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Abstract: This paper focuses on the physical attributes of land that intrinsically limit land use and
possibly affect land values. In particular, we investigate if the slope of a land does decrease its price
and investigate the role of land slope in forming more reliable constant-quality land price indices
and aggregate house price indices. We find that, while land slopes do decrease the land price per
unit, they have a small effect on the quality-adjusted land price indices in selected neighborhoods in
Auckland, New Zealand, where sloped terrain is common.
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1. Introduction

Land is one of the most critical inputs in any production function (Chakravorty,
2013 [1]). Its use is possibly the most essential feature that determines urban structure and
urban growth, while its value shapes the dynamics of the real estate markets. The land
leverage hypothesis states that houses with greater land leverage (i.e., land accounts for
a large fraction of the house value) experience a higher price appreciation in a market
where there are no increases in the construction cost (Bostic et al., 2007 [2]). For example,
a study investigating the Washington, DC metropolitan area from 2000 to 2013 found that
variations in land leverage during boom periods notably predicted variations in house
prices during bust periods; in addition, land prices were much more volatile than house
prices (Davis et al., 2017 [3]).

There are other reasons why the value of land is important, for instance the fact that
land value represents a large portion of an individual household’s wealth (e.g., Bostic et al.,
2007 [2], Bourassa et al. [4]). From a local government’s perspective, land value and
land-use regulations reciprocally affect each other; such regulations can be related to
urban structure (e.g., McMillen & MacDonald, 2002 [5]), urban growth (e.g., Capozza &
Helsley, 1989 [6]), or property taxes. Finally, land value is also relevant nationally, being an
important part of the National Balance Sheet (e.g., Wentland et al., 2020 [7]). Although land
values play such a critical role in the economy, data on them are often difficult to access.

Given the dearth of information on land values, land price is typically measured using
one of the following decomposition methods: the vacant land method, the construction cost
method, or the hedonic regression method. In the housing prices literature, it has long been
acknowledged that housing characteristics should be controlled for in order to maintain
a constant quality of the housing price index. Similarly, a well-established fact in the
price decomposition literature is that the physical attributes of a house, especially its age,
cannot be ignored if one is to obtain a constant-quality price index. However, the literature
on the importance of land features is still relatively scarce. Like other price indices, the ideal
land price index should represent changes in land prices that are comparable in quality
over time.

The importance of geographic features (e.g., proximity to a waterbody, mountains,
or wetlands) in urban development and housing supply has generated a growing literature
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focused on measuring the role of amenities. For instance, Burchfield et al. (2006) [8] related
terrain ruggedness and access to underground water to the density and compactness
of new real estate development. Saiz (2010) [9] showed that residential development is
considerably constrained by the presence of steep-sloped terrain and found that most areas
with inelastic housing supply are severely land-constrained by their topography.

This paper attempts to fill the gap in the decomposition literature by modeling land
slope, a proxy for land quality and a factor that possibly discounts land prices, in order
to estimate quality-adjusted land price indices. Similar to having constant-quality hous-
ing structure price indices, having constant-quality land price indices also requires the
properties of the land (e.g., land area and location) to remain constant over time. Of equal
importance is the need to take into account the physical attributes of land, especially the
land’s slope, as these attributes can impose constraints on land development and use.
On the one hand, sloping land adds complexity to construction (e.g., extra drainage and
extra work in stepping the foundations) and limits land use, hence increasing the construc-
tion cost and discounting the land value. On the other hand, sloping land may afford better
views, which could increase the property value.

This paper adopts and extends the builder’s model (Diewert et al., 2011 [10]) by
incorporating the terrain slope to estimate the hedonic pricing of land and to construct
constant-quality land price indices; this is done based on data from selected neighborhoods
with hilly features from Auckland, New Zealand during the period 2007–2016. Land parcel
slopes are prepared in three steps. First, terrain slopes are calculated from the 2013 1-m
Digital Elevation Data (DEM) for Auckland. Mean terrain slopes are then calculated for
each land parcel extracted from the map of New Zealand Primary Land Parcels. The Ad-
dress Information Management System (AIMS) from Land Information New Zealand
(LINZ) is then used to link land parcels to sales data. In the literature of property appraisal,
the residual method of valuation helps the property developers identify a piece of land’s
re-development value (e.g., Pagourtzi et al., 2003 [11]). However, the residual valuation
method requires an estimate on development costs, including the project’s construction
cost and investor’s profit, based on extensive forecasting and many assumptions, making
the method susceptible to small changes in the assumptions (Isaac, 1996 [12]). In the
builder’s model, the use of the exogenous price of the structure per square meter to value
the property’s structure makes sure that the land value is the residual value of the property
transaction value.

Results reveal a slope discount on the price of land per square meter, controlling
for land size, land location (i.e., based on school enrollment zone), floor area, age of the
house (i.e., in decades), and numbers of rooms. The constant-quality land price indices
moderately decrease after controlling for terrain slope, whereas the imputed Fisher chained
house price index remained almost unchanged. On the whole, land slope does appear to
be an important hedonic characteristic associated with land and hence with house values.
However, when the land slope composition does not change over time, having a slope as
an additional land characteristic generates minimum effects on the quality-adjusted land
price indices.

2. Materials and Methods
2.1. Four Methods to Compute House Price Indices

There are four primary methods for computing price indices for residential proper-
ties: stratification, repeat-sales, appraisal-based methods, and hedonic approaches. More
details about computing property price indices can be found in Bailey et al. (1963) [13],
Bourassa et al. (2006) [14], Clapp and Giaccotto (1992) [15], De Vries et al. (2009) [16],
Wallace and Meese (1997) [17], Wood et al. (2005) [18], and Shiller (1991) [19]. Most recently,
Lopez and Hewings (2018) [20] also introduced a method that is based on the repeat-sales
(i.e., Case–Shiller) method, while being more flexible; this idea was first suggested by
McMillen (2012) [21]. The hedonic regression method is typically the best approach for con-
structing a constant-quality residential property price index. A typical hedonic estimator
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expresses housing prices or their logarithm as a linear function of structural and location
attributes. The commonly used hedonic approaches for computing price indices include
the hedonic imputation method and the hedonic price method with dummy variables
for time.

For the hedonic imputation method, a hedonic regression is initially estimated for
each time period separately. For example, consider that there are N0 and N1 houses with
K characteristics z0

i (z
0
i1, z0

i2, · · · , z0
ik) and z1

i (z
1
i1, z1

i2, · · · , z1
ik) sold in period 0 and period 1,

respectively. The following hedonic functions are estimated first:

p̂0
i = h0(z0

i ) = α̂0 +
K

∑
k=1

β̂0
k × z0

ik, (1)

p̂1
i = h1(z1

i ) = α̂1 +
K

∑
k=1

β̂1
k × z1

ik, (2)

where p̂t
i is the predicted sale price of house i sold in period t. Next, the change in the

quality-controlled house price between two periods is constructed as the price difference
between the observed house price in one period and the imputed price; this is only done if
the attributes from one period were evaluated at the same estimated prices in the other
period. The price of the housing characteristics of period 0, which was imputed in period
1, is denoted as h1(z0

i ). Similarly, the price of the housing characteristics of period 1,
which was imputed in period 0, is denoted as h0(z1

i ). Holding housing characteristics
constant but separate across both period 0 and period 1, we can construct, for example,
the following quality-adjusted imputed house price indices:

Hedonic Laspeyres Price Index =
∑N0

i=1 h1(z0
i )

∑N0

i=1 h0(z0
i )

, (3)

Hedonic Paasche Price Index =
∑N1

i=1 h1(z1
i )

∑N1

i=1 h0(z1
i )

. (4)

Other important imputed price indices include the Fisher, Geometric-Paasche,
Geometric-Laspeyres, and Törnqvist price indices (Hill & Melser, 2008 [22]).

As its name suggests, the hedonic price method with time-dummy variables utilizes
cross-sectional data on house prices, which is then expressed in a single equation as a linear
combination of time dummies and quality-controlled structural and location attributes.
The equation is written as follows:

ln( p̂i,t) = α̂ +
T

∑
t=2

δ̂tDi,t +
K

∑
k=1

β̂kzik,t, (5)

where Di,t represents a set of dummy variables that take on the value of 1 if house i is
sold at time t and of 0, otherwise. Moreover, δ̂t is interpreted as the quality-adjusted price
difference between time t and the baseline time.

A notable problem with the hedonic approaches is that there is often a high correlation
between the explanatory variables, which makes the estimated coefficients unstable. As dis-
cussed in OECD et al. (2013) [23], multicollinearity is less of a concern if the purpose is to
construct an overall constant-quality house price index. However, when the parameters of
interest are the coefficients of the physical attributes (e.g., the number of bedrooms) and
when the goal is to decompose the overall price index into the land price index and the price
index of the housing structure, multicollinearity can be a problem. Schwann (1998) [24]
and Diewert et al. (2011, 2015, 2016) [10,25,26] provide a discussion on multicollinearity.



Land 2021, 10, 261 4 of 23

2.2. Standard Builder’s Model

The builder’s model was first discussed by Diewert (2008) [27] and then introduced by
Diewert et al. (2011) [10]. It aims to decompose residential price indices into two sub-price
indices: a quality-adjusted price index for the housing structure and a price index for the
land on which the property is built. This derivation originates from a cost of production
approach. From a builder’s perspective, the sales price of any property after completion
is its expected cost. The expected cost of a property is denoted as the sum of the housing
structure cost and the cost of the land on which it is built. The cost of the structure is
calculated by multiplying the floor area of the property (e.g., in square meters) by the
unit cost of construction (e.g., construction cost per square meter). The cost of the land is
calculated by multiplying the land area (e.g., square meters) by the unit cost of land (e.g.,
cost per square meter). The assumption that the values of land and those of the housing
structures are additive is suggested in most of the literature. This includes but is not limited
to Bostic et al. (2007) [2], Diewert (2008) [27], Diewert et al. (2011, 2015, 2016) [10,25,26], De
Haan and Diewert (2013) [28], and Francke and van de Minne (2017) [29]. Mathematically,
the basic builder’s model has the following formula:

pit = pL
t Lit + pS

t Sit + εit, (6)

where pit represents the sales price of property i at time t; pL
t and pS

t are the prices of the
land and of the housing structure per square meter at time t, respectively; Lit is the land
area of property i at time t; and Sit is the floor area of property i at time t. The error terms
εit are assumed to be heteroskedastic, not serially correlated, and mean independent of
the covariates.

In essence, the hedonic regression defined in Equation (6) only works for newly built
properties. To acknowledge the fact that properties sold at time t include not only newly
built properties but also existing older properties, and that older properties are usually
worth less than newer properties because of the depreciation of their housing structure
over time, Equation (6) is commonly modified by incorporating the age of a property into
the baseline builder’s model:

pit = pL
t Lit + pS

t (1 − δAit)Sit + εit. (7)

Here, Ait represents the age of property i at time t, while δ represents the net straight-
line deprecation rate as the housing structures of properties age. One can also assume that
deprecation rates change over time:

pit = pL
t Lit + pS

t (1 − δt Ait)Sit + εit. (8)

Common units of measurement for Ait include years and decades. Therefore, δ can be
either the net depreciation rate per year or per decade. Reasonable net annual depreciation
rates are in the 0.5–2% range.

If properties are well-maintained or renovated over time, the deterioration of aging
properties can be slowed down and, in some cases, older properties may even command
a premium. Knight and Sirmans (1996) [30] found that houses with lower-than-average
maintenance levels depreciate 0.9% faster per year, while Harding et al. (2007) [31] found
that well-maintained houses depreciate 0.5% less per year when compared to the average
house. Moreover, older structures can produce functional obstacles (Rubin, 1993 [32]),
which can then negatively affect property values. Nevertheless, as housing structures age,
some of their aspects may lead to a positive effect on their property value, for example
if their design is characteristic to a specific time period. This is recognized as the vintage
effect (Coulson & Lahr, 2005 [33]) and can even offset the negative effects of age. For
example, Meese and Wallace (1991) [34] found that housing prices increase with age.
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Coulson and McMillen (2008) [35] extend the method proposed by McKenzie (2006) [36]
to estimate the time, age, and cohort (i.e., vintage) effects simultaneously. Their results
show a U-shaped effect of age on housing prices. On the one hand, property prices decrease
significantly in the first few years post-construction, while, on the other hand, very old
houses have notably high price premia. More recently, Francke and van de Minne (2017) [29]
estimated all three age effects on property structures, as well as the time effect on land
values. As the builder’s model only includes age as a predictor of the housing structure
value, δ should be interpreted as the net effect of age on the structure of a property. Then,
(1 − δAit)Sit can be interpreted as being the older structures measured in the units of new
or more recent structures. Therefore, due to maintenance information being unavailable,
very old structures have been excluded from the model. Burnett-Isaacs et al. (2017) [37]
defined old houses as those older than 60 years.

The problem with the straight-line method of modeling depreciation is that the value
of the structure can become negative if the structure is old. Therefore, the geometric method
is commonly used in national-level research as an alternative to the straight-line method.
The builder’s model with geometric depreciation has the following form:

pit = pL
t Lit + pS

t (1 − δ)Ait Sit + εit, (9)

where δ represents the net geometric deprecation rate as the housing structures of properties
age. With geometric depreciation, structures deteriorate at a constant rate over time,
whereas with a straight-line depreciation structures deteriorate by constant amounts.
In practice, empirical studies suggest that it is more appropriate to use the geometric
method for residential properties (Chinloy, 1977 [38]; Malpezzi et al., 1987 [39]).

2.3. Generalization of Standard Builder’s Model

Diewert (2008) [27] suggested that the basic hedonic decomposition can be generalized
to incorporate more of the attributes used in the standard hedonic model; this can be done
in the following way. Suppose Z1, . . . , ZM are M determinant attributes for the quality of
land and X1, . . . , XH are H determinant attributes for the quality of the housing structure;
then, the generalized builder’s model with geometric depreciation is:

pit = pL
t (1 +

M

∑
m=1

λmZit,m)Lit + pS
t (1 − δ)Ait(1 +

H

∑
h=1

ηhXit,h)Sit + εit, (10)

where pL
t is the quality-adjusted price for land at time t, and pS

t is the quality-adjusted
price for a housing structure at time t. In the literature, location-related attributes are
generally used to control for the quality of land. These typically include the distance to
the city business center, the zone (e.g., zip code or school zone), and the street pattern of
the land on which a property is built, such as if there is an intersection of two streets or
a cul-de-sac. Recent work by Pan et al. (2018) [40] suggests that the distance from the
Central Business District (CBD) is just one of the many attributes valued by consumers,
and hence the land-use changes in a metropolitan region may reflect multiple dimensions
of accessibility. Structure characteristics that are controlled for consist of physical attributes
such as the number of bathrooms or bedrooms.

For this paper, the school enrollment zone will be incorporated into the model as
one of the land characteristics and the numbers of rooms, including both bedrooms and
bathrooms, will be used as an additional structural attribute in the generalized model:

pit = pL
t (1 +

Z

∑
z=1

λzZoneit,z)Lit + pS
t (1 − δ)Ait(1 +

R

∑
r=1

ηrRoomit,r)Sit + εit, (11)



Land 2021, 10, 261 6 of 23

In this specification, both school zones and numbers of rooms are entered as dummy
variables. In addition, to avoid the dummy variable trap, one group from each variable
is dropped.

2.4. Builder’s Model with Terrain Slope

The hedonic literature often adjusts for the quality of housing structures, but there
is also a need for quality adjustments when it comes to land characteristics. Cheshire
and Sheppard (1995) [41] pointed out that, as land itself is a composite good, land price
represents a composite of the price of pure land, the price of the neighborhood and
environmental characteristics, and the price of the embodied local public goods.

The theory of land use has its origin in the monocentric city model developed by
Alonso (1964) [42], Mills (1967) [43], and Muth (1969) [44]. The traditional monocentric
city model treats land as a featureless flat plain, so that locations only differ in their dis-
tances to the Central Business District (CBD). Thus, the model predicts that the land prices
and the housing density are both higher in those areas closer to the CBD. Later urban
economic models extend the monocentric city model to include environmental amenities
such as open space (e.g., Anderson & West, 2006 [45]; Geoghegan, 2002 [46]; and Irwin,
2002 [47]) and to allow for multi-centric structures (e.g., Anas & Kim, 1996 [48]; McDonald
& McMillen, 1990 [49]; Wieand, 1987 [50]), in order to explain a more complex spatial
structure. In addition, more recent literature relaxes the featureless flat plain assump-
tion commonly used in urban economic models. For example, Keenan et al. (2018) [51]
developed a conceptual model of what they called climate gentrification and found that
price appreciation is positively affected by the incremental increase in elevation in the
Miami-Dade County, Florida, which supports the elevation hypothesis. Similarly, Ye and
Becker (2017) [52] studied seventeen US cities and found that high-income households
prefer to live at higher elevation levels. They also found that the standard deviation of the
elevation and that of the relative altitude both positively affect the density and the housing
value gradients.

This paper will focus on the terrain slope. If a particular area is flat, then the to-
pography may not influence a house’s location and layout; however, on a sloping site,
the topography is likely to significantly influence house design. (Flat areas are never strictly
horizontal. Instead, they are characterized by gentle slopes that are often hardly noticeable
to the naked eye.) Sloping sites present a number of challenges and generally require
a greater design input when compared to flat sites. For example, they usually require
additional geodetic assessments of slope stability and earthworks before the actual house
construction stage. Depending on the steepness of the slope, sloping sites usually have
to be cut, filled, and/or retained in order to prepare level plinths on which concrete slab
foundations and floors can be laid out.)Increasingly, new houses in New Zealand are built
on a concrete slab.) Building on a sloping site may also require additional drainage and
sewers. Therefore, the overall construction costs on sloping sites are higher than the overall
construction costs on flat sites, which is essentially attributable to the additional amount
of cutting, filling, and engineered retaining walls. These costs generally increase with the
degree of the slope.

Consequently, in mountainous regions, land slopes might also significantly contribute
to the formation of quality-adjusted land prices. Around Auckland, land is visibly uneven,
with many houses having been constructed along sloping driveways. If the sample of
houses sold in period t consists of more houses on sloping sites than the sample of similarly
structured houses sold in previous periods, then changes in topographical characteristics
should not be interpreted as changes in land prices over time. If the slope negatively affects
housing prices, then it is important to control for this slope; otherwise, the land price index
for period t will be underestimated.
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We acknowledge that the degree of slope places substantial limitations on the use of
land and may add considerable costs to construction due to earthworks projects. Therefore,
land slope is modeled as a determinant of land price; other determinants included in the
model are land size and the school enrollment zone, which represent the location and the
public service associated with a site, respectively. The model can be written as follows:

pit =pL
t (1 +

Z

∑
z=1

λzZoneit,z)(1 +
S

∑
s=1

βs Slope Groupit,s)Lit

+ pS
t (1 − δ)Ait(1 +

R

∑
r=1

ηrRit,r)Sit + εit, (12)

where pL
t is the constant-quality land price index (i.e., the “pure” price of land per square

meter), and pS
t is the constant-quality structure price index.

On the one hand, if the ideal site for residential housing is that which provides the
desired degree of space at the lowest costs, the difficulty of building on sloping land could
mean that the price of a sloping site may be considerably lower than that of a flat site, hence
decreasing property values. On the other hand, sloping land may provide better views,
hence increasing property values. Due to data limitations, we could not obtain the cost of
slope-induced earthwork or the cost of slope-induced superior. Therefore, the estimated
coefficient of the slope should be interpreted as the joint effect of these two opposing forces.

The following hypotheses summarize the possible effect of land slope on its hedonic
price βs:

Hypothesis 1 (H1). If slope-induced construction difficulty has a greater influence than the
slope-associated view, then a negative relationship between house price and land slope is expected.

Hypothesis 2 (H2). If the slope-associated view is more important than the slope-induced difficulty
to build, then a positive relationship between house price and land slope is expected.

Hypothesis 3 (H3). If the slope-induced construction difficulty and the slope-associated view are
either equally important or are neither an important house price determinant, then a statistically
non-significant relationship between house price and land slope is expected.

When it comes to computing the quality-adjusted land price indices, the following
cases summarize the possible changes in land price indices once we control for land slope:

Case 1: If the slope has a negative (positive) effect on the housing price, and if the sample
of houses sold in period t consists of more houses built on sloping sites than the
sample of similarly structured houses sold in the baseline period, then controlling
for slope would adjust the land price index for period t upward (downward).

Case 2: If the slope has a negative (positive) effect on the housing price, but the amount of
houses sold that were also built on sloping sites does not differ between period t
and the baseline period, then controlling for slope would not affect the land price
index for period t.

Case 3: If the slope has no significant effect on the housing price, regardless of the land
slope composition over time, then controlling for slope would not affect the land
price index.

2.5. Data

The analysis in this paper relies on a data set that combines information on housing
sales and on land parcel slopes of sold houses.
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2.5.1. Sales Data

Property-level sales data on three Auckland school enrollment zones between January
2007 and December 2016 was purchased from Quotable Value Limited (QV), powered by
CoreLogic NZ Ltd, an entity responsible for conducting property market valuations in
New Zealand. The data encompasses the Double Grammar Zone (i.e., an overlapping area
of enrollment zones of the Auckland Grammar School and Epsom Girls’ Grammar School),
the Selwyn College zone, and the One Tree Hill College zone.

Sales data contain information on sales price, sales date, property address, and a set of
structural property attributes. The analysis is targeted at all types of houses, but it excludes
apartments. We include residential properties with fully detached or semi-detached houses
that are situated on their own clearly defined piece of land, while removing those units
with missing or misreported information. Outliers for sales price, land area, floor area,
bedrooms, and bathrooms are dropped by year of sale within each school zone. First,
the bottom 1% and the top 3% of sales prices are dropped. Then, the top 1% of land
areas are trimmed, followed by the top 1% of floor areas. The data set is further filtered by
eliminating those observations with the number of bathrooms and the number of bedrooms
being in the top 1%. We also exclude houses that were built before the 1950s. The final
sample contains 5657 observations for the period 2007–2016.

Two land characteristics of the sales data used in this analysis are the land area (m2)
and the school enrollment zone in which the land is located. Structural characteristics
used in the analysis include the building’s age and its floor area (m2). The original age
of the building is coded in decade-long construction periods, such as the 1940s and the
2010s. Following Diewert et al. (2015) [25], the original age of the building is recoded into
decade age using the following procedure: the most recent construction period for any
of the houses sold between 2007 and 2009 was the 2000s. Hence, the age variable for the
construction decade is calculated as (2000–construction period)/10. From 2010 onward,
the newest houses sold were built in the 2010s. Hence, the corresponding age variable is
calculated as (2010–construction period)/10. After this recoding procedure, a house built
in the 2000s and sold between 2007 and 2009 has a decade age of 0, whereas a house built
in the 2000s that was sold in 2010s has a decade age of 1. Table 1 presents the descriptive
statistics for the sample of interest. On average, the houses in the sample were built two
decades ago. The sample’s mean sales price is 1,164,640 NZ dollars (NZ$), with an average
land and floor area of about 580 m2 and 217 m2, respectively.

Table 1. Descriptive statistics.

Mean Std. Dev. Min Max

Sales Price (1000 NZ$) 1164.64 695.15 300.00 5880.00
House Age (decades) 2.37 2.19 0.00 6.00

Land Area (m2) 580.53 256.30 116.00 2048.00
Floor Area (m2) 216.65 79.61 43.00 530.00

Rooms 5.778 1.44 2.00 5.00
Land Slope (%) 18.55 12.05 1.53 69.57

Number of
Observations 5657

Note: This table presents the descriptive statistics for the selected neighborhoods in Auckland, New Zealand,
from 2007 to 2016. Land slope is measured as the percentage of the increase (%).

2.5.2. Computing the Land Slope

The land slope used in this paper is obtained from a light detection and ranging
(LiDAR) 1-meter resolution digital elevation model (DEM) fitted to the map of New
Zealand Primary Land Parcels using ArcGIS. Both maps are converted to the New Zealand
Transverse Mercator 2000 (NZTM2000) projection for analysis.
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The airborne Auckland LiDAR 1m DEM data was captured in 2013 for the Auckland
Council by NZ Aerial Mapping & Aerial Surveying Limited. It was collected at a point
density of more than 1.5 points per square meter. The 1 m DEM data was downloaded
from the Land Information New Zealand (LINZ) Data Service. More information about
DEM can be found at https://data.linz.govt.nz/layer/53405-auckland-lidar-1m-dem-20
13/ accessed on 9 February 2019. Elevation values are measured in meters. In ArcGIS,
the unit of measure for the z (elevation) unit is also the meter, so the z-factor of value 1 is
used to calculate the percentage by which the values of slopes rise in each DEM cell (i.e.,
the rate of change in elevation). (There are two options for the units of measurement for
terrain slope: degree values and percentage elevation values. Please see Appendix A for
more information.)

The map of the New Zealand Primary Land Parcels was also downloaded using
the LINZ Data service. More information about NZ Primary Parcels can be found at
https://data.linz.govt.nz/layer/50772-nz-primary-parcels/data/ accessed on 11 February
2019. To determine the terrain slope of each land parcel, the Zonal Statistic tools in ArcGIS
were used. Each land parcel on the land parcel map was treated as an input zone, and the
parcel ID was used to define the zones. The raster created from the 1 m DEM contains the
slope values and is then used to calculate each parcel’s mean slope. The resulting map
of parcel slopes is depicted in Figure 1. For reference, an aerial map of the study area is
shown in Figure 2. Table 1 reports that the average slope of the sample is 18.55% or 10.51°.
The slopes are then divided into six broad groups according to the slope classes from the
Land Resource Information System (LRIS). (Please see Appendix A Table A1 for a range of
slope classifications from different countries.) As presented in Table 2, the groups to be
used in the analysis are: flat to gently undulating (0–3°), undulating (4–7°), rolling (8–15°),
strongly rolling (16–20°), moderately steep (21–25°), and steep (26–35°). (Observations with
a slope of more than 35°were also excluded from the final sample.) Table 3 shows that 41.7%
of the sample is in the rolling slope range. The correlations of the land slope with the land
area, floor area, and the total number of rooms are 0.2285, 0.2148, and 0.1462, respectively.

Figure 1. Land Parcel Slope in Percentages. This figure is produced by the author in ArcGIS using
1 m DEM fitted to the map of primary land parcels covering the study area.

https://data.linz.govt.nz/layer/ 53405-auckland-lidar-1m-dem-2013/
https://data.linz.govt.nz/layer/ 53405-auckland-lidar-1m-dem-2013/
https://data.linz.govt.nz/layer/ 50772-nz-primary-parcels/data/
https://data.linz.govt.nz/layer/ 50772-nz-primary-parcels/data/
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Figure 2. Aerial photo reference. Source: Land Information New Zealand access from ArcGIS.

Table 2. New Zealand LRIS Slope Classes.

Slope Classes Degree° Percent Rise (%)

Flat to gently undulating 0–3 0–5.24
Undulating 4–7 6.99–12.28

Rolling 8–15 14.05–26.79
Strongly rolling 16–20 28.67–36.40

Moderately steep 21–25 38.39–46.63
Steep 26–35 48.77–70.02

Very steep 36–42 72.65–90.04
Precipitous >42 >90.04

Note: This table presents the LRIS slope classes, which are accessible at https://lris.scinfo.org.nz/document/91
62-lris-data-dictionary-v3/ accessed on 1 March 2019.

Table 3. Frequency of slope classes.

LRIS Slope Classes Selwyn One Tree Hill Double Grammar Total

Flat to gently undulating (0–3°) 7.01 21.14 11.49 12.21
Undulating (4–7°) 22.21 37.96 21.54 26.48

Rolling (8–15°) 46.52 34.83 40.93 41.70
Strongly rolling (16–20°) 14.53 4.63 12.79 11.26

Moderately steep (21–25°) 6.29 1.13 8.22 5.36
Steep (26–35°) 3.44 0.31 5.03 2.99

Total 100 100 100 100

Number of Observations 5657
Note: This table presents the frequency of the LRIS slope classes within each school enrollment zone included in
our study area.

2.5.3. Linking Parcels with Addresses

To link the computed land parcel slopes to sales data, the Address Component data
from the LINZ’s Address Information Management System (AIMS) is used. (More informa-
tion about the AIMS Address Component data can be found at https://data.linz.govt.nz/
table/53354-aims-address-component/data/ accessed on 1 March 2019. AIMS Address
Component data contains information on address ID, parcel ID, and on the components of
each address, such as address number, street number, and road name. Parcel ID is used
to link the mean slope data to the AIMS data. Address components are combined to a

https://lris.scinfo.org.nz/document/9162-lris-data-dictionary-v3/
https://lris.scinfo.org.nz/document/9162-lris-data-dictionary-v3/
https://data.linz.govt.nz/ table/53354-aims-address-component/data/
https://data.linz.govt.nz/ table/53354-aims-address-component/data/
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single full address based on the address component order; this address is then linked to
the sales data.

3. Empirical Results
3.1. Exogenous Information on the Prices of Housing Structures

The practical problem with the models defined by Equations (7)–(12) is that the
multicollinearity between the land area and the housing structure area can result in highly
unstable and unreasonable estimates. Empirical evidence (e.g., Diewert et al. 2011, 2015,
2016 [10,25,26]) suggests that an approach using exogenous information on the price
of housing structures can overcome this multicollinearity problem and produce more
reasonable and stable price dynamics for both land and structure. Such exogenous prices
are usually the new construction price indices reported by a statistical agency. (We also
estimated models with a straight-line depreciation and models where the price of new
housing structures grows proportionally to the exogenous construction cost index and at
a constant rate (i.e., pt

s = θγt). Nevertheless, these models’ results were not satisfactory,
which directly confirms the need to use geometric depreciation and the use of the exogenous
construction cost index (i.e., pt

s = γt).) As indicated by Rosenthal (1999) [53], the long-run
equilibrium price of new structures equals the current construction costs.

The quarterly housing construction cost index is derived from the building consent
statistics for new homes in the Auckland region, which were obtained from Statistics New
Zealand (Stats NZ). Building consent statistics contain information about the numbers,
values, and floor areas of new homes or non-residential buildings, and about the alterations
that were approved for construction. More information about building consent can be
found at https://www.stats.govt.nz/information-releases/building-consents-issued-may-
2018 accessed on 16 March 2019. To compute the quarterly housing construction cost index
γt, the actual values of the new homes approved for construction in quarter t are divided
by the floor areas of the new homes approved for construction in the same quarter:

γt =
value of new homes approved for constructiont

floor area of new homes approved for constructiont
. (13)

The quarterly building consent statistics for new houses in the Auckland region are pre-
sented in Table 4, with the quarterly construction indices calculated using Equation (13)
being reported in column 3; it appears that the construction cost per square meter increased
by about 56.76% from 2007 to 2016. These values are not inflation-adjusted.

3.2. Results from the Builder’s Models

The builder’s models to be estimated are all nonlinear models and are estimated
using iteration methods that require starting values for the parameters. To facilitate the
convergence of the estimation algorithm for models with more parameters, estimates from
the models with fewer parameters will be used as the starting values in the estimation of
models with more parameters.

Instead of estimating 40 standard builder’s models as defined in Equation (9), namely
one for each quarter from the first quarter of 2007 to the fourth quarter of 2016, the combined
version of Equation (9) is estimated using 40 quarterly dummy variables. The combined
estimation allows for the comparison of log-likelihood values across models. In the com-
bined standard model, there are three explanatory variables (i.e., land area, floor area,
and decade house age) and 41 parameters (i.e., 40 quarterly land prices and the net decade
depreciation rate δ) to be estimated.

https://www.stats.govt.nz/information-releases/building-consents-issued-may-2018
https://www.stats.govt.nz/information-releases/building-consents-issued-may-2018
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Table 4. Quarterly building consent for new houses—Auckland region.

Year Quarter
Value NZ$ Floor Area m2 Construction

Index NZ$/m2

(1) (2) (3)

2007 Q1 308,470,997 252,573 1221
2007 Q2 300,770,306 239,233 1257
2007 Q3 345,485,007 273,549 1263
2007 Q4 351,445,145 272,177 1291

2008 Q1 286,205,722 218,038 1313
2008 Q2 246,163,735 180,682 1362
2008 Q3 198,047,620 147,618 1342
2008 Q4 174,633,586 119,527 1461

2009 Q1 168,884,517 116,789 1446
2009 Q2 168,796,144 112,015 1507
2009 Q3 211,740,103 144,729 1463
2009 Q4 265,322,840 182,055 1457

2010 Q1 242,630,596 172,010 1411
2010 Q2 278,702,453 200,389 1391
2010 Q3 244,406,195 173,977 1405
2010 Q4 219,308,410 154,478 1420

2011 Q1 224,515,030 151,485 1482
2011 Q2 216,079,500 146,956 1470
2011 Q3 253,871,795 172,412 1472
2011 Q4 289,341,990 196,760 1471

2012 Q1 288,826,634 191,250 1510
2012 Q2 302,402,403 195,794 1544
2012 Q3 291,687,676 192,531 1515
2012 Q4 374,062,098 248,169 1507

2013 Q1 349,495,817 231,893 1507
2013 Q2 416,242,630 263,492 1580
2013 Q3 418,365,595 268,079 1561
2013 Q4 424,108,493 257,157 1649

2014 Q1 450,361,701 280,527 1605
2014 Q2 462,789,605 275,864 1678
2014 Q3 455,226,457 270,563 1683
2014 Q4 498,182,013 288,158 1729

2015 Q1 450,550,041 257,013 1753
2015 Q2 505,478,008 291,640 1733
2015 Q3 553,545,632 318,161 1740
2015 Q4 611,276,364 334,010 1830

2016 Q1 599,102,433 312,367 1918
2016 Q2 676,609,794 364,616 1856
2016 Q3 672,485,586 353,101 1905
2016 Q4 575,858,608 300,845 1914

Note: The quarterly housing construction cost index is derived from the building consent statistics for new homes
in the Auckland region, which were obtained from Statistics New Zealand (Stats NZ).

Estimation results are reported in column 1 of Table 5. The adjusted R-squared shows
that the three-predictor nonlinear model explains 86.2% of the variation in sales prices.
The 40 estimated quarterly land prices show that the land price increased 2.40-fold over
the 10 years of interest (see normalized values in column 2 of Table 6), which is a much
greater rate than the 1.57-fold increase in construction cost index over the same period
(see normalized values in column 1 of Table 6). The estimated net decade depreciation
rate δ is 0.074 or 7.4% per decade; this corresponds to an net annual depreciation rate of
0.74% per year and is comparable to the net annual depreciation rates of the standard
models reported by Diewert et al. (2016) [26] and the net annual depreciation rates of
single-family owner-occupied housing reported by Chinloy (1977) [38]. (Diewert et al.
(2016) [26] suggested that the net annual geometric depreciation rate is between 1 and 4%.
For London, Chinloy (1977) [38] estimated the net annual geometric rate of single-family,
owner-occupied housing to be between 0.69 and 0.91%.)
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Using the estimated coefficients from the standard model as the initial values, the com-
bined version of the generalized builder’s model defined in Equation (11) is estimated,
with the inclusion of school zones and room numbers in the model. To avoid the dummy
variable trap, the Selwyn College school zone and the category of houses with 2–4 rooms
serve as the reference groups for the two variables, respectively. (As only 4.55% (n = 419) of
the observations were houses with two or three rooms, these were re-grouped together with
the four-room houses. The 2- to 4-room group is set as the baseline group.) This nonlinear
model consists of five explanatory variables (i.e., land area, floor area, decade house age,
school zone, number of rooms) and 47 parameters to be estimated.

Estimated results are presented in column 2 of Table 5. The adjusted R-squared shows
that the five-predictor model explains 93.8% of the variation in sales prices. Moreover,
the log-likelihood, AIC, and BIC all indicate that including two school zones and four room
categories as explanatory variables leads to a statistically significant improvement in the
model fit when compared to the standard model. After controlling for additional structural
and land characteristics, the estimated quarterly land prices point to a 2.82-fold increase
in land price over the 10 years of interest (see normalized values in column 3 of Table 6),
thus higher than the 2.40-fold increase observed in the standard model. In addition, the net
decade depreciation rate is now estimated at 6.4%, which corresponds to a net annual
depreciation rate of 0.64%. All else being equal, when compared to houses that have
between two and four rooms, it costs about NZ$1100 more per square meter to build a
five- or a six-room house, and about NZ$1300 more per square meter to build a house with
more than seven rooms. This finding is reasonable, since more building materials and a
longer construction time are required when building houses with more rooms. As a result,
both the costs of material and that of labor will increase with each increase in the number
of rooms. This model also shows that, when compared to the baseline Selwyn College
zone, it is on average about NZ$360 per square meter cheaper to reside in the One Tree Hill
College zone and about NZ$552 per square meter more expensive to reside in the Double
Grammar Zone; this is consistent with market observations. The Double Grammar Zone
is the most sought-after state school zone in Auckland, with mean property values that
are constantly reported to be hundreds of thousands of dollars higher than outside this
specific enrollment zone. In addition, the number of enrollments in both the Auckland
Grammar School and the Epsom Girls’ Grammar School has approached its maximum
values, due to the increase in school-age residents in the Double Grammar Zone. Together,
the high demand for and almost saturated supply of places in the two prestigious schools
have driven up property prices in the area. Therefore, the particularly high estimated
land price in the Double Grammar Zone can be seen as a financial premium and can be
attributed to the increasing demand for and shortage of land within that zone.

Following this, we turn to the generalized model with land slope and estimate the
combined version of the model defined in Equation (12). Estimated coefficients from the
generalized model without land slope were used as the starting values. The rolling slope
category is set at the reference land slope category because 41.7% of the observations belong
to this range.

Results for the 52 parameters of the six-predictor nonlinear model are presented in
column 3 of Table 5. The adjusted R-squared increases slightly to 0.940. Nonetheless,
the log-likelihood, AIC, and BIC all indicate that adding five site-slope parameters to the
model does result in a statistically significant improvement in model fit when compared to
the generalized model without terrain slopes. After controlling for land slope, the quarterly
constant-quality land indices that are estimated show that land prices increased 2.78-fold
over the 10 years of interest (see normalized values in column 4 of Table 6), which is a
lower increase when compared to the 2.82-fold increase obtained from the previous model.
The results for the net decade depreciation rate, school zones, and number of rooms are
consistent with previous estimates.
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Table 5. Builder’s models—estimation results.

Standard (1) Generalized w/o Slope (2) Generalized w/ Slope (3)

Coef. Std.Err. Coef. Std.Err. Coef. Std.Err.

2007Q1 0.980 *** (0.060) 0.653 *** (0.051) 0.692 *** (0.054)
2007Q2 1.104 *** (0.065) 0.687 *** (0.061) 0.748 *** (0.052)
2007Q3 1.182 *** (0.094) 0.707 *** (0.065) 0.731 *** (0.068)
2007Q4 0.987 *** (0.063) 0.625 *** (0.049) 0.643 *** (0.050)
2008Q1 1.030 *** (0.090) 0.661 *** (0.051) 0.688 *** (0.054)
2008Q2 0.931 *** (0.079) 0.546 *** (0.043) 0.579 *** (0.041)
2008Q3 1.043 *** (0.104) 0.598 *** (0.085) 0.631 *** (0.090)
2008Q4 1.057 *** (0.078) 0.495 *** (0.053) 0.526 *** (0.059)
2009Q1 0.913 *** (0.068) 0.420 *** (0.050) 0.446 *** (0.054)
2009Q2 1.040 *** (0.065) 0.480 *** (0.047) 0.501 *** (0.047)
2009Q3 0.999 *** (0.060) 0.520 *** (0.044) 0.569 *** (0.041)
2009Q4 1.082 *** (0.062) 0.590 *** (0.042) 0.637 *** (0.044)
2010Q1 0.949 *** (0.061) 0.559 *** (0.040) 0.592 *** (0.040)
2010Q2 1.140 *** (0.074) 0.680 *** (0.055) 0.716 *** (0.058)
2010Q3 1.231 *** (0.086) 0.648 *** (0.060) 0.669 *** (0.064)
2010Q4 1.056 *** (0.074) 0.594 *** (0.057) 0.625 *** (0.058)
2011Q1 1.051 *** (0.076) 0.528 *** (0.055) 0.568 *** (0.053)
2011Q2 1.175 *** (0.078) 0.684 *** (0.064) 0.713 *** (0.065)
2011Q3 1.103 *** (0.074) 0.562 *** (0.077) 0.617 *** (0.064)
2011Q4 1.117 *** (0.076) 0.654 *** (0.067) 0.689 *** (0.067)
2012Q1 1.179 *** (0.071) 0.655 *** (0.049) 0.688 *** (0.049)
2012Q2 1.128 *** (0.055) 0.616 *** (0.044) 0.660 *** (0.043)
2012Q3 1.169 *** (0.057) 0.647 *** (0.042) 0.682 *** (0.046)
2012Q4 1.359 *** (0.072) 0.813 *** (0.042) 0.847 *** (0.042)
2013Q1 1.241 *** (0.064) 0.747 *** (0.044) 0.796 *** (0.044)
2013Q2 1.536 *** (0.076) 0.910 *** (0.050) 0.953 *** (0.054)
2013Q3 1.541 *** (0.083) 0.966 *** (0.058) 1.025 *** (0.060)
2013Q4 1.504 *** (0.088) 0.908 *** (0.061) 0.982 *** (0.060)
2014Q1 1.552 *** (0.077) 0.928 *** (0.060) 0.962 *** (0.062)
2014Q2 1.769 *** (0.102) 1.138 *** (0.076) 1.174 *** (0.080)
2014Q3 1.873 *** (0.100) 1.219 *** (0.076) 1.261 *** (0.079)
2014Q4 1.886 *** (0.080) 1.164 *** (0.055) 1.218 *** (0.059)
2015Q1 2.049 *** (0.122) 1.409 *** (0.083) 1.508 *** (0.082)
2015Q2 2.000 *** (0.097) 1.403 *** (0.071) 1.471 *** (0.072)
2015Q3 2.021 *** (0.095) 1.451 *** (0.066) 1.524 *** (0.066)
2015Q4 2.041 *** (0.096) 1.338 *** (0.064) 1.423 *** (0.060)
2016Q1 2.360 *** (0.142) 1.603 *** (0.091) 1.660 *** (0.093)
2016Q2 2.203 *** (0.108) 1.536 *** (0.082) 1.637 *** (0.073)
2016Q3 2.285 *** (0.106) 1.612 *** (0.085) 1.669 *** (0.085)
2016Q4 2.350 *** (0.180) 1.842 *** (0.143) 1.922 *** (0.137)

Decade Discount Rate δ 0.074 *** (0.020) 0.064 *** (0.007) 0.066 *** (0.007)

One Tree Hill School Zone −0.360 *** (0.015) −0.398 *** (0.014)
Double Grammar Zone 0.552 *** (0.039) 0.536 *** (0.036)

5 Rooms 1.083 *** (0.041) 1.036 *** (0.042)
6 Rooms 1.092 *** (0.043) 1.061 *** (0.043)
7 Rooms 1.288 *** (0.046) 1.262 *** (0.046)

8+ Rooms 1.281 *** (0.046) 1.230 *** (0.047)

Flat to gently undulating (0–3°) 0.117 *** (0.037)
Undulating (4–7°) 0.042 (0.027)

Strongly rolling (16–20°) −0.038 (0.036)
Moderately steep (21–25°) −0.168 *** (0.035)

Steep (26–35°) −0.268 *** (0.044)

Adjusted R2 0.862 0.938 0.940
Log-Likelihood −43,198.376 −40,949.968 −40,852.527

AIC 86,478.751 81,993.935 81,809.053
BIC 86,751.018 82,306.046 82,154.367

Number of Observations 5657 5657 5657
Note: This table presents the estimation results for the three builder’s models. The Selwyn College school zone is used as the baseline school zone.
The reference room group is that of houses with 2–4 rooms. Rolling land (8–15°) is the baseline land slope class. Robust standard errors are reported in
parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 6. Constant-quality sub-price indices and aggregate house price indices.

Quarter Structure Price Indices

Land Price Indices Fisher Chained House Price Indices

Hedonic House Price Indices
Standard

Generalized
Standard

Generalized

w/o Slope w/ Slope w/o Slope w/ Slope
(1) (2) (3) (4) (5) (6) (7) (8)

2007Q1 1 1 1 1 1 1 1 1
2007Q2 1.0295 1.1269 1.0528 1.0809 1.1004 1.0407 1.0546 1.0757
2007Q3 1.0344 1.2062 1.0835 1.0564 1.1582 1.0576 1.0456 1.0525
2007Q4 1.0573 1.0072 0.9576 0.9294 1.0233 1.0113 0.9972 1.0391
2008Q1 1.0753 1.0513 1.0137 0.9939 1.0603 1.0476 1.0381 1.0521
2008Q2 1.1155 0.9500 0.8365 0.8360 0.9970 0.9801 0.9780 0.9889
2008Q3 1.0991 1.0644 0.9171 0.9116 1.0730 1.0077 1.0041 0.9739
2008Q4 1.1966 1.0786 0.7592 0.7603 1.1135 0.9985 0.9956 0.9912
2009Q1 1.1843 0.9314 0.6442 0.6440 1.0078 0.9424 0.9381 0.9535
2009Q2 1.2342 1.0620 0.7354 0.7234 1.1136 1.0098 1.0008 1.0093
2009Q3 1.1982 1.0197 0.7963 0.8227 1.0733 1.0173 1.0266 1.0347
2009Q4 1.1933 1.1048 0.9048 0.9197 1.1323 1.0652 1.0695 1.0551
2010Q1 1.1556 0.9688 0.8571 0.8550 1.0232 1.0221 1.0179 1.0296
2010Q2 1.1392 1.1631 1.0418 1.0338 1.1598 1.1047 1.0995 1.0645
2010Q3 1.1507 1.2562 0.9924 0.9669 1.2292 1.0877 1.0735 1.0747
2010Q4 1.1630 1.0780 0.9106 0.9035 1.1049 1.055 1.0489 1.0241
2011Q1 1.2138 1.0730 0.8095 0.8212 1.1160 1.0348 1.0364 1.0034
2011Q2 1.2039 1.1997 1.0477 1.0295 1.2012 1.1340 1.1243 1.0754
2011Q3 1.2056 1.1253 0.8615 0.8918 1.1491 1.0506 1.0614 1.0877
2011Q4 1.2048 1.1397 1.0028 0.9953 1.1592 1.1172 1.1112 1.0920
2012Q1 1.2367 1.2038 1.0043 0.9935 1.2139 1.1353 1.1274 1.1388
2012Q2 1.2645 1.1517 0.9435 0.9533 1.1856 1.1227 1.1236 1.1491
2012Q3 1.2408 1.1936 0.9918 0.9853 1.2086 1.1329 1.1266 1.1869
2012Q4 1.2342 1.3874 1.2457 1.2242 1.3451 1.2482 1.2373 1.2284
2013Q1 1.2342 1.2670 1.1442 1.1500 1.2600 1.2027 1.2034 1.2492
2013Q2 1.2940 1.5681 1.3941 1.3769 1.4887 1.3464 1.3381 1.3678
2013Q3 1.2785 1.5734 1.4799 1.4810 1.4878 1.3773 1.3782 1.3842
2013Q4 1.3505 1.5351 1.3909 1.4184 1.4810 1.3745 1.3869 1.4249
2014Q1 1.3145 1.5845 1.4226 1.3903 1.5058 1.3698 1.3545 1.4449
2014Q2 1.3743 1.8057 1.7444 1.6965 1.6808 1.5538 1.5338 1.5435
2014Q3 1.3784 1.9115 1.8683 1.8212 1.7568 1.6133 1.595 1.5527
2014Q4 1.4161 1.9249 1.7844 1.7596 1.7775 1.5952 1.5863 1.6149
2015Q1 1.4357 2.0916 2.1599 2.1785 1.9017 1.7835 1.798 1.8099
2015Q2 1.4193 2.0416 2.1494 2.1248 1.8613 1.7699 1.7637 1.8664
2015Q3 1.4251 2.0628 2.2243 2.2024 1.8782 1.8085 1.8041 1.9114
2015Q4 1.4988 2.0833 2.0503 2.0566 1.9125 1.7617 1.7692 1.8847
2016Q1 1.5708 2.4089 2.4568 2.3981 2.1669 1.9936 1.9724 2.0373
2016Q2 1.5201 2.2481 2.3541 2.3655 2.0373 1.9182 1.9301 2.1294
2016Q3 1.5602 2.3325 2.4709 2.4115 2.1093 1.9953 1.9729 2.1108
2016Q4 1.5676 2.3984 2.8225 2.7768 2.1593 2.1703 2.1585 2.1618

Note: This table reports the normalized land price indices and the imputed Fisher chained house price indices for each of the builder’s
models, as well as the housing structures price indices and the hedonic house price indices.

These results also show that land price per square meter decreases with each increase
in land slope, which indicates that the difficulty of building on sloping land has a greater
influence on pricing than the possibly superior slope-associated views; this offers support
for our first hypothesis. In addition, flat to gently undulating land (0–3°) is, on average,
NZ$117 per square meter more expensive than rolling land (8–15°). The small positive
price difference between undulating (4–7°) and rolling land, and the small negative price
difference between strongly rolling (16–20°) and rolling land are statistically non-significant.
In contrast, moderately steep (21–25°) and steep (26–35°) land are cheaper by NZ$168 and
NZ$268 per square meter, respectively, when compared to rolling land. These results sup-
port the theory outlined in the previous sections, namely that the difficulty and complexity
associated with building on steeper land lead to lower land prices. Estimation results using
alternative land slope classifications are presented in Table A2 in the Appendix A and are
consistent with the main results.

3.3. Construction of the Overall House Price Index

Builder’s models decompose the sales price into the constant-quality price of land and
the constant-quality price of housing structures; following several steps, these can be com-
bined to generate an overall house price index. First, utilizing the estimates from the gener-
alized builder’s model with land slopes, we can construct the imputed constant-quality
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amount of land ( ÎLit)) and the imputed constant-quality amount of housing structures
ÎSit)) for each house i sold in quarter t as follows:

ÎLit = (1 +
Z

∑
z=1

λ̂zZoneit,z)(1 +
S

∑
s=1

β̂s Slope Groupit,s)Lit, (14)

ÎSit = (1 − δ̂)Ait(1 +
R

∑
r=1

η̂rRit,r)Sit. (15)

Then, the total constant-quality amount of land ÎLt and the total constant-quality amount
of housing structures ÎSt in quarter t can be computed by aggregating the ÎLit and ÎSit
variables in that quarter, respectively:

ÎLt =
N(t)

∑
i=1

(1 +
Z

∑
z=1

λ̂zZoneit,z)(1 +
S

∑
s=1

β̂s Slope Groupit,s)Lit, (16)

ÎSt =
N(t)

∑
i=1

(1 − δ̂)Ait(1 +
R

∑
r=1

η̂rRit,br)Sit. (17)

To construct the overall house price index in quarter t, the estimated constant-quality land

price in quarter t, namely p̂L
t , is normalized such that the land price index in the first

quarter is 1:

p̃L
t =

p̂L
t

p̂L
1

. (18)

The total constant-quality amount of land ÎLt in quarter t is rescaled accordingly, in order
to maintain the predicted constant-quality of land values:

ĨLt = p̂L
1 · ÎLt. (19)

Following this, the constant-quality amount of housing structure prices and the total
constant-quality amount of housing structures are normalized and rescaled in a similar
way; these are then presented in Equations (20) and (21):

p̃S
t =

γt

γ1
, (20)

ĨSt = γ1 · ÎSt. (21)

The prices and quantities of the aggregated constant-quality of land and housing structures,
which were obtained from Equations (18)–(21), are then used to construct the Fisher
house price index (Fisher, 1921 [54]). The Fisher index is chosen over the Laspeyres and
Paasche indices because the Laspeyres index is positively biased while the Paasche index
is negatively biased. A similar procedure is used to form the quality-adjusted land and
housing structure indices, and the Fisher chained house price index for the estimated
standard builder’s model and for the generalized model without land slopes.

The normalized sub-indices for the quality-adjusted housing structures and land that
were initially reported in Tables 4 and 5 are now presented in Table 6, together with the
imputed aggregate Fisher chained house indices for all three models. The aggregate house
price indices from the traditional hedonic model with time-dummy variables and variables
from the generalized builder’s models that controlled for structural and land characteristics
(including land slope) are reported in column 8 of Table 6 for comparison. The estimated
traditional hedonic model takes the following form:
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ln(pit) = α +
T

∑
t=2

δtDit + γLln(Sit) + γAln(Ait) +
Z

∑
z=1

λzZoneit,z +
S

∑
s=1

βsSlope Groupit,s + εit (22)

House price indices from the hedonic regression are then constructed as the exponential of
δ̂t. Land and house price indices are also plotted in Figure 3.

(a) Quarterly Constant-Quality Sub-Price Indices: 2007Q1–2016Q4

(b) Quarterly Aggregate House Price Indices: 2007Q1–2016Q4

Figure 3. Constant Quality Sub Price Indices and Aggregate House Price Indices. (a) depicts the
normalized sub-price indices in Table 6, and (b) depicts the normalized aggregate house price indices
displayed in Table 6.
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It appears that the standard builder’s model, namely the one using only the land area,
floor area, and decade age, generates higher land price indices up to the fourth quarter of
2014 when compared to the indices of the generalized models. The generalized builder’s
models show that land prices decreased by about 30% at the end of 2008 compared to
the first quarter of 2007, whereas the construction costs of housing structures increased
by about 18% in the same time period. This is consistent with the literature stating that
the prices of housing structures fluctuate less than the land prices, and that the land and
structure values evolve differently over time.

Comparing the land prices from the two generalized models shows that using the land
slope as an additional explanatory variable leads to a 4.57 percentage point reduction in the
land price index of the last quarter (i.e., equivalent to a 1.62% decrease) when compared to
the generalized model without slopes. From what can also be seen in panel (a) of Figure 3,
the estimated land prices are almost identical across most quarters, but they do moderately
differ for several quarters. Therefore, these results should be interpreted with caution.
As the land slope was previously found to decrease the value of houses (Hypothesis 1),
the minor changes observed in the land price indices after controlling for land slope imply
that the slope composition does not change over time (case 2). Indeed, at the significance
level of 0.1, the hypothesis that the land slope mean is the same in the first quarter of 2007
as in the subsequent quarters is only rejected for the fourth quarter of 2009 and the first
quarter of 2014; the largest difference in mean slope is 1.26°.

When investigating the aggregate house price indices, we can observe that, in general,
the standard builder’s model generates larger house price indices (see Table 6 and panel
(b) of Figure 3). For the fourth quarter of 2016, the difference between the Fisher chained
house price indices of the two generalized models is 1.18 percentage point (i.e., equivalent
to a 0.5% decrease after controlling for land slope). Panel (b) of Figure 3 also shows that the
house price indices from the traditional time-dummy hedonic regression closely follow
the Fisher chained house price indices from the generalized models up to the first quarter
of 2015.

4. Discussion

The importance of separating the housing structure from the land has been previously
well established, but the practical difficulties of separating these two elements remain.
Unlike structure, land is not reproducible. Land parcels differ not only in their location
and size but also in their slope and other topographical features. Therefore, in order
to form reliable constant-quality land price indices, it is necessary to control for those
physical attributes of land that can intrinsically limit land use and thus possibly decrease
land values.

This paper aimed to demonstrate how a land-specific topographical characteristic—the
terrain slope—can be incorporated into the builder’s model. Based on a small neighborhood
in Auckland where sloped terrain is common, our analysis revealed a so-called slope
discount: Having a lower land price per square meter compensates for the difficulty and
complexity of building on sloped land. This result should not be directly generalized to
other locations with a sloped terrain. Instead, as discussed in Section 2.4, it should be
taken into consideration that there are two forces through which the land slope can affect
land prices. The land slope may decrease land prices because of the increased complexity
and cost necessary to build on such land, but it may also increase land prices due to the
potential superior views. Which of these two forces is more influential may depend on
the local topography. For instance, in locations where the slope can provide aesthetic
advantages, such as a spectacular view of a lake or a mountain, it is reasonable to expect a
price premium for sloping sites. Our findings suggest that the land slope has a negligible
impact on the quality-adjusted land price index when the composition of the sloped houses
sold remains stable over time. Once again, this should be interpreted cautiously, as it does
not necessarily imply that the land slope is of no importance to the quality-adjusted land
price indices. In 2018, the official magazine of the Registered Master Builders Association
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(RMBA) in New Zealand, Building Today, reported that, although there continues to be
strong demand for flat land, consumers’ attention is now turning to sloping land. Please
refer to https://www.buildingtoday.co.nz/2018/04/10/the-invisible-costs-of-building-
a-house-in-nz/ accessed on 21 March 2019. There is a possibility that, over time, with an
increasing amount of new houses being built on sloping land, the effect of including the
land slope in quality-adjusted land price indices may become more critical. In addition,
for instance, as the subdivision of hilly areas becomes a problem in Los Angeles, there
might be fewer houses that are built on sloping sites and sold over time; in such a case,
ignoring the variation in land slope composition would lead to biased land price indices.

Our results also seem to support the idea that using the builder’s model with only
four explanatory variables (i.e., land area, location of the house, floor area, and house age)
generates credible overall house price indices and reasonable sub-price indices for the land
and the housing structures. However, the moderate change in land price indices after
including land slopes may also be a result of our small sample size, since our study area
only encompasses three neighboring school enrollment zones in Auckland. It would be
also relevant to investigate this effect when applied to a larger spatial context with more
sloped observations.

The other limitation of this study and possible area of investigation for future studies
is the fact that the model used in this paper has a rather restrictive specification. It assumes
that land price differences between school zones and across degrees of land slope do not
change over time. However, it is likely that land in the most sought-after school zones may
appreciate more than that in other areas. Similarly, the prices of less steep land may increase
faster over time than those of steeper land due to the scarcity of such flat land, especially in
hillier areas. Therefore, multiplicative interactions between these two variables and time
may be important. In addition, sloping land can be subjected to higher risks due to natural
hazards. For example, the city of Christchurch experienced extensive soil liquefaction
in 2010 and 2011 as a result of a series of large-scale earthquakes. Port Hills, the hilly
part of the city, also experienced landslides and rockfalls. Based on this, investigating
the interaction between the slope of land and the risk of natural hazards would be an
interesting topic for future research.
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Appendix A. Slope

A slope represents the rise or fall of the land surface. It is important for a builder to
identify whether a land is sloped, as sloped land can be challenging to work on. Mathe-
matically, the slope of a piece of land is expressed as a “rise over run”, where the rise is
the vertical difference (i.e., difference in height/elevation) between two points on the land
area, and the run is the horizontal distance between these two points:

https://www.buildingtoday.co.nz/2018/04/10/the-invisible-costs-of-building-a-house-in-nz/
https://www.buildingtoday.co.nz/2018/04/10/the-invisible-costs-of-building-a-house-in-nz/
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slope =
rise
run

=
vertical difference

horizontal distance
.

The percentage rise (%) of a slope is then computed as slope × 100. The degree (°) of the
slope is θ.

Figure A1. Slope.

Table A1 below reports a range of slope classifications used in different countries and
different settings.

Table A1. Classification of land slopes. (a) http://www.fao.org/3/r4082e/r4082e04.htm accessed
on 1 March 2019, (b) http://sis.agr.gc.ca/cansis/nsdb/slc/v3.2/cmp/slope.html accessed on 1
March 2019, (c) https://www.tweed.nsw.gov.au/Download.aspx?Path=~/Documents/Planning/
TSC02931_Fact_Sheet_4_Working_with_Sloping_Sites.pdf accessed on 1 March 2019, (d) http://
www.archcollege.com/archcollege/2016/9/28094.html accessed on 1 March 2019.

Slope Class % °

Horizontal 0–2 0–1.15
Very Flat 2–5 1.15–2.86

Flat 5–10 2.86–5.71
Moderate 10–25 5.71–14.03

Steep >25 >14.03

(b) Government of Canada Soil Landscape of Canada

Slope Class % °

Little or None 0–3 0–1.72
Gentle 4–9 2.29–5.14

Moderate 10–15 5.71–8.53
Steep 16–30 9.09–16.70

Extremely steep 31–60 17.22–30.96
Excessively steep >60 >30.96

(c) Tweed Shire Council Australia Dwelling Houses

Slope Class % °

Flat 0–10 0–5.71
Moderate 10–21 5.71–11.86

Steep 21–32 11.86–17.74
Extremely >32 >17.74

(d) China Dwelling Houses

Slope Class % °

Flat 0–2 0–1.15
Gentle 3–9 1.72–5.14

Moderate 10–24 5.71–13.50
Steep 25–50 14.04–26.57

Extremely 50–100 26.57–45

Note: This table reports a range of slope classifications used in different countries and different settings. (a) reports
the slopes commonly used in irrigated fields; (b) reports the slope gradients for soil landscapes in Canada;
(c) reports the slopes associated with building a house in Australia; (d) reports the slopes for urban construction
suitability in China. The source data for panels (a,b,d) provide the slopes as measured in the percentage rise,
whereas the source data for panel (c) provides the slopes as measured in degree.

http://www.fao.org/3/r4082e/r4082e04.htm
http://sis.agr.gc.ca/cansis/nsdb/slc/v3.2/cmp/slope.html
https://www.tweed.nsw.gov.au/Download.aspx?Path=~/Documents/Planning/TSC02931_Fact_Sheet_4_Working_with_Sloping_Sites.pdf
https://www.tweed.nsw.gov.au/Download.aspx?Path=~/Documents/Planning/TSC02931_Fact_Sheet_4_Working_with_Sloping_Sites.pdf
http://www.archcollege.com/archcollege/2016/9/28094.html
http://www.archcollege.com/archcollege/2016/9/28094.html
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Table A2. Estimation results with the alternative land slope classes.

Generalized w/ Slope

Coef. Std.Err.

2007Q1 0.717 *** (0.054)
2007Q2 0.766 *** (0.051)
2007Q3 0.736 *** (0.068)
2007Q4 0.658 *** (0.051)
2008Q1 0.698 *** (0.052)
2008Q2 0.582 *** (0.043)
2008Q3 0.648 *** (0.090)
2008Q4 0.543 *** (0.060)
2009Q1 0.453 *** (0.055)
2009Q2 0.505 *** (0.048)
2009Q3 0.573 *** (0.044)
2009Q4 0.645 *** (0.045)
2010Q1 0.604 *** (0.041)
2010Q2 0.724 *** (0.059)
2010Q3 0.683 *** (0.064)
2010Q4 0.634 *** (0.059)
2011Q1 0.583 *** (0.055)
2011Q2 0.727 *** (0.065)
2011Q3 0.636 *** (0.061)
2011Q4 0.695 *** (0.068)
2012Q1 0.699 *** (0.049)
2012Q2 0.676 *** (0.043)
2012Q3 0.692 *** (0.046)
2012Q4 0.861 *** (0.043)
2013Q1 0.809 *** (0.045)
2013Q2 0.972 *** (0.052)
2013Q3 1.039 *** (0.060)
2013Q4 0.995 *** (0.061)
2014Q1 0.993 *** (0.062)
2014Q2 1.208 *** (0.081)
2014Q3 1.278 *** (0.082)
2014Q4 1.231 *** (0.057)
2015Q1 1.547 *** (0.080)
2015Q2 1.497 *** (0.071)
2015Q3 1.543 *** (0.070)
2015Q4 1.421 *** (0.063)
2016Q1 1.692 *** (0.095)
2016Q2 1.666 *** (0.080)
2016Q3 1.707 *** (0.085)
2016Q4 1.957 *** (0.144)

Decade Discount Rate δ 0.066 *** (0.007)

One Tree Hill School Zone −0.396 *** (0.014)
Double Grammar Zone 0.534 *** (0.036)

5 Rooms 1.043 *** (0.042)
6 Rooms 1.061 *** (0.042)
7 Rooms 1.274 *** (0.046)

8+ Rooms 1.247 *** (0.047)

Flat (0–10%) 0.036 (0.026)
Steeply Sloped (25–50%) −0.101 *** (0.024)

Extremely Steeply Sloped (50–70%) −0.342 *** (0.055)

Adjusted R2 0.940
Log-Likelihood −40,865.385

AIC 81,830.77
BIC 82,162.8

Number of Observations 5657

Note: This table reports the estimation results for the generalized builder’s models using an alternative slope
classification. The Selwyn College school zone is the baseline school zone. The reference room category is that of
houses with 2–4 rooms. Moderately sloped land (10–25%) is the baseline land slope class. Robust standard errors
are reported in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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