered intensified land degradation that forced
policy-driven interventions to prevent desertification. In the past, however, the regions have been
subject to continuous shifts in environmental and socio-cultural and political conditions, which
makes it particularly difficult to distinguish into regional anthropogenic impact and global climate
change effects. This article presents analyses of historical written sources, palaeoenvironmental data,
and Normalized Difference Vegetation Index (NDVI) temporal series from the Moderate Resolution
Imaging Spectroradiometer (MODIS) to compare landcover change during the Little Ice Age (LIA)
and current spectral greening trends over the period 2001–2020. Results show that decreasing
precipitation and temperature records triggered increased land degradation during the late 17th
century in the transition zone from northern China and Inner Mongolia Autonomous Region to
Mongolia. From current climate change perspectives, modern vegetation shows enhanced physical
vegetation response related to an increase in precipitation (Ptotal) and temperature (T). Vegetation
response is strongly related to Ptotal and T and an increase in physical plant condition indicates local
to regional grassland recovery compared to the past 20-year average.

Keywords: climate change; Little Ice Age; NDVI; historical climatology; documentary sources;
MODIS; spectral greening; land-use; governance

1. Introduction

Climate and land cover changes, heavy grazing, and agricultural and resource exploita-
tion contribute significantly to land degradation and desertification processes in sensitive
arid and semi-arid regions of Earth [1–8]. Particularly, seasonal vegetation cover plays a
major role in the ecosystem’s functionalities, affecting soil development, sediment depo-
sition, water infiltration rate, and wind-driven erosion during high-cover and low-cover
periods and within the spatial patterns of species differentiation [9–11]. From a histori-
cal perspective, seasonal vegetation dynamics control transhumance (seasonal nomadic),
socio-cultural, and socio-economic strategies, which nowadays have turned into politically
motivated intensified sedentary patterns with regional and supra-regional environmental
overstraining. In many cases, severe surface damage and sandy desertification were caused
through increased livestock grazing [6,12–15]. The system-inherent interactions of land
degradation, climate forcing, anthropogenic impact, and ecological functionalities have
been recently emphasized by multiple authors, who suggested complexity not only within
physically, but also socio-culturally controlled systems [5,12,16,17].
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Particularly, China’s Inner Mongolia Autonomous Region and Mongolia have experi-
enced massive political and economic development during the past decades, which enabled
a strong transformation of the social, rural, and environmental life [18–22], followed by
governmental grassland restoration projects and policies to prevent desertification [23–25].
Although the modern anthropogenic impact on semi-arid environments of the region has
recently been emphasized by many authors [13,19,26–28], isolating the climatic signal
affecting land degradation processes from human-induced landcover change still provides
a great challenge [27,29].

In this article, historical documentary sources from 1688 AD were used to evaluate non-
standardized measures of climatic and surface conditions during the Little Ice Age (LIA) in
northern China and Mongolia and to compare them to modern landcover development,
partly deriving from satellite hyperspectral imagery, Copernicus Global Land Service data,
and historical and current climate proxy datasets. The historical data allows the surface
vulnerability and land transformation processes through intensified wind-blown sand
transport during the exceptional cold and dry period of the so-called Maunder Minimum
of the Little Ice Age to be traced [30–35]. The comparison of surface conditions during
the late 17th century AD further enables the evaluation of current global climate change
and the cross-validation of the strong anthropogenic overprint in semi-arid grasslands
of northern China and southern Mongolia [21]. Here, a particular focus is put on global
spectral greening trends and vegetation response to global warming. Eventually, this article
emphasizes the applicability of historical written sources to understand not only past but
also current climate change effects on the local to the regional scale, a methodological
problem, which has recently gained further momentum [17,36–39].

2. Materials and Methods
2.1. Environmental Settings

The core research area covers southern Mongolia, China’s Inner Mongolia Autonomous
Region, and parts of China north of Beijing (Figure 1). Mongolia is a landlocked country
north of China with a highly continental climate, extremely cold and dry winters, and short
and hot summers [40]. After long-term summer droughts, climate extreme events in winter
(dzud) have frequently led to severe livestock perish, which caused a strong socio-economic
crisis due to a domestic product market dependency of about 20% [41,42]. Inner Mongolia
is situated to the south at the northern margins of China and stretches from northeast to the
northwest (37◦30′–53◦23′ N, 97◦ 10′–125◦50′ E) [43]. Most of the plateau-like elevated region
is dominated by extensive grasslands, which are characterized by various types of steppe
vegetation and a great sensitivity to climate and land-use change [44–46]. The climate is
monsoon-controlled, arid to semi-arid with cold and dry winters and hot and more humid
conditions during summer and towards the subhumid north-eastern part [43,44]. Different
climatic zones have developed under a prevailing continental climate, with temperate
and semi-humid conditions in the east and more semi-arid and arid conditions towards
the western part [21]. Mean monthly precipitation ranges from 0–200 mm (long-term
average < 200 mm [47]) with a peak during July and September (Figure 2), temporally
limiting plant growth [21]. In combination with the high environmental vulnerability and
climate extremes, the strongly increased water consumption for agricultural purposes,
animal husbandry, and particularly intensified state-controlled mining activities has locally
amplified the drought risk of the region and led to a sequence of water shortages [42,47–50].



Land 2022, 11, 100 3 of 19Land 2022, 10, x FOR PEER REVIEW 3 of 20 
 

 
Figure 1. The study area in northern China and the southern part of Mongolia, covering 
approximately 433,425 km2. A set of medium resolution Landsat-OLI-8 hyperspectral satellite image 
sets the extent of the temporal series reference area (USGS, last accessed 5th of January 2021). 
Vegetation indices (NDVI) allow for the evaluation of surface conditions through reflectance 
characteristics and eventually the differentiation into bare areas, vegetation-covered areas, and 
modern built-up (compare sections A and B). The threshold histograms (C,D) show the signal’s 
differences of two comparison sections in the north with extensive sand cover (A,C) and the south 
over Beijing with mosaic vegetation cover and extensive built-up (B,D). The aridity index is based 
on the Global Aridity Index and Potential Evapotranspiration Climate Database v2 [51]. 

2.2. Route Reconstruction and Historical Environmental Analysis 
A comparison of historical written sources [52] and environmental data attributes 

was carried out to evaluate modern land degradation and desertification dynamics in 
northern China and southern Mongolia. Historical data derived from a day-by-day diary, 
documented by the French missionary Jean-François Gerbillon in the year 1688 during his 
employment at the imperial court at Beijing. While he was travelling from Beijing through 
Inner Mongolia and Mongolia during the period from the 30th of May to the 6th of 
October 1688, Gerbillon documented climatic and surface conditions as well as general 
environmental, social, cultural, and political phenomena [53]. From the documentary 
sources, a route model was reconstructed using terrain-dependent least-cost-path (LCP) 
analysis. The model is based on surface roughness and slope gradients because directional 
movement patterns were emphasized only in cardinal directions [54–56]. For this reason, 
a digital elevation model was downloaded from the United States Geological Survey 
(USGS, SRTM 1-arc-second/30 m resolution [57]) and resampled to a 100 m grid size. The 
route model was calculated in QGIS (QGIS Geographic Information System. QGIS 
Association. http://www.qgis.org, last accessed 7th of January 2022) using a cumulative 
friction surface and movement directions between the single stopping points. Around the 
reconstructed route, a 20 km buffer was created to visualize the historical environmental 
conditions within a suitable range. The corridor does not represent the accessibility of the 
area but was chosen to interpolate the reconstructed point-based data to a raster. Climatic 
conditions were classified on a discrete scale from 1–6 with very hot (6), hot (5), warm (4), 

Figure 1. The study area in northern China and the southern part of Mongolia, covering approxi-
mately 433,425 km2. A set of medium resolution Landsat-OLI-8 hyperspectral satellite image sets
the extent of the temporal series reference area (USGS, last accessed 5 January 2021). Vegetation
indices (NDVI) allow for the evaluation of surface conditions through reflectance characteristics
and eventually the differentiation into bare areas, vegetation-covered areas, and modern built-up
(compare sections A and B). The threshold histograms (C,D) show the signal’s differences of two
comparison sections in the north with extensive sand cover (A,C) and the south over Beijing with
mosaic vegetation cover and extensive built-up (B,D). The aridity index is based on the Global Aridity
Index and Potential Evapotranspiration Climate Database v2 [51].

2.2. Route Reconstruction and Historical Environmental Analysis

A comparison of historical written sources [52] and environmental data attributes
was carried out to evaluate modern land degradation and desertification dynamics in
northern China and southern Mongolia. Historical data derived from a day-by-day diary,
documented by the French missionary Jean-François Gerbillon in the year 1688 during his
employment at the imperial court at Beijing. While he was travelling from Beijing through
Inner Mongolia and Mongolia during the period from the 30 May to the 6 October 1688,
Gerbillon documented climatic and surface conditions as well as general environmental,
social, cultural, and political phenomena [53]. From the documentary sources, a route
model was reconstructed using terrain-dependent least-cost-path (LCP) analysis. The
model is based on surface roughness and slope gradients because directional movement
patterns were emphasized only in cardinal directions [54–56]. For this reason, a digital
elevation model was downloaded from the United States Geological Survey (USGS, SRTM
1-arc-second/30 m resolution [57]) and resampled to a 100 m grid size. The route model
was calculated in QGIS (QGIS Geographic Information System. QGIS Association. http:
//www.qgis.org, last accessed 5 January 2022) using a cumulative friction surface and
movement directions between the single stopping points. Around the reconstructed route,
a 20 km buffer was created to visualize the historical environmental conditions within a
suitable range. The corridor does not represent the accessibility of the area but was chosen
to interpolate the reconstructed point-based data to a raster. Climatic conditions were

http://www.qgis.org
http://www.qgis.org
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classified on a discrete scale from 1–6 with very hot (6), hot (5), warm (4), moderate (3), cold
(2), and very cold (1). Wind speed was estimated using cardinal directions and four classes
from calm (0), breeze (1), wind (2) to storm (3). Surface conditions were distinguished
according to the Copernicus Global Land Cover collection using the classification into
bare/sand (0), herbaceous (1), shrub (2), cropland/grassland (3), forest/mixed (4), built-up
(5), and water surface (6) [58,59]. Climatic and surface data were interpolated within a
20 km range along the route to allow for comparison with modern landcover datasets.
The data was then compared to modern land cover and temperature variations using
the Copernicus Global Land Cover 100 m collection from 2019 [58] and precipitation and
temperature comparison datasets [60,61].

2.3. Comparison Environmental Data

To measure the relationship between climate variables and vegetation feedback,
a global NDVI monthly time series dataset (2000–2020) was acquired from the Earth-
data server of the USGS (https://lpdaac.usgs.gov/products/mod13c2v006/, last accessed
16 April 2021) [62]. The data has a complete spectrum for the period 2001–2020. The
year 2000 is incomplete and was partly removed for the trend analysis. The aridity index
(Figure 1) is based on the Global Aridity Index and Potential Evapotranspiration Climate
Database v2 [51] and was cropped to the administrative boundaries of Mongolia and China
to visualize the broader environmental context of the study area. Because desertification
and land degradation processes are strongly connected to windspeed and surface erosion,
the historical wind direction and intensity were compared to modern data extracted from
the Global Windatlas [63].

Due to the temporal variation of the surface and the climatic conditions, the study
area was differentiated into equal monthly sectors using Voronoi polygons. Monthly
maximum temperature and precipitation totals were plotted in each sector to trace the
seasonal variability in Inner Mongolia and southern Mongolia over the summer period.
To cross-check the historical data results, a set of comparison climate data was acquired
from the National Centers for Environmental Information (NOAA, last accessed 5 January
2021) and plotted using a locally estimated scatterplot smoother (LOESS) [64] and the R
environment (R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. URL https://www.R-project.org/, last accessed
5 January 2022) with smoothing parameters 1, 0.5, and 0.3. Temperature anomaly and
reconstructed temperature is based on a stalagmite from Shihua Cave, Beijing, China and
instrumental meteorological records [65]. Long-term streamflow variation of the River
Kherlen derived from the dataset by Pederson and colleagues and spatial and temporal
tree-ring replication and nested model methods by Davi and colleagues [7,66]. Streamflow
variation of the river Selenge in Mongolia is based on tree-ring-width chronologies [67]
and precipitation reconstruction in north-eastern Mongolia and for two regions in China
derived from tree-ring-width data [7,68].

2.4. NDVI Temporal Anomalies, Trend Analysis, and Environmental Parameter Correlation

To trace the response of plant growth to precipitation and temperature variation in the
study area, a temporal series of NDVI from MODIS/Terra Vegetation Indices Monthly L3
Global 0.05Deg CMG V006 imagery was created, which provide a pixel size of 5600 m and
cover the period 2002–2020. Monthly total precipitation and monthly temperature were
extracted from the CRU (Climate Research Unit) dataset [61]. The data comes in .nc file
format and can be read and extracted using the ncdf4 package by David Pierce. Precipitation
and temperature were used to compare climate change signals to global spectral greening
trends [69,70]. Particularly, the early growing phase in Inner Mongolia [71] is sensitive to
trends in precipitation and temperature variability, which impacts the growth behavior. A
Spearman’s rank correlation was performed on raster annual time series stacks to analyze
the spatial relationship between climate variables and vegetation response across China
and Mongolia. Spectral greening and browning trends as well as trends in precipitation and

https://lpdaac.usgs.gov/products/mod13c2v006/
https://www.R-project.org/
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temperature variability were identified using a pixel-wise raster analysis in R. The method
and the workflow is well-described by Martin Brandt (2013) and is publicly available from
the website (https://matinbrandt.wordpress.com/2013/11/15/pixel-wise-time-series-
trend-anaylsis-with-ndvi-gimms-and-r/, last accessed, 28 December 2021).

The recent vegetation behavior in northern China and Mongolia was analyzed for
yearly anomalies compared to the long-term record from 2000–2020. For this reason, the
mean total NDVI value (m) and yearly average NDVI values were calculated from the
cumulated monthly MODIS datasets. The standard deviation (SD) was calculated for all
values and subtracted from and added to the multiannual mean value (m − SD; m + SD) to
create the range of the standard deviation for the period 2000–2020. Consequently, annual
NDVI anomalies were calculated by distinguishing into positive or negative deviation
from the standard deviation range. For each year, the (m + SD) was subtracted from the
annual mean NDVI value and all values ≤ 0 were removed. According to the lower limits
of the standard deviation range, (m − SD) was subtracted from each annual mean NDVI
value and all values ≥ 0 were removed. Eventually, a set of raster layer was generated,
which shows negative and positive annual NDVI anomalies compared to the long-term
temporal series of 20 years. Additionally, the histograms and density estimations of the
anomaly value distribution were plotted to visualize the trends in physical plant activity
(see the Supplementary Materials to this article). From the time series, a temporal plot and
linear regression analyses were calculated to visualize the development in physical plant
conditions in the study area. These anomaly datasets allow an understanding of the recent
surfaces transformations in northern China to be obtained and comparison of them to past
and current climate change models.
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Figure 2. Multiannual average monthly total precipitation and mean temperature over the period
2001–2020, based on CRU TS4.05 (Climatic Research Unit Time Series) gridded data of month-by-
month variation [61].

3. Results and Discussion

Today, the transition zone from northern China to Inner Mongolia and Mongolia is
characterized by a pronounced landcover gradient from moderate forested areas in the
south and the south-east to increasingly semi-arid and arid conditions towards the Mongo-
lian Plateau and the extensive grasslands of Inner Mongolia and Mongolia (Figure 3). The
Copernicus data highlights the modern landcover sequences and compares topographical
features for each landcover class in the study area. Forested zones are mostly abundant
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in lower elevated areas of the subhumid belt north of Beijing. With increasing elevation,
patterns of herbaceous grassland and shrubs prevail. Towards the north-west, extensive
sandy lands occur with a mean elevation of about 1000 m a.s.l. Croplands are frequently in-
terspersed into semi-arid grassland patches, which points towards an active anthropogenic
land-use. Figure 3 further visualizes the historical route patterns and the daily camps of
the travels of Gerbillon from 1688. From these route reconstructions, a cross-validation of
hermeneutic sources and modern landcover and climate data was derived.
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Figure 3. Landcover in the study area in 2019 and 1688 compared to topographical elements and the
historical route reconstruction from 1688 [53,57,58]. The reconstructed landcover of 1688 is overlaid
on modern Copernicus landcover data from 2019. During May to October 1688, Gerbillon crossed
large parts of northern China and southern Mongolia and turned back to Beijing after half a year. He
reported weather as well as surface and vegetation conditions and enabled the reconstruction of past
landcover conditions during the Maunder Minimum of the Little Ice Age.
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3.1. Historical Landcover Change and Environmental Reconstruction

A route was reconstructed from the historical data, which starts at Beijing on the
30 May 1688. Travelling to the north-west, the group crossed the mountain range north of
China’s capital before entering the Mongolian Plateau on the first week of June. According
to topographical changes, the landcover transformed rapidly from forested to sparsely
forested and herbaceous surfaces, and then to shrubland, grassland, and steppe vegetation
from the south-east to the north-west (Figure 3). During the first week, Gerbillon reported
from small-scale agricultural crop production, which were interspersed into extensive
grasslands. Furthermore, he frequently highlighted the absence of field systems despite the
high suitability for intensive agricultural utilization of the region, which was connected
to a prior nomadic lifestyle of the local population [21,22,72,73]. The weather conditions
were generally very dry with very high temperatures during the onset of June and more
humid and moderate conditions during the second half of the month when the group
turned to the south-west and crossed extensive sandy grasslands with poor vegetation
cover and bare hilltops (Figure 4). On the 17 June, they reached Hohhot, which is located
on the Tumuochuan Plain and surrounded by the Hetao Plateau to the south and the
Daqing Mountain to the north [74]. The average temperature (6.7 ◦C) and the annual total
precipitation (400 m/a) at Hohhot are low, which supports a semi-arid steppe climate [74].
Both the modern data and the historical landcover reconstruction indicate forested zones in
the area, which are probably connected to the lower elevation compared to the surrounding
hills. After the 17 June, the group moved northwards, and the vegetation cover declined
according to an increase in aridity and windspeed (Figure 5). After the 27th, Gerbillon
reported from bare lands with no vegetation but loose sand coverage until the 31 July
1688. In contrast to the 2019 landcover, the 1688 landcover reconstruction shows increasing
herbaceous vegetation patterns after the 31 July despite continuously very dry conditions
during August. The surface description of the following period until the 17 September
again differs considerably from modern landcover data. There is a signal towards more
herbaceous and shrubby vegetation and increasing agricultural exploitation during the late
17th century. During the rest of September, the group travelled continuously to the east
and entered the forested mountains around the 22 September. Compared to the modern
data, the extent of the forested areas reached further to the north and the north-west, which
is most likely linked to strong modern human impact, forest management and climate
change during the first half of the 20th century [75]. Climatic conditions were reported to be
very dry and extremely cold during October 1688, which aligns with the climatic tendency
towards a drier and cooler period around 1700 AD and the climate depression during the
Maunder Minimum of the LIA. From the palaeoenvironmental reconstructions, 1688 can
be considered an extremely anomalous year compared to the long-term average and marks
the transition into a generally colder and drier phase that lasts until about 1715/30 AD [35].

These findings are further supported by the windspeed model and the average wind
direction from 1688 compared to modern data [63]. The diary reports continuously blowing
wind with local extreme events and massively increased sand transport and dune activity.
The reconstruction indicates an increase in windspeed and a general change in wind direc-
tion during the LIA (Figure 5). During the past decades, the landcover became even more
vulnerable to wind erosion due to the locally decreased vegetation cover and intensified
overgrazing, which reactivated sand depositions and enabled dust transportation and dune
development. The accumulation of coarse particles further supported the degradation of
cropland and pasture [76–79]. Sand and dust storms over Inner Mongolia were not only
enhancing erosion and accumulation of fine-grained particles in the semi-arid steppe region
but also led to the transportation of dust and high concentrations of particulate pollutants
into the area of Beijing [80–82].
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Figure 4. Average monthly temperature and precipitation grid in the study area from May to
October. The reconstructed climatic conditions from 1688 were plotted on top of the modern dataset
to highlight differences and similarities during the Little Ice Age [53,60,61].

To cross-validate the hermeneutic sources, historical and current environmental condi-
tions in the study area were evaluated using palaeoenvironmental proxies from different
data sources [7,65–68] and interpolated datasets from modern weather stations [60,61].
Monthly total precipitation in Inner Mongolia and Mongolia shows a significantly pos-
itive trend compared to the reference period 2001–2020 [11,83]. Palaeoclimate show a
tendency towards greater annual variation (Figure 6). As expected from global climate
change models [84–87], the reconstructed temperature increased significantly during the
past 500 years and particularly during the period 2001–2020. Reconstructed streamflow
runoff in Mongolia is connected to the precipitation variability, and an increase in rainfall
triggered peaks in runoff totals. However, there is no negative trend in river runoff during
the past 400 years. It is particularly striking that the year 1688, which marks the peak of
the Maunder Minimum of the LIA, can be characterized as an exceptionally cold and dry
year compared to the long-term average. The period 1675 to 1715, which is characterized
by a sunspot minimum and decreased solar activity, is clearly visible in the temperature
reconstruction from the tree-ring width and peaks around 1700 [65]. The minimum could
have affected the East Asian Summer Monsoon (EASM) according to the 11-year solar
cycle [88,89]. The precipitation records of Urgun Nars [7] show a negative trend during the
Maunder Minimum, pointing towards decreased humidity transport into semi-arid and
arid Mongolia caused by a potential decline and a southward shift of the EASM [90,91].
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Figure 5. (A) Modern average monthly windspeed diagrams of the study area from May to Octo-
ber [63]. (B) Reconstructed wind directions for June–September 1688. May and October did not
provide sufficient data. The reconstructed windspeeds and directions were plotted with modern
datasets to underline the current trend towards increased windspeed, north-western wind direction,
and sand transport and enhanced desertification risk.
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Figure 6. Paleoclimate reconstruction from six study sites in China and Mongolia. Raw data acquired
from NOAA-National Centers for Environmental Information (last accessed 5 January 2021) and
plotted by the author using a locally estimated scatterplot smoother (LOESS) and R software [64];
smoothing parameters 1 (blue line, plot C, D), 0.5 (green line), 0.3 (red line). The year 1688 is marked
with a vertical, the average value with a horizontal blue line. (A,B): Precipitation reconstruction
based on tree-ring chronologies for two regions in China [68]. (C): Temperature anomaly and (D):
reconstructed temperature based on a stalagmite from Shihua Cave, Beijing, China and instrumental
meteorological records [65]. (E): River Kherlen long-term streamflow variation based on [7] and
spatial and temporal tree-ring replication and nested model methods [66]. (F): Streamflow variation
of the river Selenge in Mongolia based on tree-ring-width chronologies [67]. (G): Precipitation
reconstruction in north-eastern Mongolia based on tree-ring-width data [7].

3.2. Modern Climatic and Surface Transformation Processes

Modern NDVI time series were used to monitor vegetation canopy changes and
surface transformations linked to climate change and anthropogenic overstraining. Veg-
etation indices of subsequent months and years and on various spatial scales allow for
temporal in-depth observations of physical plant behavior or drought periods and are a
common tool in remote sensing of ecological and climatic processes [92–97]. As derived
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from the Copernicus landcover data and the aridity index, the north-western parts of China
and Mongolia reveal significantly low plant physiological activity and bare and sandy
areas. This accounts for most of the transitional zone between China and Mongolia. The
long-term MODIS NDVI temporal series from 2000–2020 show a significantly positive
trend in spectral greening in most regions across China and Mongolia (Figures 7 and 8).
Particularly, the early growing season is the most important period to determine vegetation
dynamics [71,98]. According to Ren et al. (2012), who highlighted the variability of rainfall
and temperature as the most important driving factor of vegetation dynamics in Inner Mon-
golia, the results from the NDVI trend analyses confirm the strong relationship between
precipitation development and vegetation response over China and Mongolia (Figure 9).
Temperature increased significantly in the study area during the past two decades [99] and
a positive trend in multiannual variation has been observed in precipitation totals [100].
In this context, Tong et al. (2017) reported from the eastern part of Inner Mongolia, where
NDVI values increased between 1984 and 2013. The correlation between NDVI and pre-
cipitation and NDVI and temperature in the study area, which is most-likely connected to
seasonal variation in precipitation totals in eastern Inner Mongolia and the annual cycle,
can be confirmed for the period 2001–2020 (Figure 9) [15,99–101].
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(A) MODIS NDVI trend analysis with a 95% confidence level; (B) cropped research core area with
NDVI trends; (C) precipitation trends with 50% and 95% confidence level; (D) temperature trends
with 50% and 95% confidence level. White areas show a lower significance level.
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3.3. Vegetation Response to Anthropogenic Surface Transformation

These results contribute to the discussion about the complexity of aboveground net pri-
mary productivity (ANPP) in grasslands and annual, interannual, seasonal, and previous-
year precipitation variability as reported from Inner Mongolia and North America short-
grass steppe [96,102–107]. There is a stronger spatial gradient of the sensitivity to and the
relationship between precipitation and maximum temperature in desert steppe vegetation
than in the subhumid forest zones [106,108,109]. This could highlight the anthropogenically
induced origin of local desertification processes through grazing activity after the growing
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season, which amplified the vulnerability and decreased the resilience to global climate
change of Inner Mongolia’s grassland and steppe vegetation [109,110]. Grazing activity in
Inner Mongolia’s grasslands temporally peaks from July to September, when plant growth
terminates [98]. As seen from the MODIS trend analysis, there is a clear trend towards
vegetation recovery, linked to higher precipitation totals and an increase in temperature.
An increasing temperature during the early growing season would therefore advance the
spring phenological phases; however, decreased soil moisture would delay them [111].

Recent articles have shown that land degradation has reduced considerably during
the past 20 years and that desert extent reduction is not primarily caused by a reduction
in human grazing activity but rather by an increase in precipitation [112]. Guo et al.
(2020) reported a decrease in active desertification; however, this is mostly restricted to
the more sub-humid northern part of Mongolia and the eastern parts of Inner Mongolia
and does not totally affect the transitional zone between Inner Mongolia’s and Mongolia’s
grasslands [112]. Cao et al. (2019; 2018a; 2018b) reported significantly reduced numbers
of livestock in the Qinghai-Tibetan Plateau between 2001 and 2013 as a result of China’s
livestock reduction policy and that grazing activity cannot solely be considered the trigger
of extensive grassland degradation [11]. The authors furthermore point out that, due
to market development, industrialization, population dynamics, and socio-cultural and
socio-political transformation processes, the feedbacks of climate change, anthropogenic
overprint, and land degradation are manifold and thoroughly interwoven [11,113,114].
Land degradation in northern China has increased constantly since the 1950s and peaked
during the 1970s and 1980s and again until the beginning of the 21st century after when it
decreased continuously [25,70]. According to Fang et al. (2021), the grassland productivity
can be considered stable at least since 2009 [97]. From the anomaly model (Figure 8), a clear
trend towards positive vegetation growth behavior can be observed since 2015 and the
anomaly raster maps for the period 2015–2020 show significant trends to overall positive
vegetation feedback compared to the reference period 2000–2020 (see the Supplementary
Materials to this article). The raster trend analysis shows similar results for the extensive
grasslands. However, large parts do not show significant vegetation trends.

There is ongoing debate about whether desertification processes are caused by an-
thropogenic overstraining and particularly overgrazing activity or by climate change
phenomena [108,112,115,116]. Climate change and natural response cycles have been deter-
mined to trigger land degradation and the human impact caused extensive desertification
at variable scales. The complexity of human-natural global change and the feedbacks
are particularly visible in semi-arid climate-sensitive areas of Earth, where strong local
anthropogenic impacts on short temporal scales have led to massively increased mobility of
both humans and livestock after surface transformation and consequently the degradation
of neighboring boundary zones [70]. This has led to a rapid decrease of the ecosystem’s
functionality and landscape connectivity and enhances surface degradation through aeolian
processes and dust accumulation. Subsequent dry years, hot drought phenomena, and
rising temperatures during the early growing season and summer can further strengthen
the vulnerability of the steppe grassland in northern China, despite a temporal increase in
physical plant condition [117–119].

The results presented in this article show that over the entire study area, there is
a significant increase in spectral greening and interannual vegetation variability, which
is correlated to an increase in precipitation and temperature. These results show that
decreasing grassland degradation during the 21st century can be related to climate change
and increasing precipitation. Consequently, during a period of decreased precipitation
totals and temperature, land degradation is supposed to advance significantly, as can be
seen from the evaluation of the historical written sources and the reconstructed surface
conditions during the 17th century in the study area. This points towards the climate-
sensitive ecosystem functionalities of the grasslands at the transition zone from Northern
China’s Inner Mongolia Autonomous Region to Mongolia and the vulnerability of the
region to intensified anthropogenic impact. The historical data not only highlights the
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rapidly decreasing ecosystem resilience during the Little Ice Age but also how sensitive
the region is to a strongly increasing number of livestock and changing socio-cultural and
socio-political parameters and agendas [120]. Under recent climate change and regionally
increasing heavy precipitation events and precipitation totals, grassland recovery and
expansion could probably have been initiated earlier in the 20th century. However, the
development was significantly delayed by strongly increased numbers of livestock and
political influence in the region during the second half of the last century. The subsequent
governmental restrictions to combat (human-induced) desertification processes in the
region have eventually demonstrated success only since about 2015.

4. Conclusions

Northern China’s and Mongolia’s climate sensitive semi-arid regions experienced se-
vere desertification during the 20th century, mostly linked to massively intensified livestock
grazing activity, resource exploitation, and agricultural crop production, which increased
water consumption and enhanced surface erosion. During the past decades, however,
China’s policy-driven decision-making processes pushed local to regional programs to
prevent land degradation and stabilize sandy areas and grasslands in order to decrease
the potential of future soil erosion, surface transformation, and dust transport—a crucial
factor, particularly in the context of Beijing’s high vulnerability to increased numbers
of sandstorms. The actual cause and effect of desertification processes, however, is still
heavily debated and it is yet unsolved whether local surface transformations are triggered
by regional climate change feedbacks or whether they are connected to anthropogeni-
cally induced system transformation and governmental decision-making. It is a matter of
fact that both are rooted in the human impact on the landscape functionalities, and land
degradation and desertification mirror only the ultimate collapse and loss of resilience to
withstand enhanced climatic or human pressure. From the results presented here, a strong
relationship between environmental change and land degradation processes can be derived.
This questions the recent impact of livestock grazing on the semi-arid regions of northern
China and southern Mongolia. No negative trend in land degradation is seen from the
long-term NDVI time series, but a significant increase in spectral greening and positive
vegetation growth anomalies between 2000 and 2020. China’s government sought to restore
extensive grasslands to maintain the regional population and one of the Earth’s largest and
growing livestock. In the future, however, increasing seasonal variability in precipitation
and significantly increasing temperature and drought risk during the growing season
could re-enhance the climatic pressure on semi-arid landscapes and thus negatively affect
grassland development.

To evaluate modern landcover transformation, historical climatological analysis and
hermeneutics were merged with long-term palaeoenvironmental data. Documentary
sources were used to reconstruct surface transformation and climate development during
the LIA and to compare 17th century land degradation processes to modern desertification
trends in semi-arid northern China and Mongolia. For this reason, written sources from 1688
were evaluated to extract a temporal series of landcover conditions for the period May to
October 1688, a year that falls into a period of reduced sunspot activity and solar energy flux
during the LIA. Palaeoenvironmental proxy have shown that precipitation and temperature
records decreased during the Maunder Minimum (1675 to 1715 AD). 1688 is reported to
peak with extreme climatic conditions by tree-ring-width and stalagmite composition
analyses. According to written sources, the year was characterized by extremely low
temperatures during the late grazing season of September and the onset of October and
extremely dry conditions and severely high temperatures during the summer rainy season,
which caused massive livestock perish in the region. Even though the evaluation of
hermeneutically deduced historical environmental data remains strongly subjective, it
represents an additional source to measure the dimension of human landcover change on
the long-term scale. This is particularly important in grasslands and steppe vegetation
areas, which are the Earth’s most climate-sensitive resources.
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