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Abstract: Quantifying the dynamics of green infrastructure (GI) in agricultural peri-urban areas is of
great significance to the regional ecological security, food security, and the sustainable development
of urban integration. Based on remote sensing images, this study aims to provide a spatiotemporal
dynamic assessment of the GI in Baisha District from 2007 to 2018 to improve the layout of GI and
planning policies from the perspective of ecological security and food security. Research methods
include landscape pattern indices, spatial autocorrelations, and grid analyses in this case study.
The results suggest that ensuring the dominant position of farmland is critical to maintaining the
composition and connectivity of the overall GI. The recreation, inheritance of farming culture, and
ecosystem service functions of farmland should be improved to meet the growing needs of urban
residents. GI includes the farmland, greenspace, and wetland on both sides of the Jialu River
that should be retained and restored as much as possible to protect natural ecological processes.
Simultaneously, construction of important urban facilities and residential areas in flooded areas
should be banned. A part of the evenly distributed large greenspace patches should be moved to
both sides of the Jialu River to increase the agglomeration effect of GI. Optimization measures in
this case study also offer a perspective for other agricultural peri-urban areas that have experienced
similar urbanization.

Keywords: urban integration; agricultural peri-urban area; green infrastructure (GI); spatiotemporal
dynamics; spatial autocorrelation; policy driving; Baisha District

1. Introduction

Due to the sobering impacts on the geography, demographics, economies, and spatial
evolution of cities [1], urbanization has received great attention in recent years by increas-
ingly more social scientists, urban planners, and geographers [2–4] Earth is becoming
urbanized on a scale unprecedented in history. The most recent estimates show that the
urban population exploded globally, rising from 29.4% in 1950 to 56.2% in 2020, and it
is expected to increase to 67.2% by 2050 [5]. At the same time, urban integration has
become an important feature of urbanization, emphasizing extensive union and integration
between cities [6,7] The peri-urban area is the main spatial connection region between cities;
its land-use changes rapidly with the deepening of urban integration [8–11] and its green
infrastructure (GI), known as natural life support systems including farmlands, forest-
lands, and wetlands have undergone major changes [8,12,13]. Especially in peri-urban
areas dominated by agricultural land, prominent changes in GI are mainly manifested
in the continuous reduction of farmland, which is evident in Sweden [14], Australia [15],
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Ghana [16], and other countries. Moreover, the contradictions between agricultural land,
greenspace, and urban construction land continue to deepen.In Ethiopia, people suffer
from food insecurity as a result of the imbalance of food supply and demand caused
by the prominent contradiction between farmland and urban construction land [17]. In
Bangladesh, the contradictions not only affect the urban drainage network but also the
quality of runoff that in turn affects the quality of water stored in lakes [18]. Currently, how
to address the contradictions has become an important issue of global interest and concern.

It has been shown that GI has the functions of purifying soil, regulating climate, reduc-
ing the urban heat island effect, and protecting biodiversity [17,19–21], and its comfort and
accessibility affects the rate of urbanization and transformation [18]. More importantly, as
the main GI in agricultural peri-urban areas, agricultural land not only has an irreplaceable
ecological service value but is also directly related to the issue of food security. China
is a large agricultural country and is the most populous in the world; its food security,
consequently, is vital to the whole world. Therefore, further research on the dynamics of
GI in agricultural peri-urban areas in China is of great significance for regional ecological
security, food security, and the sustainable development of urban integration [22–24]. It
is also the basis for the management and optimization of GI in agricultural peri-urban
areas [25,26].

Previous research on the dynamics of GI mainly focuses on urban central areas [27],
while less attention is paid to peri-urban areas dominated by agricultural land [28,29]. Em-
pirical studies mainly focused on the spatiotemporal variation in landscape patterns [30]:
Lee et al. [31] found that the major effect of peri-urbanization on the agricultural landscape
change in Taiwan’s peri-urban areas was the fragmentation and irregularity of agricultural
land. Kar et al. [32] found that the peri-urban agricultural lands had been converted into
urban settlements in the process of urban sprawl in central India. In addition, other arti-
cles studied the driving force analysis of land use changes. Su et al. [28] concluded that
population growth, road construction, income increase, and tertiary industry development
were the major drivers of the peri-urban vegetation pattern changes in the Tiaoxi water-
shed. Furthermore, some researchers examined the ecosystem service changes [33]; Yang
et al. [34] discovered that the green space area decreased significantly and the ecosystem
service value showed a decreasing trend at the urban fringes. In general, most researchers
analyzed GI as a whole, such as by classifying the land use and land cover into green spaces
and non-green spaces, or only discussed the variations in farmland landscape [30,35]. How-
ever, few studies exist on investigating the different types of GI in agricultural peri-urban
areas [36]. Moreover, landscape pattern indices have proved to be effective indicators for
understanding GI variations [37]. However, while emphasizing the time dimension, most
analyses assumed that the relationships between spatial entities were mutually indepen-
dent with little consideration of spatial correlations and their changes [38]. The combination
of urban expansion and limited research on the variations of regional disparities and spatial
heterogeneity in GI clearly calls for more regional studies in peri-urban areas to understand
the role of GI in the connection between urban and rural areas.

Zhengzhou is the capital city of Henan Province, one of the most important agri-
cultural provinces in China whose urban population has been increasing in recent years.
Data from the Henan Statistical Yearbook shows that the urban population of Zhengzhou
grew from 66.30% in 2012 to 74.58% in 2020. In Baisha District, as an important growth
pole of Zhengzhou urban development and a significant part of the Zhengzhou–Kaifeng
integration process [39], the speed of urbanization is accelerating and the competing de-
mands for agricultural land, greenspace, and urban construction land are highly prominent
and representative. Therefore, Baisha District was chosen for analysis in our study in
order to better understand the spatiotemporal variation characteristics of GI in agricultural
peri-urban areas. In addition, the spatial autocorrelation analysis in combination with
landscape pattern indices was used to reveal the spatial differentiation and internal at-
tribute changes in landscape pattern characteristics, and data were collected based on 2007,
2013, and 2018 remote sensing images. The objectives of this study were: (1) to analyze
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and compare landscape pattern changes of different types of GI; (2) to detect the spatial
aggregation distribution variations of GI at different scales; and (3) to discuss the driving
force dynamics and the implications for GI planning in agricultural peri-urban areas.

2. Materials and Methods
2.1. Study Area

Baisha District belongs to the peri-urban region located next to the core area of
Zhengzhou (34◦43′–34◦54′ N, 113◦49′–113◦56′ E) (Figure 1). With the development of
the Central Plains urban agglomeration and the Zhengzhou metropolitan area, it continues
to experience urbanization. Its planning scope begins from the Beijing–Hong Kong–Macao
Expressway in the west to the New 107 National Road in the east, and from the Zhengzhou
City boundary of the Yellow River in the north to the Longhai Railway in the south, with a
total area of 156 km2. It belongs to the Huanghuai Plain with warm temperate continental
monsoon climate. Water resources are relatively abundant and there are many large water
areas such as the Jialu River and Xianghu Lake. There are ecological corridors and the
natural conditions are superior. Considering the study area is adjacent to the central urban
area of Zhengzhou in the east and Bianxi New District of Kaifeng in the west, its transporta-
tion has been greatly improved under the integrated development of Zhengzhou–Kaifeng,
which can realize three-dimensional docking and one-stop transfer with Zhengzhou’s
high-speed railway station and subway station; as many main roads run through it, it
combines the advantages of train, bus, and plane transportation.
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Figure 1. Location of the study area.

2.2. Remote Sensing Data of GI

The data used in this research were derived from Google Earth remote sensing images
captured in 2007, 2013, and 2018 that were of good quality and free of clouds. Standard
radiometric and geometric corrections were implemented.

The extraction and classification process of GI were completed by the eCognition9.0
software: first, we sequentially used “multi-scale segmentation” and “spectral difference
segmentation” to divide the remote sensing images into multiple objects. Next, based on
the identification feature information (e.g., spectrum, geometry, texture, and topology) of
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each object, we conducted the membership function classification and nearest neighbor
classification in turn, after which the GI in the study area were identified. According to
the classification results, we manually examined and corrected any visible classification
errors. Lastly, to validate the precision, we applied a simple random sampling method
that compared the reference points selected randomly from the classification results to the
corresponding points from the Google Earth imagery [40]. The final overall accuracies
were over 85%.

Researchers have emphasized that the ambiguous definition of GI has generated a
high diversity in research objectives and outputs [41], and at present, there is no consensus
on a comprehensive classification for GI [42]. Considering the study purposes, scales, and
imageries adopted in this paper, the GI classification was formulated based on the existing
classification mentioned [36] that includes farmland, greenspace, water area, and forestland
(Table 1).

Table 1. Green infrastructure (GI) classification and description used in this research.

Classification Description

Farmland Areas mainly for growing crops such as rice, wheat, corn, vegetable,
and fruits.

Greenspace
Small spaces with trees (urban trees and street trees.), green protected
areas (e.g., nature reserve), and green spaces with a special function

(community garden, traffic accessory green space, and park).

Water area Stream, river, lake, reservoir, pond, and blue space.

Forestland Areas dominated by forests, shrubs, and woods.

2.3. Landscape Pattern Index

The landscape pattern index provides an effective method for the quantitative analysis
of landscape spatial patterns [28]. To accurately demonstrate the dynamics of GI in the
study area in terms of quantity, shape, and agglomeration characteristics, this study se-
lected six representative landscape pattern indices with low redundancy based on relevant
studies [43] (Table 2): Percentage of Landscape (PLAND), Largest Patch Index (LPI), Fractal
Dimension Index (FRAC_MN), Landscape Shape Index (LSI), Patch Density (PD), and
Patch Cohesion Index (COHESION). Of these, PLAND and LPI were selected to reflect
quantitative characteristics of GI from the aspects of patch area percentage and advantage
proportion, respectively; FRAC_MN and LSI were selected to jointly reflect the complexity
of landscape shape; and PD and COHESION were selected to reflect the aggregation char-
acteristics of GI from the perspective of patch fragmentation and connectivity. Through the
comprehensive analysis of these six indices, the spatial pattern of the GI in Baisha District
can be determined in detail and dynamic research can be conducted. The calculation of the
landscape indices used were all conducted using the Fragstats 4.2 software.
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Table 2. The landscape indices and their ecological significance.

Category Metrics Abbreviation Ecological Significance

Quantitative character metric
Percentage of Landscape PLAND Considered a fundamental metric to

characterize landscape composition [44].
Largest Patch Index LPI A simple measure of dominance [45].

Shape character metric
Fractal Dimension Index FRAC_MN Reflects the complexity of landscape

patch shape [43].

Landscape Shape Index LSI Reflects the variability and average
complexity of landscape patches [46].

Aggregation character metric
Patch Density PD

A basic index describing the
fragmentation pattern in terms of the

number of patches per 100 ha [47].

Patch Cohesion Index COHESION Reflects the connectedness of landscape
patches [48].

2.4. Spatial Autocorrelation Analysis

Spatial autocorrelation analysis can present the spatial properties of the GI through
quantitative and visual methods, and it is performed using two key indicators: Global
Moran’s I and LISA (the local indicators of spatial association) [49]. Global Moran’s I
reflects the presence or absence of spatial autocorrelation as a whole, while LISA measures
the local patterns of spatial association and the distribution state of local heterogeneity by
using local Moran’s I [38,50].

The equation for Global Moran’s I is:

I =
n

∑
i=1

n

∑
j=1

wij(xi − x)
(

xj − x
)
/S2

n

∑
i=1

n

∑
j=1

wij, (1)

S2 =
1
n ∑

j
(xi − x)2, (2)

The expression for LISA is:

Ii =
(xi − x)

S2 ∑
j

wij
(
xj − x

)
, (3)

where I is the Moran’s I index; n is the total number of spatial units; x and x denote the
values of the variable elements and their averages; and wij is the spatial weight, constructed
based on the queen criterion of contiguity in this paper. I ranges from −1 to +1 and when
the value is closer to 1, regions with similar attributes are more clustered together (high-
high cluster or low-low cluster). Conversely, when the value is closer to −1, regions with
distinct properties are more closely aggregated (high-low outlier or low-high outlier) [38].

The calculation of Moran’s I is based on the identification of neighborhoods which are
defined by a grid scale [51]. A grid scale of 1.0 km × 1.0 km (a grid structure with sides
of length 1.0 km) is usually applied to the ecological environment assessment, land use
change research, and simulation of the spatial distribution of variables [52,53]; considering
it can better distinguish various landscape types in Baisha District, this paper selected
1.0 km × 1.0 km as the basic research scale. In addition, to avoid the impact of grid size
on the comparison results, we expanded and contracted the basic scale to grid scales of
1.5 km × 1.5 km, 0.5 km × 0.5 km; then, we calculated the six landscape indices for each
local spatial unit and, finally, further analyzed the spatial autocorrelation of GI charac-
teristics on the three grid scales. The calculation and inspection of Global Moran’s I and
the LISA clustering map were realized by GeoDa software (GeoDa Center for Geospatial
Analysis and Computation, 2015).
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3. Results
3.1. Total Trends

From 2007 to 2018, the coverage of GI decreased dramatically, especially for the
southern farmland (Figure 2). The PLAND decreased drastically from 88.61% to 68.82%
and the LPI was greatly reduced from 26.92% to 6.18% (Table 3), indicating that the area
of the total GI and the largest GI patch had diminished significantly. Additionally, the
COHESION was also reduced from 99.97to 99.81. In contrast, the LSI gradually increased
from 29.83 in 2007 to 57.43 in 2018, reflecting that the landscape patches became more
complicated. Both FRAC_MN and PD recorded maxima (1.23, 37.37 patchs·100 hm−3) in
2013 and minima (1.18, 19.05 patchs·100 hm−3) in 2018, indicating that the GI had the most
complex patch shape and highest fragmentation in 2013, and the simplest patch shape and
lowest fragmentation in 2018.
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Table 3. The changes of overall GI indicators.

Time PLAND LPI FRAC_MN LSI PD COHESION

2007 88.61% 26.92% 1.20 29.83 24.45 patchs·100 hm−3 99.97
2013 76.90% 15.78% 1.23 47.29 37.37 patchs·100 hm−3 99.94
2018 68.82% 6.18% 1.18 57.43 19.05 patchs·100 hm−3 99.81

3.2. Class-Level Trends
3.2.1. Landscape Pattern Index Variation

From 2007 to 2018, the PLAND, LPI, and COHESION of farmland all decreased
constantly (Figure 3). Although its PLAND slumped from 68.36% to 38.86%, LPI reduced
from 6.99% to 3.26% and COHESION decreased from 99.95 to 99.87; these values were
consistently higher than those for other types, indicating that farmland was the dominant
GI with the highest landscape composition and connectivity. Conversely, the PLAND, LPI,
and COHESION of greenspace increased progressively; while the greenspace PLAND was
the smallest in 2007–2013, its LPI and COHESION continued to be at the minimum for
GI. Additionally, forestland made up the smallest proportion (8.98%) of GI in 2018 and its
PLAND, LPI, and COHESION showed a similar trend of increasing (2007–2013) initially
and then decreasing (2013–2018).

The FRAC_MN of different types of GI in 2018 were all smaller than in 2007; the
FRAC_MN of the water area was consistently lower than that of the other GI, indicating
that the shapes of different GI became simpler, and the water area maintained the most
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regular shape. Additionally, the PD and LSI of different GI reached their maximum in
2013. The PD and LSI of greenspace were much higher than those of other GI in 2007–
2018, indicating that the landscape patches of different GI were the most complex and
fragmented in 2013. In particular, greenspace showed the most prominent performance
during the study period.
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3.2.2. Mutual Transformation in GI

The main sources of the new areas of greenspace, forestland, and water areas were
farmland, and the total areas of farmland converted into other GI were 19.92 km2, 16.82 km2,
and 28.61 km2 in 2007–2013, 2013–2018, and 2007–2018 (Tables 4–6), respectively, far higher
than the greenspace, forestland, and water areas. In 2007–2013 and 2013–2018, farmland
was mainly transformed into forestland with the conversion area being 8.63 km2 and
6.88 km2 respectively, while in 2007–2018, farmland was mainly converted to greenspace
(9.68 km2), followed by forestland (9.57 km2). This was related to the transfer of more
forestland to other GI. From the perspective of net growth, only farmland exhibited a
net transfer out, while all other GI exhibited a net transfer in, as the net increase of the
water area ranked lowest in 2007–2013 (2.98 km2) and 2013–2018 (0.38 km2). Specifically,
forestland had the largest net increase in 2007–2013 (5.26 km2), while greenspace had the
largest net increase in 2013–2018 (4.95 km2).

Table 4. GI transformation area (km2) matrix from 2007 to 2013.

Year
2013

Greenspace Farmland Water Area Forestland Decrease

2007

Greenspace 1.09 0.18 0.11 0.28 0.57
Farmland 3.54 69.86 7.75 8.63 19.92
Water area 0.32 4.01 10.13 1.12 5.45
Forestland 0.64 3.56 0.57 5.02 4.77

Increase 4.50 7.75 8.43 10.03 −
Net Increase 3.93 −12.17 2.98 5.26 −

Table 5. GI transformation area (km2) matrix from 2013 to 2018.

Year
2018

Greenspace Farmland Water Area Forestland Decrease

2013

Greenspace 2.78 0.71 0.27 0.32 1.30
Farmland 4.76 45.88 5.18 6.88 16.82
Water area 0.16 5.51 10.93 0.71 6.38
Forestland 1.33 4.42 1.31 5.33 7.06

Increase 6.25 10.64 6.76 7.91 −
Net Increase 4.95 −6.18 0.38 0.85 −

Table 6. GI transformation area (km2) matrix from 2007 to 2018.

Year
2018

Greenspace Farmland Water Area Forestland Decrease

2007

Greenspace 0.80 0.51 0.16 0.14 0.81
Farmland 9.68 48.07 9.36 9.57 28.61
Water area 0.38 5.38 7.61 0.92 6.68
Forestland 1.38 3.38 0.77 2.98 5.53

Increase 11.44 9.27 10.29 10.63 −
Net Increase 10.63 −19.34 3.61 5.10 −

3.3. Spatial Autocorrelation Analysis
3.3.1. Changes in Spatial Agglomeration Effects

Except for the water area FRAC_MN (−0.02, 1.5 km × 1.5 km, 2013), the Global
Moran’s I for other indices at each scale were all greater than 0 (Figure 4), indicating that
the corresponding landscape pattern features had different spatial agglomeration effects
(p < 0.001). For greenspace, farmland, and forestland, the Global Moran’s I of PLAND
were all enhanced in 2013–2018, indicating that their spatial aggregation characteristics
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increased during this period. Additionally, the Global Moran’s I of their PD in 2018 were
higher than 2007, showing the enhanced spatial aggregation distribution of their landscape
fragmentation. Moreover, the Global Moran’s I of greenspace COHESION increased
over time at the three scales, showing that the connectivity of greenspace became more
aggregated in the spatial distribution during the study period.
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The Global Moran’s I of PD for farmland and water area on the 0.5 km grid scale
were all close to 0 and the Global Moran’s I of water area FRAC_MN was −0.02 in 2013 on
the 1.5 km grid scale, indicating that their corresponding landscape features were close to
random distributions. Moreover, the Global Moran’s I of PLAND was generally higher than
that of LPI which indicated that PLAND displayed a more prominent spatial aggregation.
Therefore, we selected PLAND, LSI, and COHESION, which had relatively higher Global
Moran’s I at the three scales, to analyze the local spatial autocorrelation in terms of quantity,
shape, and agglomeration characteristics, and to further explore the spatial aggregation
distribution changes in GI.

Figures 5–7 show that the local patterns of spatial association for GI features at the
three scales were dominated by high-high and low-low clusters, while high-low and
low-high outliers were very rare. In 2007, high-high clusters of farmland PLAND were
distributed in the east, while they were gradually reduced in the south and expanded in
the north in 2013. By 2018, a distinct north–south difference had formed: the high-high
clusters were mainly concentrated in the north while the low-low clusters were primarily
distributed in the south. Additionally, the high-high clusters of farmland LSI mainly
distributed in the northwest region in 2007–2018, while the high-high clusters of farmland
COHESION gradually concentrated in the northeast region, demonstrating that high-value
farmland gradually gathered in the north; the connectivity of farmland in the northeast
region was relatively higher; and the shape of farmland in the northwest region was
relatively complicated and fragmented. For greenspace, the high-high clusters of PLAND,
LSI, and COHESION were concentrated mainly on the southwestern area, followed by
the western region in 2007; they gradually moved to the south over time and by 2018, the
clustering features had formed a clear north–south divide with the difference in farmland
being that the high-high clusters were mainly concentrated in the south and the low-low
clusters were primarily spread in the north, demonstrating that the high-value greenspace
was mainly concentrated in the south with high connectivity and complex patch shapes.
In terms of the water area and forestland, high values of PLAND, LSI, and COHESION
were clustered mainly in the north, while low-value aggregation areas were primarily
distributed in the south in 2007–2018.
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3.3.2. Scale Effects

On the three scales of observation, the proportion of high-high clusters of forest-
land PLAND and greenspace COHESION increased continuously over time (Figure 8),
indicating that the area of forestland and the connectivity of greenspace all improved in
2007–2018, and that the ecological policies such as reforestation and greenspace system
planning achieved certain results. However, the proportions of low-low clusters of PLAND
in greenspace, water area, and forestland were higher than those of high-high clusters,
indicating that their spatial distribution was still dominated by low-value clusters. Thus,
the development of greenspace, water areas, and forestlands needs to be further improved.
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In 2018, the proportion of high-high clusters of PLAND and COHESION in greenspace
decreased with the reduction of scale, indicating that greenspace was less distributed and
had lower connectivity on the 0.5 km grid scale. In addition, the percentage of high-high
clusters of water area PLAND also decreased as the spatial scale shrunk. It is therefore
necessary to enhance the greenspace and water area at the smaller scale (0.5 km × 0.5 km)
as increasing street trees, community green areas, and water bodies of parks and improving
the connectivity between them can effectively change the current situation. For farmland,
the percentage of high-high clusters of PLAND and COHESION in 2018 decreased with
the increase of scale, while the percentage of high-high clusters of LSI behaved contrarily;
in addition, the percentage of low-low clusters of PLAND increased by 14% on the 1.5 km
grid scale and the percentage of high-high clusters increased by 5% on the 0.5 km grid
scale. The above indicates serious encroachments on farmland on the scale of 1.5 km grid
with a more complicated shape and the high-values of area and connectivity were more
clustered on the smaller scale. Therefore, in the protection of farmland, it is necessary
to avoid further increase of low-value aggregation areas on the 1.5 km grid scale and to
protect the high-value aggregation areas on the 0.5 km grid scale from being destroyed.

4. Discussion
4.1. Spatiotemporal Dynamics of GI

The total GI in Baisha District decreased dramatically from 88.61% to 68.82% and its
largest patch proportion declined remarkably from 26.92% to 6.18% in 2007–2018. This
indicates that the GI in the agricultural peri-urban area between Zhengzhou and Kaifeng
was drastically reduced in the process of urban integration and large areas of intact GI
have been eroded to make way for buildings, roads, and other gray infrastructures. Similar
findings have been confirmed in Australia [54], Dhaka [27], Addis Ababa, and Dar es
Salaam [55]. Additionally, we found that the spatiotemporal variation of different GI in
Baisha and their impact on the overall GI were different. The farmland was the dominant
GI and had the highest connectivity, although its percentage decreased drastically from
68.36% to 38.86% in 2007–2018 and its spatial distribution tended to be intensive (high
values gradually concentrated in the north). These are typical features in the change of
suburban farmland against the background of urbanization and have been confirmed in the
research of Colantoni [56], Lee [31], and Yu [57] on farmland in the peri-urban areas. For the
greenspace, although its proportion increased and the landscape connectivity improved,
it still recorded the most complex shape, the greatest fragmented patches, and the lowest
landscape connectivity from 2007 to 2018. It is noteworthy that greenspace PD and its
variation were far higher than those of the other types in the same period, reflecting that the
fragmentation of GI in Baisha District depended on greenspace to some extent. Moreover,
the agricultural peri-urban area has often not formed a complete GI system, unlike the city
center [58], as we found that the high-connectivity clusters for farmland, water areas, and
forestland are concentrated in the north, while low-connectivity clusters are distributed in
the south.

4.2. Driving Policies in GI Dynamics

Studies have shown that although population migration, climate, latitude, and other
factors affect the change of GI to a certain extent, policies are the major driving forces.
Byomkesh [27] found that the drastic reduction of green spaces in Greater Dhaka can be
attributed to a lack of policy, low political motivation, and poor management. Wu [22]
found that greening policies are major driving factors of changes in green spaces in Shang-
hai. Hersperger [59] found that political driving forces contributed to 26% of landscape
change and variations in the agricultural and forestry network, and the loss of elements
of the traditional agricultural landscape and new solitary trees have been associated with
political driving forces. Moreover, Fan [60] explained that the government planning area
was different from watershed and administrative regions, and its landscape changes can
directly reflect the impact of policies. In this study of Baisha District, the government
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planning area, GI had undergone tremendous changes driven by a series of policies from
2007–2018, although it is located in the agricultural peri-urban area.

At the national level, the concepts of “Ecological Civilization”, “Green Development”,
“Eco-City”, and “Ecological Red Line” emphasized by the Chinese central government
provide national policy guarantees for the sustainable development of GI [22]. Under
these frameworks, the governments of Henan Province and Zhengzhou City have ini-
tiated policies and measures to maintain a balance between urbanization and GI devel-
opment. In 2007, the Outline of the Overall Development Plan for the Central Henan
Urban Agglomeration [61] entered the implementation stage, requiring the integrated
areas of Zhengzhou–Kaifeng to build green corridors on both sides of the main roads,
to build ecological regulation areas of forest and green space in feasible areas, and to
develop urban and sightseeing agriculture so as to realize ecological docking. Further-
more, the Master Plan for the Area along Zhengzhou–Kaifeng Avenue also proposed the
construction of a “ring, belt, and point” green space system. “Ring” refers to the eco-
logical protection ring surrounding the area and is mainly composed of shelterbelts and
basic farmland; “belt” refers to the greening or ecological isolation belts which are mainly
composed of urban agricultural areas, green belts, and major water systems; and “point”
refers to various urban parks and street green spaces distributed within the area [62].
From 2007 to 2018, the Zhengzhou Municipal Government successively implemented
the Zhengzhou City Master Plan (2010–2020), Zhengzhou City Green Space System Plan
(2013–2030), Zhengzhou National Central City Ecological Construction Plan (2016–2025),
Zhengzhou Forestry Ecological Construction Implementation Plan (2017), and Zhengzhou
City Ecological Protection and Construction Plan (2017–2035) concerning, respectively, the
construction of the Ecological Cultural Tourism Industrial Belt along the Yellow River [63],
Ecological Belt along the Yellow River in Northern Zhengzhou [64], Ecological Wetland
Landscape Belt along the Yellow River, Ecological Barrier Zone along the Yellow River in
Northern Zhengzhou [65], and the Yellow River Ecological Conservation and Ecological
Cultural Development Zone. These initiatives entail returning farmland to forests and
wetlands, widening and thickening the protective forest belt along the embankments and
connecting water systems, and implementing ecological water replenishment and other
measures to gradually improve the GI of the Yellow River basin, with “Wetland-Shelter
Forest-Ecological Farmland” as the leading factor. These policies have greatly promoted
the development of farmland, water areas, and forestland in the northern part of the study
area which belongs to the Yellow River Basin. They are also the reason why the high-high
clusters of farmland PLAND and COHESION have gradually moved to the north on the
three scales, gathering in the north similar to water areas and forestland in 2018.

The Master Plan for the Baisha District in Zhengdong New District, Zhengzhou
(2013–2030) positioned the research area as a provincial administrative center and the
central area is located in Xiang Lake in the southern part of Baisha [64]. With the thorough
implementation of this plan, the construction of gray infrastructure such as buildings
and roads in the southern area has been continuously strengthened as the population has
continued to gather in the south and greenspace such as community gardens, street trees,
and parks are also increasing. Therefore, the values of PLAND, LSI, and COHESION for
greenspace have gradually increased and their high-high clusters gradually moved to the
south from 2007 to 2018.

4.3. Implications for the Future
4.3.1. Ensuring the Dominant Position of Farmland and Achieving Its
High-Quality Development

Farmland plays an important role in food supply, rain and flood regulation, and
groundwater replenishment [31,66]. As the dominant GI, its sustainable development
is crucial for agricultural peri-urban areas. Given the substantial reduction of farmland
in Baisha District and the high-high clusters of farmland PLAND gradually gathering
in the north, the north must improve and refine the basic farmland protection system
and strictly prohibit the unrestricted expansion of buildings and roads to maintain the
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integrity of farmland ecosystem services. Moreover, considering the high-high clusters of
farmland LSI are mainly distributed in the northwest region in 2007–2018, it is necessary
to reduce the complexity of the shape of the farmland in the northwest region to improve
its connectivity. Additionally, we found that the farmland had been seriously encroached
upon on the 1.5 km grid scale, its shape was more complicated, and the high-value of
area and connectivity were more clustered on the smaller scale. It is therefore crucial
that further increases of low-value aggregation areas on the 1.5 km grid scale be avoided
and that high-value aggregation areas on the 0.5 km grid scale be protected from being
destroyed. To achieve high-quality development of farmland, its park-type transformation,
and the transformation and upgradation of traditional agriculture to leisure sightseeing
agriculture can be promoted, which is conducive to the formation of a comprehensive GI
system among farmlands, forestlands, greenspaces, and water areas, yielding a higher
ecosystem service value. Moreover, there is an opportunity for the northern farmland to
be further combined with the national strategy of ecological protection and high-quality
development of the Yellow River basin, as well as an opportunity to increase the interaction
between farmland and other GI along the Yellow River, providing a solid foundation for
the formation of high-quality ecological space in the study area.

4.3.2. Reducing the Fragmentation of Greenspace

It is noteworthy that greenspace PD and its variation were far greater than those of
other GI throughout the study period. The proportion of high-high clusters of greenspace
PLAND and COHESION decreased with the reduction of scale in 2018; therefore, the
greenspace fragmentation, especially in the southern region in which the high-high clusters
of greenspace PLAND, LSI, and COHESION were mainly concentrated, must be urgently
reduced. Considering that there is a higher population density and more buildings and
roads in the south, various types and functions of greenspace can be increased such as street
trees, parks, community gardens, rooftop gardens, and ecological corridors, enabling the
connection of fragmented greenspaces at the smaller scale (0.5 km × 0.5 km). Additionally,
considering the north is a low-value aggregation area of greenspace PLAND, promoting
connections of farmland, forestland, and water areas by increasing northern greenspace
can be considered in order to form a comprehensive GI system.

4.3.3. Enhancing the Development of Forestland and Water Areas

Forestland comprises the smallest proportion (8.98%) of GI in 2018 and the net increase
of water areas consistently ranked lowest in both 2007–2013 (2.98 km2) and 2013–2018
(0.38 km2); therefore, it is important to enhance the development of forestlands and water
areas, especially in the southern region, in which the low-low clusters of forestland and
water areas are primarily distributed. It would be effective to add windbreaks, forest parks,
and the protection forestlands of roads in the south. Moreover, considering the percentage
of high-high clusters of water area PLAND decreased as the spatial scale shrank, it is also
necessary to enhance the water area at the smaller scale (0.5 km × 0.5 km) as increasing
the water space of parks and communities and increasing the connectivity between them
can effectively change the current situation. Meanwhile, it is important to enhance the
development of larger water areas such as Xianghu Lake, Jalu River, and the Dongfeng
Canal to safeguard their higher ecological service functions.

4.4. Limitation

Several limitations in this paper should be acknowledged. Firstly, subject to the
classification techniques, the category of GI was comparatively rough. Secondly, a relatively
low number of landscape pattern indices and grid scales were selected. In the future,
the greater subdivision of GI, continuous grid scales, and extensive evaluation indicator
systems should be considered as comprehensive as possible for assessment.
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5. Conclusions

Based on three-phase remote sensing data, this paper investigated the spatiotemporal
dynamics of GI in Baisha District from 2007 to 2018. The results demonstrated the fol-
lowing: (1) The total GI had a continuing downward trend in the proportion, dominant
patch area ratio, and entire connectivity. (2) Farmland was the dominant GI, although its
percentage decreased drastically from 68.36% to 38.86%, and farmland was partly con-
verted to greenspace, forestland, and water areas. Greenspace was the main type that
led to fragmentation, although its proportion and connectivity improved. (3) Spatially,
the high-value clusters of farmland and forestland gradually concentrated in the north,
and the low-value clusters moved to the south, while greenspace showed the opposite
tendency; the high-value clusters of water areas were concentrated on both sides of the
Jialu River in the northwest. Low-value clusters were located in the southeast. (4) The
shape of greenspace and forestland patches became more regular, and the shape of water
areas and farmland patches became more natural in northwest, while more regular in
southeast.

The study contributed to a better understanding of the dynamics of the GI spatiotem-
poral patterns in agricultural peri-urban areas and had important enlightenment outcomes
for planning and management policies for Baisha District and other agricultural peri-urban
areas: (1) Ensuring the dominant position of farmland is critical for maintaining the compo-
sition and connectivity of the overall GI. Farmland and fish pond patch clusters should be
protected to ensure food security; however, the recreation, inheritance of farming culture,
and ecosystem service functions of farmland should be improved to meet the growing
needs of urban residents. (2) According to the perspective of ecological security, the Baisha
District in this study is located in the downstream of Zhengzhou City with a lower ter-
rain than the main urban area. GI includes the farmlands, greenspace, and wetlands on
both sides of the Jialu River that should be retained and restored as much as possible to
protect natural ecological process. Simultaneously, the construction of important urban
facilities and residential areas in flooded areas should be banned. (3) Due to policy of urban
greenspace planning, urban greenspace is becoming more fragmented and the shape tends
to be more regular. A part of the evenly distributed large greenspace patches should be
moved to both sides of the Jialu River to increase the agglomeration effect of GI.

Author Contributions: Conceptualization, H.X. and Y.L. (Yakai Lei); data curation, H.X.; formal
analysis, G.K.; funding acquisition, Y.L. (Yakai Lei); investigation, H.X.; methodology, H.X. and S.G.;
project administration, Y.L. (Yakai Lei); resources, Y.L. (Yakai Lei); software, H.X.; supervision, G.K.
and Y.L. (Yang Liu); validation, G.K.; visualization, H.X. and X.Z.; writing—original draft, H.X.;
writing—review and editing, H.X., G.K., and Y.L. (Yakai Lei). All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 31600579, and the Key Technology Program of Henan Province, grant number 162102310093.

Data Availability Statement: The data presented in this study are available on request from the first
author.

Acknowledgments: The authors would like to thank the support of the International Joint Laboratory
of Landscape Architecture, Henan Agricultural University, for their infinite help.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. McIntyre, N.E.; Knowles-Yánez, K.; Hope, D. Urban ecology as an interdisciplinary field: Differences in the use of urban between

the social and natural sciences. Urban Ecosyst. 2000, 4, 5–24. [CrossRef]
2. Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities.

Science 2008, 319, 756–760. [CrossRef] [PubMed]
3. Ge, S.; Zhao, S. Organic Carbon Storage Change in China’s Urban Landfills from 1978–2014. Environ. Res. Lett. 2017, 12, 104013.

[CrossRef]

http://doi.org/10.1023/A:1009540018553
http://doi.org/10.1126/science.1150195
http://www.ncbi.nlm.nih.gov/pubmed/18258902
http://doi.org/10.1088/1748-9326/aa81df


Land 2021, 10, 801 19 of 21

4. Zhao, S.; Liu, S.; Zhou, D. Prevalent vegetation growth enhancement in urban environment. Proc. Natl. Acad. Sci. USA 2016, 113,
6313–6318. [CrossRef]

5. World Urbanization Prospects: 2018 Revision. 2018. Available online: https://data.worldbank.org/indicator/SP.URB.TOTL.IN.
ZS (accessed on 30 July 2018).

6. Fang, C.; Yu, D. Urban agglomeration: An evolving concept of an emerging phenomenon. Landsc. Urban Plan. 2017, 162, 126–136.
[CrossRef]

7. Fang, C. Important progress and future direction of studies on China’s urban agglomerations. J. Geogr. Sci. 2015, 25, 1003–1024.
[CrossRef]

8. Mortoja, M.G.; Yigitcanlar, T.; Mayere, S. What is the most suitable methodological approach to demarcate peri-urban areas? A
systematic review of the literature. Land Use Policy 2020, 95, 104601. [CrossRef]

9. Rahman, M.T.; Aldosary, A.S.; Mortoja, M.G. Modeling future land cover changes and their effects on the land surface tempera-
tures in the Saudi Arabian eastern coastal city of Dammam. Land 2017, 6, 36. [CrossRef]

10. Roose, A.; Kull, A.; Gauk, M.; Tali, T. Land use policy shocks in the post-communist urban fringe: A case study of Estonia. Land
Use Policy 2013, 30, 76–83. [CrossRef]

11. Zhu, F.; Zhang, F.; Ke, X. Rural industrial restructuring in China’s metropolitan suburbs: Evidence from the land use transition of
rural enterprises in suburban Beijing. Land Use Policy 2018, 74, 121–129. [CrossRef]

12. Sanesi, G.; Colangelo, G.; Lafortezza, R.; Calvo, E.; Davies, C. Urban green infrastructure and urban forests: A case study of the
Metropolitan Area of Milan. Landsc. Res. 2017, 42, 164–175. [CrossRef]

13. Hernández-Moreno, Á.; Reyes-Paecke, S. The effects of urban expansion on green infrastructure along an extended latitudinal
gradient (23◦ S–45◦ S) in Chile over the last thirty years. Land Use Policy 2018, 79, 725–733. [CrossRef]

14. Anders, W.; Zhang, Q. Reclaiming localisation for revitalising agriculture: A case study of peri-urban agricultural change in
Gothenburg, Sweden. J. Rural. Stud. 2016, 47, 172–185.

15. Afriyie, K.; Abas, K.; Adomako, J.A.A. Urbanisation of the rural landscape: Assessing the effects in peri-urban Kumasi. Int. J.
Urban Sustain. Dev. 2014, 6, 1–19. [CrossRef]

16. Nigussie, S.; Li, L.; Yeshitela, K. Towards improving food insecurity in urban and peri-urban areas in Ethiopia through map
analysis for planning. Urban For. Urban Green. 2021, 58, 126967. [CrossRef]

17. Khushbu, K.B.; Hymavathi, T.; Mathuvanthi, C.N.; Mayaja, N.A.; Srinivasa, C.V. Impact of urbanisation on lakes-a study of
Bengaluru lakes through water quality index (WQI) and overall index of pollution (OIP). Environ. Monit. Assess. 2021, 193, 408.

18. Huang, C.; Huang, P.; Wang, X.; Zhou, Z. Assessment and optimization of green space for urban transformation in resources-based
city—A case study of Lengshuijiang city, China. Urban For. Urban Green. 2018, 30, 295–306. [CrossRef]

19. Semeraro, T.; Aretano, R.; Pomes, A. Green infrastructure to improve ecosystem services in the landscape urban regeneration.
IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 082044. [CrossRef]

20. Kim, J.H.; Jobbágy, E.G.; Jackson, R.B. Trade-offs in water and carbon ecosystem services with land-use changes in grasslands.
Ecol. Appl. 2016, 26, 1633–1644. [CrossRef]

21. Knoke, T.; Paul, C.; Hildebrandt, P.; Calvas, B.; Castro, L.M.; Härtl, F.; Döllerer, M.; Hamer, U.; Windhorst, D.; Wiersma, Y.F.;
et al. Compositional diversity of rehabilitated tropical lands supports multiple ecosystem services and buffers uncertainties. Nat.
Commun. 2016, 7, 11877. [CrossRef] [PubMed]

22. Wu, Z.; Chen, R.; Meadows, M.E.; Sengupta, D.; Xu, D. Changing urban green spaces in Shanghai: Trends, drivers and policy
implications. Land Use Policy 2019, 87, 104080. [CrossRef]

23. Roces-Díaz, J.V.; Vayreda, J.; Banqué-Casanovas, M.; Díaz-Varela, E.; Bonet, J.A.; Brotons, L.; de-Miguel, S.; Herrando, S.;
Martínez-Vilalta, J. The spatial level of analysis affects the patterns of forest ecosystem services supply and their relationships.
Sci. Total Environ. 2018, 626, 1270–1283. [CrossRef] [PubMed]

24. Duy Thinh, D.; Huang, J.; Cheng, Y.; Thi Cat Tuong, T. Da Nang green space system planning: An ecology landscape approach.
Sustainability 2018, 10, 3506.

25. Liu, W.; Holst, J.; Yu, Z. Thresholds of landscape change: A new tool to manage green infrastructure and social-economic
development. Landsc. Ecol. 2014, 29, 729–743. [CrossRef]

26. Qian, Y.; Zhou, W.; Li, W.; Han, L. Understanding the dynamic of greenspace in the urbanized area of Beijing based on high
resolution satellite images. Urban For. Urban Green. 2015, 14, 39–47. [CrossRef]

27. Byomkesh, T.; Nakagoshi, N.; Dewan, A.M. Urbanization and green space dynamics in Greater Dhaka, Bangladesh. Landsc. Ecol.
Eng. 2012, 8, 45–58. [CrossRef]

28. Su, S.; Wang, Y.; Luo, F.; Mai, G.; Pu, J. Peri-urban vegetated landscape pattern changes in relation to socioeconomic development.
Ecol. Indic. 2014, 46, 477–486. [CrossRef]

29. Sharp, J.S.; Clark, J.K. Between the country and the concrete: Rediscovering the rural-urban fringe. City Community 2008, 7, 61–79.
[CrossRef]

30. Huang, S.-L.; Lee, Y.-C.; Budd, W.W.; Yang, M.-C. Analysis of changes in farm pond network connectivity in the peri-urban
landscape of the Taoyuan area, Taiwan. Environ. Manag. 2012, 49, 915–928. [CrossRef]

31. Lee, Y.-C.; Ahern, J.; Yeh, C.-T. Ecosystem services in peri-urban landscapes: The effects of agricultural landscape change on
ecosystem services in Taiwan’s western coastal plain. Landsc. Urban Plan. 2015, 139, 137–148. [CrossRef]

http://doi.org/10.1073/pnas.1602312113
https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS
https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS
http://doi.org/10.1016/j.landurbplan.2017.02.014
http://doi.org/10.1007/s11442-015-1216-5
http://doi.org/10.1016/j.landusepol.2020.104601
http://doi.org/10.3390/land6020036
http://doi.org/10.1016/j.landusepol.2012.02.008
http://doi.org/10.1016/j.landusepol.2017.09.004
http://doi.org/10.1080/01426397.2016.1173658
http://doi.org/10.1016/j.landusepol.2018.09.008
http://doi.org/10.1080/19463138.2013.799068
http://doi.org/10.1016/j.ufug.2020.126967
http://doi.org/10.1016/j.ufug.2017.12.016
http://doi.org/10.1088/1757-899X/245/8/082044
http://doi.org/10.1890/15-0863.1
http://doi.org/10.1038/ncomms11877
http://www.ncbi.nlm.nih.gov/pubmed/27292766
http://doi.org/10.1016/j.landusepol.2019.104080
http://doi.org/10.1016/j.scitotenv.2018.01.150
http://www.ncbi.nlm.nih.gov/pubmed/29898535
http://doi.org/10.1007/s10980-014-0007-1
http://doi.org/10.1016/j.ufug.2014.11.006
http://doi.org/10.1007/s11355-010-0147-7
http://doi.org/10.1016/j.ecolind.2014.06.044
http://doi.org/10.1111/j.1540-6040.2007.00241.x
http://doi.org/10.1007/s00267-012-9824-7
http://doi.org/10.1016/j.landurbplan.2015.02.023


Land 2021, 10, 801 20 of 21

32. Kar, R.; Obi Reddy, G.P.; Kumar, N.; Singh, S.K. Monitoring spatio-temporal dynamics of urban and peri-urban landscape using
remote sensing and GIS—A case study from Central India. Egypt. J. Remote. Sens. Space Sci. 2017, 21, 401–411. [CrossRef]

33. Zhou, T.; Vermaat, J.E.; Ke, X. Variability of agroecosystems and landscape service provision on the urban–rural fringe of Wuhan,
Central China. Urban Ecosyst. 2019, 22, 1207–1214. [CrossRef]

34. Yang, J.; Guan, Y.; Xia, J.; Jin, C.; Li, X. Spatiotemporal variation characteristics of green space ecosystem service value at urban
fringes: A case study on Ganjingzi District in Dalian, China. Sci. Total Environ. 2018, 639, 1453–1461. [CrossRef]

35. Lv, X.; Lu, X.; Fu, G.; Wu, C. A spatial-temporal approach to evaluate the dynamic evolution of green growth in China.
Sustainability 2018, 10, 2341. [CrossRef]

36. O’Brien, L.; De Vreese, R.; Kern, M.; Sievänen, T.; Stojanova, B.; Atmiş, E. Cultural ecosystem benefits of urban and peri-urban
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