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Abstract: The United States has a geographically mature and stable land use and land cover system
including land used as irrigated cropland; however, changes in irrigation land use frequently occur
related to various drivers. We applied a consistent methodology at a 250 m spatial resolution
across the lower 48 states to map and estimate irrigation dynamics for four map eras (2002, 2007,
2012, and 2017) and over four 5-year mapping intervals. The resulting geospatial maps (called the
Moderate Resolution Imaging Spectroradiometer (MODIS) Irrigated Agriculture Dataset or MIrAD-
US) involved inputs from county-level irrigated statistics from the U.S. Department of Agriculture,
National Agricultural Statistics Service, agricultural land cover from the U.S. Geological Survey
National Land Cover Database, and an annual peak vegetation index derived from expedited MODIS
satellite imagery. This study investigated regional and periodic patterns in the amount of change
in irrigated agriculture and linked gains and losses to proximal causes and consequences. While
there was a 7% overall increase in irrigated area from 2002 to 2017, we found surprising variability by
region and by 5-year map interval. Irrigation land use dynamics affect the environment, water use,
and crop yields. Regionally, we found that the watersheds with the largest irrigation gains (based
on percent of area) included the Missouri, Upper Mississippi, and Lower Mississippi watersheds.
Conversely, the California and the Texas–Gulf watersheds experienced fairly consistent irrigation
losses during these mapping intervals. Various drivers for irrigation dynamics included regional
climate fluctuations and drought events, demand for certain crops, government land or water policies,
and economic incentives like crop pricing and land values. The MIrAD-US (Version 4) was assessed
for accuracy using a variety of existing regionally based reference data. Accuracy ranged between
70% and 95%, depending on the region.

Keywords: irrigated agriculture; watershed boundaries; geospatial model; land use; accuracy

1. Introduction

Knowledge of the spatial and temporal dimensions of irrigated lands is useful for
research, land/water management, and policy making. Understanding spatial and tem-
poral trends of irrigated land can relate to the best agricultural practices and hence to
better yields and better food supply. In short, consistent mapping of irrigated lands and
understanding their dynamics can help in planning how to expand the food supply to the
growing population, projected to reach 9.7 billion by 2050 [1].

Whereas croplands are dynamic and impractical to map at ground level because
ground surveys are time consuming and costly, using remotely sensed imagery at various
spatial and temporal resolutions to map and monitor rainfed or irrigated croplands is
efficient and effective [2]. Various sources of satellite remote sensing contribute to mapping
irrigated or rainfed crops. Moderate Resolution Imaging Spectroradiometer (MODIS)
imagery with a temporal resolution of 1 day and spatial resolution of 250 m has been widely
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used to map cropland [3–9]. With its less frequent coverage but finer spatial resolution
images, Landsat is also a popular source of data for mapping cropland. Some existing
cropland maps include the Cropland Data Layer (CDL) produced by the U.S. Department
of Agriculture (USDA) National Agricultural Statistics Service (NASS), the National Land
Cover Database (NLCD) produced by the U.S. Geological Survey (USGS) [10,11], and
Global Food Security-Support Analysis Data [12].

While mapping croplands (either as a whole or by mapping specific types of crops) is
done by various federal agencies in the United States, relatively few datasets consistently
identify temporal and spatial extents of irrigated croplands, which has formed a gap in
the understanding of the dynamics of irrigated areas [5,8,13,14]. Mapping irrigated land is
important because the spatial information of irrigated land can solve various challenges
including understanding the effect of agriculture on water use, formulating effective
management policies for this limited resource, and budgeting the agricultural water [8,14].
Fewer attempts have been made to map irrigated land at regional and/or contiguous
United States (CONUS) level [5,8,15–17], and these are limited either by temporal or
spatial constraints. The county-level irrigated area acreage documented by NASS, for
example, lacks sub-county-level spatial information. The CONUS-wide 30 m LANID
product by Xie et al. [17] is limited to a single year. Deines et al. [15] and Ketchum
et al. [16] mapped irrigated areas for 30 years but were each limited to a single region—High
Plains aquifer (HPA) and Western United States, respectively. The Moderate Resolution
Imaging Spectroradiometer (MODIS) Irrigated Agriculture Dataset or MIrAD-US is the
only product that has mapped irrigated area CONUS-wide for four eras (2002, 2007, 2012,
and 2017). Even though the products are at coarser resolutions (250 m and 1 km), MIrAD-
US provides consistent, accurate, and detailed geospatial information of irrigated area
across the conterminous United States. [4,5].

In 2010, Pervez and Brown [8] developed a geospatial model to map irrigated agricul-
ture across CONUS for 2002. This geospatial model incorporated the county-level irrigated
statistics from USDA NASS with agricultural land cover from NLCD and the peak normal-
ized difference vegetation index (NDVI) derived from 7-day expedited MODIS composites
(eMODIS) at 250 m scale and is referred to as MIrAD-US. Later, the same approach was
used by Brown and Pervez [5] to explore irrigation dynamics between two periods, 2002
and 2007. As an extension of these earlier efforts, we present the regional dynamics in
U.S. irrigated lands for a 15-year period. We also accessed the accuracy of MIrAD-US at
state and regional levels as per the availability of appropriate published reference data.
The objectives of this study were to (1) examine the dynamics in U.S. irrigated area (using
watersheds as a unit for analysis) and (2) assess the accuracy of the updated MIrAD-US
product (version 4).

2. Background

We utilized a geospatial modeling strategy to create a multi-period CONUS-wide
dataset for four eras (2002, 2007, 2012, and 2017) at a 250 m spatial resolution. In 2010, at
the first publication of the 2002 map [8], existing studies were limited to 250 m resolution
using MODIS, and repeat mapping did not occur. However, since that time technology
has advanced, and new methods have been devised so that collection of CONUS-wide
data at finer spatial resolution with a higher repeat cycle is possible. Various studies
applied different approaches and methods to map irrigated land at finer resolution at larger
temporal scales. Though limited to smaller regions, for example, the HPA region [15] or
the Western United States [16], these studies were extended to a three-decade time period,
whereas the study by Xie et al. [17] covered a larger region at a finer resolution but was
limited to a single year. MIrAD-US is a coarser resolution CONUS-wide dataset for four
periods at intervals of 5 years.

USDA NASS reported an increase in irrigated area between 2002 and 2007, a decrease
in irrigated area between 2007 and 2012, and an increase in irrigated area between 2012 and
2017 across the United States [18]. This statistic is available at 5-year intervals at county
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level only and does not provide the spatial information of the irrigated area. Researchers
who are seeking robust and comprehensive methods to produce detailed geospatial maps
for irrigated areas found remote sensing to be the most successful technique for mapping
irrigated land [5,8,15,17]. The use of remote sensing enables a diverse range of optimal
spatial and temporal observational capabilities for a given study area. Remote sensing
has the flexibility to widen and narrow the spatial and temporal scope of the study area.
Though irrigated areas are mapped at different scales and for various regions, the studies
on change dynamics in U.S. irrigated land are still limited. Earlier studies explored the
irrigation pattern at particular states and/or regions [5,8,15,17] or ecoregions, but a national-
scale watershed-level study of irrigation dynamics has not been conducted. This study also
aimed to improve understanding of irrigation change dynamics across the United States at
the level of major watersheds.

Watersheds provide a common geographic basis for understanding irrigated agricul-
ture dynamics across the U.S. Watershed boundaries provide a seamless/standardized
system where national hydrologic units are organized in a nested and hierarchical sys-
tem using a unique code and represent the areal extent of surface water drainage to a
single outlet [19]. The USGS Watershed Boundary Dataset (WBD) contains eight levels of
progressive hydrological units identified by unique two- to 16-digit codes. We selected
unique two-digit code hydrological units across CONUS at the most general level and
collectively called them “watersheds” for this study. For further study, we selected 11 of
these watersheds based on the dynamics and areal extent in irrigated areas between 2002
and 2017.

The two ways that water is supplied to cultivate crops are from direct rainfall and
irrigation [20]. For irrigation, water is supplied either from surface water (via gravity
flow from rivers, lakes, and reservoirs) or ground water (through springs or wells). While
water availability is the most important factor for irrigation, other driving forces including
types of irrigation, source of water, tariffs attached with water supply, the laws governing
water-control [21], geographical location, land quality and physical attributes of the soil,
and environmental parameters such as precipitation, temperature, and drought determine
irrigation needs. Water supply for irrigation may be controlled at both local and regional
levels by a state or an irrigation district [21]; therefore, it is crucial to understand the
availability effects of these driving forces on irrigation. There are several studies that
focus on evaluation of irrigation dynamics at local, state, and aquifer scales. While studies
at watershed scale could help understand overall trend at a large scale providing more
information on water availability (mostly surface water) surpassing the impacts of local
variables, we found no studies at this scale. The aim of this study was to illuminate irriga-
tion dynamics at a generalized watershed scale, which may be useful for understanding
broader geographic patterns and developing regional water management strategies and
hence combatting future food security threats.

3. Materials and Methods
3.1. Input Data/Geospatial Model

In developing an updated version of MIrAD-US (Version 4, [22]), we implemented
the geospatial model developed by Pervez and Brown, using similar input sources but
updating them to reflect current data availability [8] in order to map irrigated lands for
four eras (2002, 2007, 2012, and 2017). Each MIrAD-US product corresponds with the
year when USDA released their county-level irrigation area statistics data [18]. The other
input data (eMODIS annual peak NDVI and NLCD) were selected from the same year or
closest year, respectively. The guiding concept states (1) the irrigated crops show higher
NDVI values than non-irrigated crops in the same local area; (2) both the irrigated and
non-irrigated crops may exhibit similar NDVI values during optimum precipitation period
(however, during drought the difference in NDVI between irrigated and non-irrigated
crops may be maximized, and therefore, for this model to operate smoothly, ideally the
annual time period with severe drought condition should be selected); and (3) the growing
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season peak NDVI, at any time it occurs, will vary for each crop and for each geographic
region of the United States. Because the annual peak NDVI varies by crop, the model could
be biased toward some of the peak NDVI values [8] as some crops tend to reach higher
NDVI peaks than others. The best approaches to distinguish irrigated cells from the non-
irrigated cells are either to compare with field data or compare wall-to-wall with United
States crop maps [8]. A CONUS-wide detailed cropland specific dataset is not available
for 4 mapping intervals, and producing field data is outside of our scope. Additionally,
Pervez and Brown [8] investigated that whether peak NDVI would be a good indicator
regardless of crop type at selected locations, and found it generally well supported. Further
assessment of MIrAD-US by Wardlow and Callahan [23] of Nebraska irrigated agriculture
also supported this finding.

In summary, the input data for our geospatial model include USDA county irrigation
statistics, eMODIS annual peak NDVI, and land cover mask from NLCD [8]. First, 250 m
eMODIS peak NDVI values were masked by resampled (250 m) NLCD data for agricul-
tural land classes, then the peak NDVI were overlaid on county spatial data provided
by the census. Then, a list of peak annual NDVI values was sorted in descending order.
Starting with the highest ranked peak NDVI, the area of the corresponding peak NDVI
value cells was computed and compared with the USDA irrigation area statistics for that
county. The same process was repeated for each peak NDVI value in descending order
until the accumulated area exceeded the county area estimate from the census [18]. The
corresponding pixels that contribute to the matched area were identified as irrigated for
the county. In a final post-processing step, all lone (single) pixels were spatially filtered
from the irrigated area map.

3.2. Accuracy Assessment

We accessed the accuracy of MIrAD-US (Version 4) at different temporal and spatial
extents depending upon the availability of reference data. Table 1 lists the available
reference data, area coverage, corresponding MIrAD-US year, and sources. As no new
reference data collection was carried out by this effort, reference data were obtained from
multiple sources including state agency irrigation, well databases, and data collected by
other researchers. Some of these data were collected via survey, whereas some were derived
from secondary sources using Google Earth Engine and remote sensing interpretation
techniques. We refer to this collective dataset as “reference” data.

The temporal and spatial extent of reference data were not consistent with MIrAD-US;
therefore, we matched the reference data year closest to MIrAD-US era and carried out
accuracy assessment at state or region levels: For example, to validate MIrAD-2007 in
California we used 2006 and 2008 reference data; to validate MIrAD-2017 in Colorado we
used 2016 reference data; and to validate MIrAD-2007 and MIrAD-2017 for the HPA, we
used 2008 and 2016 reference data, respectively.

Reference data for California for years 2002, 2006, 2008, and 2012 were obtained from
the California Department of Water Resources (DWR). The DWR created digital vector field
maps using visual interpretation of aerial photographs along with field visits. The 2002
reference data for the Eastern Snake River Plain aquifer (ESPA) (in vector format) were
obtained from the Idaho Department of Water Resources (IDWR). We converted the IDWR
irrigated lands vector database to raster format matching the spatial resolution of MIrAD-
2002 and assigned 1 or 0 for irrigated and non-irrigated class based on the irrigation status
information. Other reference data for the HPA for multiple years [13,15] and Columbia
Plateau basin-fill aquifer (CPA) for 2012 [17] were developed using a semi-autonomous
training approach in Google Earth Engine.

We applied the two most common and effective methods for accuracy assessment:
(1) simple random and (2) stratified random. In the simple random method, the surveyed
polygon fields were converted into grids using an irrigation attribute (1 for irrigated and
0 for non-irrigated) matching the spatial properties (projection, extent, and cell size) of
MIrAD-US. Then, the MIrAD-US and new raster maps were overlaid with each other on
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a cell-by-cell basis and were made to have the same attribute values (e.g., 1 if the cell is
irrigated and 0 if the cell is not irrigated). Second, a set of sample random points were
created using the random point generator tool in ArcGIS [24]. These random points were
constrained by the common areas from both data products, and any two points were
minimally spaced at 1 km. Third, the random points were overlaid on a pixel-by-pixel
basis with MIrAD-US raster and new raster, and irrigation information was extracted from
the cell that contained the point. In the stratified random method, the irrigated (1) and
non-irrigated (0) points were generated from the surveyed polygons instead. These points
were overlaid on a pixel-by-pixel basis with MIrAD-US raster and irrigation information
extracted from the cell that contained the point. Finally, an error matrix was generated using
the extracted irrigation information from MIrAD-US to compute the following accuracies
and errors: overall accuracy, user’s and producer’s accuracies, error of commission and
omission, and kappa statistics.

Table 1. Reference data used for accuracy assessment.

State/
Region

Spatial
Coverage Year Corresponding

MIrAD-US ra
Data

Format
Source

(URL/DOI)

California All Counties 2002, 2006,
2008, 2012

2002, 2007,
2012 Polygon

https://
water.ca.gov/
(accessed on
7 April 2021)

Washington CPA 2012 2012 Points Xie et al. [17]

Idaho ESPA 2002, 2006,
2008, 2011

2002, 2007,
2012 Polygon

https://idwr.
idaho.gov/

(accessed on
7 April 2021)

HPA Region

HPA–KS 2002 2002 Points

Deines et al.
[13]

HPA–NE 2005 2007 Points

HPA–TX,
NM, OK 2008, 2012 2007, 2012 Points

HPA–CO 2016 2017 Points
HPA = High Plains aquifer, TX = Texas, NM = New Mexico, OK = Oklahoma, KS = Kansas, NE = Nebraska,
CO = Colorado, ESPA = Eastern Snake River Plain aquifer, CPA = Columbia Plateau basin-fill aquifer.

Due to availability of surveyed polygons, stratified random methods of accuracy
assessment were left out in the regions (e.g., CPA region, Table 1) with no polygon data.

4. Results
4.1. The MIrAD-US Dataset

The MIrAD-US is a source of geospatial raster data for irrigated land across the U.S.
for four years at 250 m and 1 km resolution. All the products are projected into Lambert
azimuthal equal area, saved in ArcGIS-friendly Geotiff format, and found in ScienceBase—
an online portal maintained by USGS to store open data, repository services, and large
datasets [22]. The MIrAD-US dataset has two classes: “irrigated” and “non-irrigated.”
Similar to the Pervez and Brown [8] findings, most of the irrigated areas were concentrated
in the Midwestern and Western United States and sparsely scattered throughout the more
humid Eastern Seaboard and Mississippi Flood Plain in all four eras.

The MIrAD-US detected a gradual increase in irrigated area from 2002 (22.14 million
hectares (mha)) to 2007 (22.67 mha), a slight decrease from 2007 to 2012 (22.50 mha), and a
rapid increase from 2012 to 2017 (23.76 mha) (Figure 1b). The irrigation frequency maps
(Figure 1a,c) show the majority of the lands (approx. 40%) were irrigated for 1 era followed
by lands irrigated for 4 eras (approx. 26%). The South Atlantic–Gulf, Upper Mississippi,
Great Lakes, Texas–Gulf, and a few parts of Missouri, Lower Mississippi, and Arkansas–

https://water.ca.gov/
https://water.ca.gov/
https://idwr.idaho.gov/
https://idwr.idaho.gov/
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White–Red watersheds were mostly irrigated for 1 era, suggesting unstable irrigation,
whereas most of the lands in the Lower Mississippi, California, Missouri, and Pacific
Northwest watersheds were irrigated for 4 eras, indicating a strong level of irrigation
stability (Figure 1a). Lower precipitation rate and availability of water for irrigation can be
associated with irrigation stability in these watersheds [25,26].

Figure 1. MIrAD-US estimations of irrigated land across CONUS: (a) map showing the CONUS-wide distribution of
irrigation frequency for four eras where blue polygons represent CONUS-wide HUC2 watershed boundaries and light
blue, dark blue, light orange, and pink represent irrigated area for 1, 2, 3, and 4 eras, respectively (b) total irrigated area (in
million ha) estimated by MIrAD-US and USDA NASS for four eras, and (c) pie chart showing percentage of frequency of
irrigated land for four eras.

Table 2 shows areas of change and no change in irrigated land status between 2002
and 2017 at 5-year mapping intervals. Between 2002 and 2007, approximately 68.16%
of the irrigated areas remained unchanged, 31.84% were newly identified in 2007, and
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34.23% were identified as lost from 2002. Overall, there was a gain of 2.39% of irrigated
land between these eras. The irrigated area decreased by -0.75% from 2007 to 2012 with
approximately 66.88% of unchanged irrigated areas, 33.12% newly identified in 2012, and
32.38% lost from 2007 (Table 2). Between 2012 and 2017, irrigated area increased by 5.59%
recording the highest gain in new irrigated areas among all mapping intervals. During this
latest interval, approximately 67.38% of the irrigated areas remained unchanged, 32.62%
was newly identified in 2017, and 33.37% was identified as lost from 2012 (Table 2).

Table 2. Dynamics of the U.S. irrigated land between 2002 and 2017 at 5-year mapping intervals.

2002 and 2007

Irrigated Areas in ha Common Areas
between 2002 and 2007 Lost from 2002 New in 2007

Net Change in %
2002 2007 in ha % in ha % in ha %

22,137,419 22,666,863 15,089,400 68.16 7,577,420 34.23 7,047,980 31.84 2.39

2007 and 2012

Irrigated areas in ha Common areas between
2007 and 2012 Lost from 2007 New in 2012

Net change in %
2007 2012 in ha % in ha % in ha %

22,666,863 22,497,394 15,158,800 66.88 7,338,630 32.38 7,508,100 33.12 −0.75

2012 and 2017

Irrigated areas in ha Common areas between
2012 and 2017 Lost from 2012 New in 2017

Net change in %
2012 2017 in ha % in ha % in ha %

22,497,394 23,755,163 15,158,800 67.38 7,508,100 33.37 7,338,630 32.62 5.59

4.2. Watershed Dynamics in the U.S. Irrigated Agriculture from 2002 to 2017

Table 3 and Figure 2a show the watersheds with the most substantial change in
irrigated lands between 2002 and 2017. The statistics include the sum of irrigated area
in each mapping interval (era); the sum and percentage of irrigated area lost from the
preceding era; the sum and percentage of irrigated area gained in successive eras; and
the sum and percentage of common area and net change between consecutive eras. The
majority of irrigated lands (approx. 26%) across CONUS occurs in the Missouri watershed
(Figure 2a). There, irrigated area increased from about 5.274 million ha in 2002 to about
5.94 million ha in 2017 (Table 3 and Figure 2b), which is roughly a 13% increase. During
that time, the Missouri watershed gained about 8.9% irrigated area from 2002 to 2007, lost
about −2.4% irrigated area between 2007 and 2012, and gained about 5.9% irrigated area
between 2012 and 2017. The Upper and Lower Mississippi watersheds also experienced
growth in irrigated lands, with the Lower Mississippi watershed consistently gaining
about 7.2%, 9.3%, and 9.1% between these three intervals (Table 3), totaling 28% between
2002 and 2017. The Upper Mississippi watershed secured the highest percentage gain of
69% between 2002 (536,000 ha) and 2017 (904,000 ha) with about 17.9%, −2.9%, and 47.2%
change between 2002 and 2007, 2007 and 2012, and 2012 and 2017, respectively (Figure 3).
Because the actual magnitudes of irrigated areas were lower, the high percentage change
did not contribute to overall change across the CONUS.

Watersheds suffering the greatest decreases in irrigation area include California and
the Texas–Gulf (Table 3 and Figure 3). The California watershed lost about −7.3%, −2.6%,
and −1% between map intervals with a total loss of about −11% between 2002 and 2017.
The Texas–Gulf watershed faced the highest percentage loss of about −18% across the
same time period.
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Table 3. Change dynamics in the U.S. irrigated land between 2002 and 2017 at the watershed level.

Watershed Boundary Level MIrAD-US Irrigation Agricultural Land Estimates

2002 and 2007

Rank Top 11
Watersheds

Irrigated Area in ha Common
Areas between 2002 and 2007 Lost from 2002 New in 2007 %N

2002 2007 in ha % in ha % in ha %

1 Missouri 5,273,330 5,743,220 3,800,830 72.08 1,942,390 36.83 1,472,510 27.92 8.91%N

2 Lower
Mississippi 2,824,880 3,026,880 1,806,540 63.95 1,220,340 43.20 1,018,340 36.05 7.15%N

3 California 3,523,890 3,268,110 2,937,490 83.36 330,619 9.38 586,400 16.64 −7.26%H

4 Pacific
Northwest 2,797,340 2,765,990 2,180,430 77.95 585,556 20.93 616,906 22.05 −1.12%H

5 Arkansas–White–Red 2,041,760 2,174,680 1,180,210 57.80 994,463 48.71 861,550 42.20 6.51%N

6 South
Atlantic–Gulf 1,173,440 1,098,360 480,544 40.95 617,813 52.65 692,900 59.05 −6.40%H

7 Texas–Gulf 1,479,090 1,369,590 815,181 55.11 554,413 37.48 663,913 44.89 −7.40%H

8 Upper
Mississippi 536,238 632,300 119,750 22.33 512,550 95.58 416,488 77.67 17.91%N

9 Great Basin 640,856 640,213 555,463 86.68 84,750 13.22 85,394 13.32 −0.10%H

10 Upper
Colorado 487,700 434,419 402,175 82.46 32,244 6.61 85,525 17.54 −10.92%H

11 Lower
Colorado 429,919 402,394 353,781 82.29 48,613 11.31 76,138 17.71 −6.40%H

2007 and 2012

Rank Top 11
Watersheds

Irrigated Area in ha Common
Areas between 2007 and 2012 Lost from 2007 New in 2012 %N

2007 2012 in ha % in ha % in ha %

1 Missouri 5,743,220 5,606,070 3,800,830 66.18 1,942,390 33.82 1,472,510 25.64 −2.39%H

2 Lower
Mississippi 3,026,880 3,309,190 2,305,370 76.16 1,303,410 43.06 1,003,830 33.16 9.33%N

3 California 3,268,110 3,182,190 2,777,180 84.98 405,019 12.39 490,931 15.02 −2.63%H

4 Pacific
Northwest 2,765,990 2,673,740 2,114,000 76.43 559,744 20.24 651,988 23.57 −3.34%H

5 Arkansas–White–Red 2,174,680 2,048,990 1,105,910 50.85 943,088 43.37 1,068,770 49.15 −5.78%H

6 South
Atlantic–Gulf 1,098,360 1,149,640 467,200 42.54 682,444 62.13 631,156 57.46 4.67%N

7 Texas–Gulf 1,369,590 1,272,990 721,544 52.68 551,444 40.26 648,050 47.32 −7.05%H

8 Upper
Mississippi 632,300 614,225 129,394 20.46 484,831 76.68 502,906 79.54 −2.86%H

9 Great Basin 640,213 657,213 572,313 89.39 84,900 13.26 67,900 10.61 2.66%N

10 Upper
Colorado 434,419 471,194 389,763 89.72 81,431 18.74 44,656 10.28 8.47%N

11 Lower
Colorado 402,394 406,319 352,063 87.49 54,256 13.48 50,331 12.51 0.98%N

2012 and 2017

Rank Top 11
Watersheds

Irrigated Area in ha Common Areas between 2012 and 2017 Lost from 2012 New in 2017 %N

2012 2017 in ha % in ha % in ha %

1 Missouri 5,606,070 5,937,240 3,949,610 70.45 1,656,460 29.55 1,793,610 31.99 5.91%N

2 Lower
Mississippi 3,309,190 3,608,780 2,070,288 62.56 1,238,906 37.44 956,594 28.91 9.05%N

3 California 3,182,190 3,150,680 2,579,150 81.05 571,531 17.96 603,044 18.95 −0.99%H

4 Pacific
Northwest 2,673,740 2,770,780 2,077,500 77.70 693,275 25.93 596,244 22.30 3.63%N

5 Arkansas–White–Red 2,048,990 2,013,760 1,024,560 50.00 989,200 48.28 1,024,430 50.00 -1.72%H

6 South
Atlantic–Gulf 1,149,640 1,226,600 485,656 42.24 740,944 64.45 663,988 57.76 6.69%N

7 Texas–Gulf 1,272,990 1,209,180 649,963 51.06 559,213 43.93 623,025 48.94 −5.01%H

8 Upper
Mississippi 614,225 904,369 154,975 25.23 749,394 122.0 459,250 74.77 47.24%N

9 Great Basin 657,213 654,563 578,600 88.04 75,963 11.56 78,613 11.96 −0.40%H

10 Upper
Colorado 471,194 484,800 427,194 90.66 57,606 12.23 44,000 9.34 2.89%N

11 Lower
Colorado 406,319 413,088 357,031 87.87 56,056 13.80 49,288 12.13 1.67%N
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Figure 2. MIrAD-US: Irrigation Dynamics across all intervals, (a) graphics showing CONUS-wide proportional irrigation
gain and loss and (b) column charts showing watershed-wide irrigation gain and loss at 5 years mapping intervals.
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Figure 3. The graphics showing the sum of irrigated area in hectares estimated by MIrAD-US for Figure 2002. 2007, 2012,
and 2017 across the CONUS at watershed boundary level.

California suffered from a prolonged drought and decreases in surface/ground water
availability for irrigation throughout the study period leading to decreased irrigation,
whereas the Missouri and Lower Mississippi watersheds still receive adequate ground
water for irrigation. The increased number of ground water wells in Eastern Nebraska
between 2002 and 2005 [8,15] and increased amount of rainfall in Lower Mississippi
watershed from 1969 to 2017 [26] are driving factors for increased irrigation for these
watersheds. Widespread drought in 2012 affected multiple watersheds like Missouri and
California watersheds and resulted in an overall decrease in irrigation [27]. Between 2012
and 2017, increases in irrigated area in Missouri, Pacific Northwest, and Lower Mississippi
watersheds offset the decrease in irrigation in the California watershed (Figure 2b).

4.3. MIrAD-US Product Accuracy

We collected reference data for accuracy assessment from multiple sources including
state agencies, well databases, and data collected by other researchers (Table 1). Because
these reference data were associated with different watersheds and time periods, the
accuracy assessment task varied accordingly.

In California, we carried out the accuracy assessment for four eras and obtained
overall accuracies above 95% (Table 4). The overall accuracies above 95% indicate that
there was good agreement between DWR surveyed polygons and irrigated areas estimated
by MIrAD-US. However, a relatively high commission error of roughly above 30% for the
irrigated class and low omission error of roughly 12% indicate that, in this region where
ground data were collected, MIrAD-US may have mapped more irrigated fields. For 2012,
both random and stratified methods showed overall accuracies above 95% and omission
errors below 17%, suggesting that there was a good agreement between surveyed data,
and the irrigated areas were not omitted in MIrAD-2012.
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Table 4. Error matrix summary of irrigated and non-irrigated category between MIrAD-US and reference data.

Region/
State Ref. Year

Corr.
MIrAD-US Era Methods

Overall
Accuracy

Omission
Errors Commission Errors

Total Points Irr. Points

Irr. Non-Irr. Irr. Non-Irr.

California

2002 2002
Simple 94.93% 12% 4% 30% 1% 1557 158

Stratified 64.10% 51% 21% 30% 39% 1997 998

2006 2007
Simple 97.69% 9% 1% 10% 1% 1513 178

Stratified 64.90% 53% 17% 27% 39% 1997 998

2008 2007
Simple 95.34% 27% 1% 13% 4% 1608 197

Stratified 63.08% 53% 21% 31% 40% 1991 996

2012 2012
Simple 97.50% 17% 1% 7% 2% 2361 251

Stratified 96.27% 4% 3% 4% 4% 4375 2014

Lower HPA
(TX, NM, OK)

2008 2007 Stratified 81.97% 27% 8% 10% 24% 932 483

2012 2012 Stratified 82.08% 30% 8% 13% 21% 865 388

HPA–KS 2002 2002 Stratified 62.02% 52% 17% 18% 49% 1498 915

HPA–NE 2005 2007 Stratified 80.15% 19% 20% 20% 20% 1950 989

HPA–CO 2016 2017 Stratified 70.82% 49% 9% 16% 35% 1004 497

ESPA 2002 2002
Simple 79.02% 17% 34% 10% 50% 1511 1191

Stratified 65.96% 25% 43% 36% 31% 1992 998

CPA 2012 2012 Simple 81.00% 14% 22% 27% 12% 200 83

Ref. = reference, Corr. = corresponding, Irr. = irrigated, HPA = High Plains aquifer, TX = Texas, NM = New Mexico, OK = Oklahoma,
KS = Kansas, NE = Nebraska, CO = Colorado, ESPA = Eastern Snake River Plain aquifer, CPA = Columbia Plateau basin-fill aquifer.

In the HPA region (Table 4), the MIrAD-US agreed reasonably well with ground
surveyed irrigated area information with an overall accuracy of 81.97%, 82.08%, and
80.15% at lower HPA (2008 and 2012) and Nebraska (2005). There was comparatively less
agreement between MIrAD-US and ground surveyed irrigated area information with an
overall accuracy of 62.02% in Kansas (2002) and 70.82% in Colorado (2005). The relatively
high errors of omission (49%) and low errors of commission (16%) in HPA-CO indicate that
there may have been fewer irrigated fields mapped by MIrAD-US. The differences in spatial
detail between MIrAD-US and HPA-CO and the discrepancy between the MIrAD-US date
(2016) and field survey dates (2017) likely resulted in high errors of omission and low errors
of commission in this area. In the Western United States, the overall accuracy remained
relatively lower in the ESPA region than CPA region. Using IDWR reference data, the ESPA
assessment showed good agreement between the MIrAD-2002 and the reference area map
with overall accuracies of about 79% and 66% using simple random and stratified random
methods, respectively. In the CPA, the overall accuracy of 81% for MIrAD-2012 indicates
that there was good agreement with Xie et al. [17] derived reference data. However,
relatively high omission error of roughly 14% for the irrigated class indicates probable
omission of irrigated areas in MIrAD-2012.

5. Discussion

Lack of consistent reference data across all of CONUS and during the same mapping
eras for assessing the accuracy of the MIrAD-US maps limited the possibility of carrying
out a single accuracy assessment across the entire CONUS; however, results of this study
show MIrAD-US classifies irrigated area with a moderately high degree of accuracy. The
overall accuracies across the assessed regions ranged from about 62% to 97%.

We assume that recent irrigation dynamics are mainly determined by the amount of
available water supply for irrigation and crop types. In addition, other possible factors
including economic incentives such as crop pricing and land values, the demand for corn
related to development of biofuels, government policies related to water or land use, land
availability, and regional climate fluctuations may influence irritation dynamics [5]. The
trends we found in irrigation area vary across both temporal and spatial scales. Based on
MIrAD-US map data, we detected an overall increase between 2002 and 2007, a decrease
between 2007 and 2012, and another increase between 2012 and 2017 (Figure 1b). However,
trends varied by geographic region. MIrAD-US showed decreasing area in California and
the Texas–Gulf watersheds, an increasing irrigated area in Upper and Lower Mississippi
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watersheds, and both increasing and decreasing irrigated area in Missouri and Pacific
Northwest watersheds (Figure 3).

The majority of the irrigated lands across CONUS (approx. 26%) falls in the Missouri
watershed. The MIrAD-US detected increasing total irrigated area over the course of the
study period of 12.6%, from 5.27 mha in 2002 to 5.94 mha in 2017, with the maximum
irrigated area in 2017, and the minimum irrigated area in 2002. The irrigated areas in
2007 and 2012 totaled 5.74 and 5.60 mha, respectively. Increasing irrigated area in the
Missouri watershed is likely associated with adaptation of improved irrigation techniques
including new groundwater mining and sprinkler technologies [5,28]; registration of new
wells, particularly in Nebraska [5]; crop insurance and federal subsidies [29–31]; and shift
from non-crops and/or wheat farming to corn farming due to increased corn prices as a
result of high demands on ethanol production [5,18,28–33]. Despite these drivers, the 2012
drought led to a decrease in irrigated areas, which may be associated with a scarcity of
ground water limiting the number of fields that could be irrigated [13,15].

Watersheds that showed increasing irrigated areas include the Lower and Upper
Mississippi watersheds. In the Lower Mississippi watershed, the irrigated area increased
by 7.15% between 2002 and 2007, followed by 9.33% and 9.05% for following mapping
intervals (Table 4). The net increase in irrigated land between 2002 and 2017 was 27.75%.
The increase in irrigated acres in the Lower Mississippi watershed may be associated with
the types of irrigation methods, precipitation patterns, water availability, and corn prices
during the study period. Most of the irrigated land in the Lower Mississippi watershed is
located at the Mississippi Alluvial Plain (MAP). The MAP is widely known for row crops
including rice, corn, soybeans, and fish farms [19,25,26,34]. Because rainfall events typically
occur outside of the growing season, water for irrigation is supplied from groundwater or
surface water [26,35,36].

A study by Yasarer et al. [26] described increasing precipitation in the Lower Missis-
sippi watershed from 1969 to 2017, with an average increase of about 0.03 inch per decade,
whereas the ground water elevation, streamflow, total cropland, and harvested cropland
have declined. Despite a decrease in stream flow and total cropland area, multiple studies
detected increases in irrigated cropland [26,35,37]. The increase in irrigated area is asso-
ciated with adoption of efficient irrigation methods where the existing furrow irrigation
system (that accounts for 75% of the irrigated area) is coupled with computerized timers,
flow meters, irrigation scheduling, soil moisture sensors, precision leveling, and tail water
recovery systems [26,35]. These irrigation methods reduce water use and prevent overdraft
of the ground water supply [35]. In addition, adequate rainfall recharges the groundwater.
In a study by Kebede et al. [35], they established a correlation between increased corn prices
relating to corn-based ethanol production in the mid to late 2000s with increased irrigated
cropland in the Mississippi watershed [7,38,39]. Even though this watershed seems to
have enough water for irrigation at present, streamflow depletion has raised concerns
for the future of available groundwater resources, which might lead to ecosystem/water
stress [26,40,41].

Watersheds that showed decreasing irrigated area include the California and Texas–
Gulf watersheds. The California watershed lost the highest acreage of irrigated area of
373,210 ha (10.59%) during the entire study period—the largest decrease (approx. 7.26%)
occurred from 2002 to 2007 (Table 4). Much of the irrigation in California relies on sur-
face water (i.e., gravity irrigation), and water supply originates from snowpack in the
Sierra Nevada Mountains. A series of droughts from 2003 to 2016 (particularly 2002–2004,
2007–2009, and 2012–2016) coupled with unusual warm winters [1,19,34] led to decreases
in snowpack in the mountains and to surface water shortage resulting in decreases in
irrigated cropland [42,43]. Just as in California, depletion of groundwater levels also led to
decreasing irrigated areas (−18%) in the Texas–Gulf watershed over the years [5,44].

While the mapping resolution of the MIrAD-US overcomes some spatial issues pre-
sented in subpixel fractional irrigated areas, it has trouble identifying irrigated fields that
are smaller than a 250 m cell [8]. Fields that are smaller than 250 m are either classified as
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irrigated (if the majority of neighboring cells are irrigated), potentially leading to overes-
timation, or as non-irrigated land (if the majority of neighboring cells are non-irrigated),
potentially leading to underestimation. MIrAD-US provides an estimate rather than an
exact rendering of irrigated lands. Use of higher resolution images such as 30 m Landsat or
10 m Sentinel-2 might overcome the spatial issues [15–17]. The MIrAD approach identified
irrigation status, but a change in irrigation status does not necessarily identify a change
(presence or absence) in irrigation equipment [5]. Different approaches would be needed
to detect irrigation equipment, which could be explored in further research.

Higher resolution (e.g., 30 m) annual irrigation mapping may be more useful in
exploring the dynamics of U.S. irrigated agriculture as these higher resolutions can provide
precise field locations of smaller fields with higher accuracy [15–17,45]; however, because
the majority of irrigated fields in the United States are generally larger than a single pixel
(250 m × 250 m = 62,500 m2), the 250 m MIrAD-US data are still good for detailed geospatial
information of irrigated areas across the conterminous United States [4,5]. In addition,
because MIrAD-US provides consistent and accurate information of irrigated area across
CONUS for 15 years at 5-year intervals, these datasets are important for estimating irrigated
croplands [5,8].

6. Conclusions

This study investigated both regional and periodic increases and decreases in irrigated
agriculture across the lower 48 U.S. states and more specifically at the watershed level.
While there was a 7% overall increase in irrigated area across CONUS from 2002 to 2017,
we found surprising variability by watershed and by 5-year map interval. Although the
Missouri, California, and Lower Mississippi watersheds showed the most stable irrigation
patterns via irrigation frequency maps, they depicted different trends. The California
watershed showed a general decrease in irrigated area, the Lower Mississippi watershed
showed increases over time, and the Missouri watershed showed an increase with a break
in 2012. A series of drought events in California led to surface water shortage resulting in
a decrease in irrigated cropland, whereas abundant rainfall and water availability led to
increase in irrigated cropland in the Lower and Upper Mississippi watersheds.

Accuracy of the MIrAD-US (Version 4) ranged between 62% and 97%, depending
on the region. The accuracies vary because of the irrigated field size, the density or
homogeneity of irrigated lands within the agricultural setting, and the reference data
used. In California where irrigated field sizes were fairly large and homogenous and
reference data were collected by field survey, agreements as high as 97% occurred between
reference data and MIrAD-US. Alternatively, in the CPA region where the reference data
were developed using a semi-autonomous training approach in Google Earth Engine, the
overall accuracy was comparatively lower (81%). Additionally, low numbers of irrigated
samples in reference data affected the overall accuracy by stratified methods. The overall
accuracies (stratified) varied at different geographical locations for the same era of data; for
example, for MIrAD-2012, the overall accuracy for California is about 97%; HPA-TX, NM,
OK is about 82%; and CPA is 81%. Climatic variance could have played a role in irrigation
accuracy variability, but in order to perform a quantitative analysis of irrigation accuracy
during different climate conditions, we would need reference data that were collected to
represent larger variability in climate. In the most cases, we have reference data for only a
single year. Future research could address this topic by providing access to multi-temporal
reference data for irrigated agriculture while considering climatic condition as a variable
for data collection.

We recognize that important advances have recently occurred in mapping and moni-
toring irrigated lands at higher spatial resolutions (e.g., 30 m) through time. Two studies by
Deines et al. [15] and Ketchum et al. [16] are notable in that they offer an annual mapping
periodicity at 30 m spatial resolution, but for smaller regions. Advancing these types of
efforts to operational annual mapping across CONUS would be the next logical step. In
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addition, the collection of comprehensive reference data that represents high frequency
and geographic coverage would also be a great benefit for robust accuracy assessment.

The MIrAD-US 2002, 2007, 2012, and 2017 era geospatial datasets have been used
to support a broad variety of applications. Some of the applications include model-
ing/mapping irrigated area, agriculture and cropland, hydrological/water resource mod-
eling, and meteorological modeling. The MIrAD-US was coupled with other variables
including biophysical variables (NASS Quick Stat, NASS CDL, NLCD, and Soil Survey);
climatic variables (Tmax, Tmin, and percp); remote sensing imageries (MODIS); and oth-
ers (land use land cover, elevation, ecoregion type) to model and map irrigated land at
regional, ecoregion, or global scale [3,46–59]. Data are available for download from the
USGS ScienceBase website (doi:10.5066/P9NA3EO8). The datasets are available in GeoTiff
file formats at two different cell sizes (250 m and 1 km) with appropriate metadata.

Author Contributions: Conceptualization, D.S., J.F.B., and D.M.H.; methodology, D.S. and J.F.B.; data
curation, D.S., J.F.B., T.D.B., and D.M.H.; writing—original draft preparation, D.S.; writing—review
and editing, D.S., J.F.B., D.M.H.; visualization, D.S.; supervision, J.F.B. and D.M.H. All authors have
read and agreed to the published version of the manuscript.

Funding: Support for D.S., J.F.B., T.D.B., and D.M.H. was provided by funding from the U.S. Depart-
ment of the Interior, U.S. Geological Survey, National Land Imaging Program under the Core Science
Systems Mission Area.

Data Availability Statement: The datasets are available at USGS ScienceBase website (doi:10.5066/
P9NA3EO8).

Acknowledgments: The USGS National Land Imaging program under the Core Science Systems
Mission Area provided funding support for this work. We would like to thank Yanhua Xie of the
University of Wisconsin-Madison and Jillian M. Deines of Stanford University for providing us the
ground reference irrigation data for the Columbia Plateau Basin and Great Plains, respectively. We
are also grateful to anonymous reviewers and M. Friedrichs for helpful comments. Any use of trade,
firm, or product names is for descriptive purposes only and does not imply endorsement by the
U.S. Government.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. United Nations Department of Economic and Social Affairs. Growing at a Slower Pace, World Population is Expected to Reach

9.7 Billion in 2050 and Could Peak at Nearly 11 Billion Around 2100. 2019. Available online: https://www.un.org/development/
desa/en/news/population/world-population-prospects-2019.html (accessed on 19 November 2020).

2. Johnson, D.M.; Mueller, R. The 2009 cropland data layer. Photogramm. Eng. Remote Sens. 2010, 76, 1201–1205.
3. Howard, D.M.; Wylie, B.K.; Tieszen, L.L. Crop classification modelling using remote sensing and environmental data in the

Greater Platte River Basin, USA. Int. J. Remote Sens. 2012, 33, 6094–6108. [CrossRef]
4. Wardlow, B.D.; Egbert, S.L. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S.

Central Great Plains. Remote Sens. Environ. 2008, 112, 1096–1116. [CrossRef]
5. Brown, J.F.; Pervez, M.S. Merging remote sensing data and national agricultural statistics to model change in irrigated agriculture.

Agric. Syst. 2014, 127, 28–40. [CrossRef]
6. Howard, D.M.; Wylie, B.K. Annual crop type classification of the US Great Plains for 2000 to 2011. Photogramm. Eng. Remote Sens.

2014, 80, 537–549. [CrossRef]
7. Massey, R.; Sankey, T.T.; Congalton, R.G.; Yadav, K.; Thenkabail, P.S.; Ozdogan, M.; Sánchez Meador, A.J. MODIS phenology-

derived, multi-year distribution of conterminous U.S. crop types. Remote Sens. Environ. 2017, 198, 490–503. [CrossRef]
8. Pervez, M.S.; Brown, J.F. Mapping Irrigated Lands at 250-m Scale by Merging MODIS Data and National Agricultural Statistics.

Remote Sens. 2010, 2, 2388–2412. [CrossRef]
9. Zhang, L.; Feng, H.; Jin, N.; Zhang, T. Mapping irrigated and rainfed wheat areas using high spatial–temporal resolution data

generated by Moderate Resolution Imaging Spectroradiometer and Landsat. J. Appl. Remote Sens. 2018, 12, 046023. [CrossRef]
10. Homer, C.; Dewitz, J.; Fry, J.; Coan, M.; Hossain, N.; Larson, C.; Herold, N.; McKerrow, A.; VanDriel, J.N.; Wickham, J. Completion

of the 2001 National Land Cover Database for the conterminous United States. Photogramm. Eng. Remote Sens. 2007, 73, 337–341.
11. Xian, G.; Homer, C.; Fry, J. Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat

imagery change detection methods. Remote Sens. Environ. 2009, 113, 1133–1147. [CrossRef]

https://www.un.org/development/desa/en/news/population/world-population-prospects-2019.html
https://www.un.org/development/desa/en/news/population/world-population-prospects-2019.html
http://doi.org/10.1080/01431161.2012.680617
http://doi.org/10.1016/j.rse.2007.07.019
http://doi.org/10.1016/j.agsy.2014.01.004
http://doi.org/10.14358/PERS.80.6.537-549
http://doi.org/10.1016/j.rse.2017.06.033
http://doi.org/10.3390/rs2102388
http://doi.org/10.1117/1.JRS.12.046023
http://doi.org/10.1016/j.rse.2009.02.004


Land 2021, 10, 394 15 of 16

12. Teluguntla, P.; Thenkabail, P.S.; Oliphant, A.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K.; Huete, A. A 30-m landsat-
derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine
cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2018, 144, 325–340. [CrossRef]

13. Deines, J.M.; Kendall, A.D.; Hyndman, D.W. Annual Irrigation Dynamics in the U.S. Northern High Plains Derived from Landsat
Satellite Data. Geophys. Res. Lett. 2017, 44, 9350–9360. [CrossRef]

14. Ozdogan, M.; Yang, Y.; Allez, G.; Cervantes, C. Remote Sensing of Irrigated Agriculture: Opportunities and Challenges. Remote
Sens. 2010, 2, 2274–2304. [CrossRef]

15. Deines, J.M.; Kendall, A.D.; Crowley, M.A.; Rapp, J.; Cardille, J.A.; Hyndman, D.W. Mapping three decades of annual irrigation
across the US High Plains Aquifer using Landsat and Google Earth Engine. Remote Sens. Environ. 2019, 233, 111400. [CrossRef]

16. Ketchum, D.; Jencso, K.; Maneta, M.P.; Melton, F.; Jones, M.O.; Huntington, J. IrrMapper: A Machine Learning Approach for
High Resolution Mapping of Irrigated Agriculture across the Western U.S. Remote Sens. 2020, 12, 2328. [CrossRef]

17. Xie, Y.; Lark, T.J.; Brown, J.F.; Gibbs, H.K. Mapping irrigated cropland extent across the conterminous United States at 30 m
resolution using a semi-automatic training approach on Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2019, 155,
136–149. [CrossRef]

18. U.S. Department of Agriculture. 2017 Census of Agriculture in Geographic Area Series; United States Department of Agriculture:
Washington, DC, USA, 2019.

19. U.S. Geological Survey; U.S. Department of Agriculture; Natural Resources Conservation Service. Federal standards and
procedures for the National Watershed Boundary Dataset (WBD). In Techniques and Methods 11-A3; U.S. Geological Survey: Reston,
VA, USA, 2013.

20. Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division
of Foodborne, Waterborne, and Environmental Diseases (DFWED). Types of Agricultural Water Use. 2016. Available online:
https://www.cdc.gov/healthywater/other/agricultural/types.html (accessed on 19 November 2020).

21. Hutchins, W.A. Irrigation Districts, their organization, operation, and financing. In Technical Bulletin No. 254; United States
Department of Agriculture: Washington, DC, USA, 1931.

22. Brown, J.F.; Howard, D.M.; Shrestha, D.; Benedict, T.D. Moderate Resolution Imaging Spectroradiometer (MODIS) Irrigated Agriculture
Datasets for the Conterminous United States (MIrAD-US); U.S. Geological Survey Data Release; U.S. Geological Survey: Reston, VA,
USA, 2019. [CrossRef]

23. Wardlow, B.D.; Callahan, K. A multi-scale accuracy assessment of the MODIS irrigated agriculture dataset (MIrAD) for the state
of Nebraska, USA. GISci. Remote Sens. 2014, 51, 575–592. [CrossRef]

24. Esri.com. Tool Reference. 2021. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/data-management/
create-random-points.htm (accessed on 5 January 2021).

25. Maupin, M.A.; Barber, N.L. Estimated Withdrawals from Principal Aquifers in the United States, 2000; Circular U.S. Geological Survey:
Reston, VA, USA, 2000; 46p.

26. Yasarer, L.M.W.; Taylor, J.M.; Rigby, J.R.; Locke, M.A. Trends in Land Use, Irrigation, and Streamflow Alteration in the Mississippi
River Alluvial Plain. Front. Environ. Sci. 2020, 8, 1–13. [CrossRef]

27. NOAA National Centers for Environmental Information (NCEI) U.S. Billion-Dollar Weather and Climate Disasters. Available
online: https://www.ncdc.noaa.gov/billions/ (accessed on 7 March 2020).

28. Wallander, S.; Claassen, R.; Nickerson, C. The Ethanol Decade: An Expansion of U.S Corn Production, 2000-09. In Economic
Information Bulletin; United States Department of Agriculture: Washington, DC, USA, 2011.

29. Reitsma, K.D.; Dunn, B.H.; Mishra, U.; Clay, S.A.; DeSutter, T.; Clay, D.E. Land-Use Change Impact on Soil Sustainability in a
Climate and Vegetation Transition Zone. Agron. J. 2015, 107, 2363–2372. [CrossRef]

30. Shrestha, D. The Impacts of Land Use and Land Cover Change on Water Quality in the Big Sioux River Watershed: 2007–2016. In
Department of Geography; South Dakota State University: Brookings, SD, USA, 2019.

31. Wright, C.K.; Wimberly, M.C. Recent land use change in the Western Corn Belt threatens grasslands and wetlands. Proc. Natl.
Acad. Sci. USA 2013, 110, 4134–4139. [CrossRef] [PubMed]

32. Clay, D.E.; Clay, S.A.; Reitsma, K.D.; Dunn, B.H.; Smart, A.J.; Carlson, G.G.; Horvath, D.; Stone, J.J. Does the conversion of
grasslands to row crop production in semi-arid areas threaten global food supplies? Glob. Food Secur. 2014, 3, 22–30. [CrossRef]

33. Napton, D.; Jordon, G. Agricultural Land Change in the Northwestern Corn Belt, USA: 1972–2007. Geol. Carp. 2011, 11, 65–81.
34. U.S. Government Accountability Office. Irrigated Agriculture Technologies, Practices, and Implications for Water Scarcity. In

Technology Assessment; U.S. Government Accountability Office: Washington, DC, USA, 2019.
35. Kebede, H.; Fisher, D.K.; Sui, R.; Reddy, K.N. Irrigation Methods and Scheduling in the Delta Region of Mississippi: Current

Status and Strategies to Improve Irrigation Efficiency. Am. J. Plant Sci. 2014, 05, 2917–2928. [CrossRef]
36. Massey, J.H.; Mark, S.C.; Epting, J.W.; Shane, P.R.; Kelly, D.B.; Bowling, T.H.; Leighton, J.C.; Pennington, D.A. Long-term

measurements of agronomic crop irrigation made in the Mississippi delta portion of the lower Mississippi River Valley. Irrig. Sci.
2017, 35, 297–313. [CrossRef]

37. Killian, C.D.; Asquith, W.H.; Barlow, J.R.B.; Bent, G.C.; Kress, W.H.; Barlow, P.M.; Schmitz, D.W. Characterizing groundwater and
surface-water interaction using hydrograph-separation techniques and groundwater-level data throughout the Mississippi Delta,
USA. Hydrogeol. J. 2019, 27, 2167–2179. [CrossRef]

http://doi.org/10.1016/j.isprsjprs.2018.07.017
http://doi.org/10.1002/2017GL074071
http://doi.org/10.3390/rs2092274
http://doi.org/10.1016/j.rse.2019.111400
http://doi.org/10.3390/rs12142328
http://doi.org/10.1016/j.isprsjprs.2019.07.005
https://www.cdc.gov/healthywater/other/agricultural/types.html
http://doi.org/10.5066/P9NA3EO8
http://doi.org/10.1080/15481603.2014.952546
https://pro.arcgis.com/en/pro-app/latest/tool-reference/data-management/create-random-points.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/data-management/create-random-points.htm
http://doi.org/10.3389/fenvs.2020.00066
https://www.ncdc.noaa.gov/billions/
http://doi.org/10.2134/agronj15.0152
http://doi.org/10.1073/pnas.1215404110
http://www.ncbi.nlm.nih.gov/pubmed/23431143
http://doi.org/10.1016/j.gfs.2013.12.002
http://doi.org/10.4236/ajps.2014.520307
http://doi.org/10.1007/s00271-017-0543-y
http://doi.org/10.1007/s10040-019-01981-6


Land 2021, 10, 394 16 of 16

38. Smidt, S.J.; Haacker, E.M.; Kendall, A.D.; Deines, J.M.; Pei, L.; Cotterman, K.A.; Li, H.; Liu, X.; Basso, B.; Hyndman, D.W. Complex
water management in modern agriculture: Trends in the water-energy-food nexus over the High Plains Aquifer. Sci. Total Environ.
2016, 566, 988–1001. [CrossRef] [PubMed]

39. Welch, H.L.; Green, C.T.; Rebich, R.A.; Barlow, J.R.; Hicks, M.B. Unintended Consequences of Biofuels Production? The Effects of
Large-Scale Crop Conversion on Water Quality and Quantity; U.S. Geological Survey Open-File Report 2010-1229; U.S. Geological
Survey: Seattle, WA, USA, 2010.

40. Barlow, J.R.; Clark, B.R. Simulation of Water-Use Conservation Scenarios for the Mississippi Delta using an Existing Regional Groundwater
Flow Model; U.S. Geological Survey Scientific Investigations Report 2011-5019; U.S. Geological Survey: Seattle, WA, USA, 2011.

41. Barlow, P.M.; Leake, S.A. Streamflow Depletion by Wells: Understanding and Managing the Effects of Groundwater Pumping on
Streamflow; U.S. Geological Survey Circular: Reston, VA, USA, 2012.

42. McGuire, V.L. Water-level changes in the High Plains aquifer, predevelopment to 2009, 2007–08, and 2008–09, and change in
water in storage, predevelopment to 2009. In Groundwater Resources Program; U.S. Geological Survey Scientific Investigations
Report 2011-5089; USGS: Reston, VA, USA, 2011.

43. Brown, J.F.; Howard, D.; Wylie, B.; Frieze, A.; Ji, L.; Gacke, C. Application-Ready Expedited MODIS Data for Operational Land
Surface Monitoring of Vegetation Condition. Remote Sens. 2015, 7, 16226–16240. [CrossRef]

44. Carter, E.; Hain, C.; Anderson, M.; Steinschneider, S. A water balance based, spatiotemporal evaluation of terrestrial evapotran-
spiration products across the contiguous United States. J. Hydrometeorol. 2018, 19, 891–905. [CrossRef] [PubMed]

45. Field, J.L.; Marx, E.; Easter, M.; Adler, P.R.; Paustian, K. Ecosystem model parameterization and adaptation for sustainable
cellulosic biofuel landscape design. GCB Bioenerg. 2016, 8, 1106–1123. [CrossRef]

46. Jaeger, K.L.; Sando, R.; McShane, R.R.; Dunham, J.B.; Hockman-Wert, D.P.; Kaiser, K.E.; Hafen, K.; Risley, J.C.; Blasch, K.W.
Probability of Streamflow Permanence Model (PROSPER): A spatially continuous model of annual streamflow permanence
throughout the Pacific Northwest. J. Hydrol. X 2019, 2, 100005. [CrossRef]

47. Jin, Y.; Randerson, J.T.; Goulden, M.L. Continental-scale net radiation and evapotranspiration estimated using MODIS satellite
observations. Remote Sens. Environ. 2011, 115, 2302–2319. [CrossRef]

48. Kipka, H.; Green, T.R.; David, O.; Garcia, L.A.; Ascough, J.C., II; Arabi, M. Development of the Land-use and Agricultural
Management Practice web-Service (LAMPS) for generating crop rotations in space and time. Soil Tillage Res. 2016, 155, 233–249.
[CrossRef]

49. Nguyen, T.H.; Nong, D.; Paustian, K. Surrogate-based multi-objective optimization of management options for agricultural
landscapes using artificial neural networks. Ecol. Model. 2019, 400, 1–13. [CrossRef]

50. Pei, L.; Moore, N.; Zhong, S.; Kendall, A.D.; Gao, Z.; Hyndman, D.W. Effects of Irrigation on Summer Precipitation over the
United States. J. Clim. 2016, 29, 3541–3558. [CrossRef]

51. Salmon, J.M.; Friedl, M.A.; Frolking, S.; Wisser, D.; Douglas, E.M. Global rain-fed, irrigated, and paddy croplands: A new high
resolution map derived from remote sensing, crop inventories and climate data. Int. J. Appl. Earth Observ. Geoinf. 2015, 38,
321–334. [CrossRef]

52. Seyoum, W.M.; Milewski, A.M. Monitoring and comparison of terrestrial water storage changes in the northern high plains using
GRACE and in-situ based integrated hydrologic model estimates. Adv. Water Resour. 2016, 94, 31–44. [CrossRef]

53. Tadesse, T.; Wardlow, B.D.; Brown, J.F.; Svoboda, M.D.; Hayes, M.J.; Fuchs, B.; Gutzmer, D. Assessing the Vegetation Condition
Impacts of the 2011 Drought across the U.S. Southern Great Plains Using the Vegetation Drought Response Index (VegDRI). J.
Appl. Meteorol. Climatol. 2015, 54, 153–169. [CrossRef]

54. Wylie, B.; Howard, D.; Dahal, D.; Gilmanov, T.; Ji, L.; Zhang, L.; Smith, K. Grassland and Cropland Net Ecosystem Production of
the U.S. Great Plains: Regression Tree Model Development and Comparative Analysis. Remote Sens. 2016, 8, 944. [CrossRef]

55. Xin, Q.; Gong, P.; Yu, C.; Yu, L.; Broich, M.; Suyker, A.E.; Myneni, R.B. A Production Efficiency Model-Based Method for Satellite
Estimates of Corn and Soybean Yields in the Midwestern US. Remote Sens. 2013, 5, 5926–5943. [CrossRef]

56. Zaussinger, F.; Dorigo, W.; Gruber, A.; Tarpanelli, A.; Filippucci, P.; Brocca, L. Estimating irrigation water use over the contiguous
United States by combining satellite and reanalysis soil moisture data. Hydrol. Earth Syst. Sci. 2019, 23, 897–923. [CrossRef]

57. Zeng, L.; Wardlow, B.D.; Tadesse, T.; Shan, J.; Hayes, M.J.; Li, D.; Xiang, D. Estimation of Daily Air Temperature Based on MODIS
Land Surface Temperature Products over the Corn Belt in the US. Remote Sens. 2015, 7, 951–970. [CrossRef]

58. Aegerter, C. Modeling and Satellite Remote Sensing of the Meteorological Impacts of Irrigation during the 2012 Central Plains
Drought. In Dissertations & Theses in Earth and Atmospheric Sciences; University of Nebraska: Lincoln, NE, USA, 2016.

59. Peterson, D.; Whistler, J.; Egbert, S.; Brown, J.C. Mapping irrigated lands by crop type in Kansas. In Proceedings of the Pecora
18-Forty Years of Earth Observation: Understanding a Changing World, Herndon, VA, USA, 14–17 November 2011.

http://doi.org/10.1016/j.scitotenv.2016.05.127
http://www.ncbi.nlm.nih.gov/pubmed/27344509
http://doi.org/10.3390/rs71215825
http://doi.org/10.1175/JHM-D-17-0186.1
http://www.ncbi.nlm.nih.gov/pubmed/32848511
http://doi.org/10.1111/gcbb.12316
http://doi.org/10.1016/j.hydroa.2018.100005
http://doi.org/10.1016/j.rse.2011.04.031
http://doi.org/10.1016/j.still.2015.08.005
http://doi.org/10.1016/j.ecolmodel.2019.02.018
http://doi.org/10.1175/JCLI-D-15-0337.1
http://doi.org/10.1016/j.jag.2015.01.014
http://doi.org/10.1016/j.advwatres.2016.04.014
http://doi.org/10.1175/JAMC-D-14-0048.1
http://doi.org/10.3390/rs8110944
http://doi.org/10.3390/rs5115926
http://doi.org/10.5194/hess-23-897-2019
http://doi.org/10.3390/rs70100951

	Introduction 
	Background 
	Materials and Methods 
	Input Data/Geospatial Model 
	Accuracy Assessment 

	Results 
	The MIrAD-US Dataset 
	Watershed Dynamics in the U.S. Irrigated Agriculture from 2002 to 2017 
	MIrAD-US Product Accuracy 

	Discussion 
	Conclusions 
	References

