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Abstract: Rural settlements account for 45% of the world’s population and are targeted places for
poverty eradication. However, compared to urban footprints, the distribution of rural settlements
is not well characterized in most existing land use and land cover maps because of their patchy
and scattered organization and relative stability over time. In this study, we proposed a pixel- and
object-based method to map rural settlements by employing spectral-texture-temporal information
from Landsat and Sentinel time series. Spectral indices (maximum normalized difference vegetation
index (NDVI) and minimum normalized difference built-up index (NDBI composite) and texture
indices (vertical transmit and vertical receive (VV) polarization of mean synthetic aperture radar
(SAR) composite) were calculated from all available Landsat and Sentinel-1A data from 1 January
2016 to 31 December 2018. These features were then stacked for segmentation to extract potential
rural settlement objects. To better differentiate settlements from bare soil, the gradient of annual
NDVI maximum (namely, gradient of change, use gradient for simplicity) from 1 January 1987 to
31 December 2018 was used. The rural training samples were selected from global urban footprint
(GUF) products with a post filtering process to remove sample noise. Scatter plots between pixel-
and object-based values per feature were delineated by t-distribution ellipses to determine the
thresholds. Finally, pixel- and object-based thresholds were applied to four features (NDVI, NDBI,
VV, gradient) in Google Earth Engine (GEE) to obtain the distribution of rural settlements in eight
selected Asian regions. The derived maps of rural settlements showed consistent accuracy, with a
producer’s accuracy (PA) of 0.87, user’s accuracy (UA) of 0.93 and overall accuracy (OA) reaching
90% in different landscape conditions, which are better than existing land cover products.

Keywords: rural settlement; spectral-texture-temporal; pixel- and object-based classification; time
series; Sentinel; Landsat

1. Introduction

We are living on an urbanizing planet, and the global population is now more in
urban than rural [1]. Nonetheless, 45% of the world population is still living in rural areas,
especially in certain countries where more than 60% of their population remains rural, such
as India and some African countries [2]. Compared with urban areas, rural settlements
(e.g., rural buildings and roads) have gained less attention due to their relatively smaller
spatial coverage and fragmented organization. However, accurate information on rural
settlement distribution is critical to the healthy development of rural undertakings and
to help address the issues related to rural poverty, food insecurity, and the depletion of
natural resources issues caused by environmental degradation and climate change [3–5].

The spatial distribution of rural settlements has usually been mapped as a part of
urban areas defined by impervious surfaces or built-up areas [6–8]. Accordingly, maps
specific for rural settlements are rarely available. Until now, numerous efforts have been
made to map regional/global urban extents at different spatial resolutions (i.e., 12-m
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to kilometers) from remotely sensed data. Some coarse resolution urban maps include:
DMSP/OLS-derived map [9], MODIS-based map [10], and Rural-Urban Mapping Project
(GRUMP, [11]). However, these maps have not provided good characterizations of rural
settlements because of their coarse spatial details. More recently, urban extent has been
mapped in a more precise manner in terms of spatial resolution and temporal frequency,
such as the 12-m resolution global urban footprint (GUF) circa 2014 [12], 30-m resolution
5-year interval Landsat-derived maps [4], 38-m resolution decadal urban extent back to
1975, namely, the global human settlement layer (GHSL, [13]), and 30-m annual maps
between 1985–2018 [14]. In addition, some regional medium resolution urban maps were
generated as exemplified by annual urban maps for the conterminous United States [15]
and the single-year map of China [16]. Moreover, some regional and global land cover
maps have classes related to human settlements such as GlobeLand30 [6], GLC30 [7], and
USGS NLCD [17]. Nonetheless, most of these products suffer from a lower locational
accuracy of rural settlements compared to urban [18].

There are several factors that lead to the limited mapping accuracy of rural settlements
in existing urban maps. First, rural settlements (e.g., buildings and roads) are usually
sparsely distributed compared to urban infrastructure. This fragmented distribution,
combined with surrounding land covers (e.g., active and abandoned cropland, bare ground,
forest), leads to mixed pixels in median to coarse resolution satellite images, making rural
infrastructure difficult to map. Second, currently available remote sensing-based methods
focus more on urban settlements instead of their rural counterparts. To calibrate classifiers
that are suitable to extract urban extent, training samples for impervious surfaces are
collected more from urban and lose most of the information of rural ones [16]. Therefore,
the rural settlements were poorly delineated using methods designed specifically for
urban land only. Third, the socioeconomic characteristics of rural settlements add to
their difficulties in accurate mapping. For instance, rural settlements usually have low
population density and weak economic activities compared to cities, which leads to their
invisibility in nighttime light (NTL) images.

Many efforts have been made to extract human settlements (including both urban
and rural areas) using supervised classification (pixel or object-based method) that heavily
relies on the availability of training samples to create reliable classifier [4,19,20]. Pixel-based
methods are most frequently used in mapping local to global human settlements due to
their straightforward methodology and ease of transferability to other regions [14,19,20].
Object-based classification (OBC) considers each parcel as one unit which could provide
a homogeneously classified result [21]. This approach delineates the boundary of land
cover as a patch as opposed to a single isolated pixel [22]. There are some object-based
or pixel- and object-based integrated techniques used for regional and large-scale land
cover mapping [6,23,24]. Among them, GlobeLand30 products have achieved the highest
average accuracy from a third-party evaluation [25]. However, the accuracy of rural human
settlements in GlobeLand30 is not high enough because it first focuses on using pixel-based
classification and then labels the results by the OBC method, which leads to a good de-
lineation of settlements but loss of spatial details within land cover patches [6]. Other
pixel-based products, such as GHSL and GUF, can provide spatial details of rural settle-
ments but not good delineations of boundaries. Hence, the combined use of pixel- and OBC
methods is a promising approach in mapping rural settlements. For example, extracted
results from OBC can be used to incorporate other noisy pixels, such as bare land and vege-
tation pixels, within rural settlement patches. The pixel-based method generally provides
scattered results with many spatial details. Therefore, the misclassification between rural
and other land covers within each patch could be reduced by the pixel-based method.

In this study, we proposed an easily implemented approach to map rural settlements
(human settlements out of urban regions) with diverse spatial organizations. The approach
is applicable to areas under different socioeconomic and biophysical situations.
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2. Study Area and Datasets
2.1. Study Area

In this study, we aimed to map the spatial distribution of rural settlements across Asia
circa 2017. The study covered eight regions with diverse rural characteristics across varied
climate zones (Figure 1), including temperate continental climates (plots 1, 3, 6, and 8), arid
areas (plots 2 and 5), and subtropical rainforest (plot 4 and 7). Rural settlements present
linear, irregular polygons and patchy organizations which are mixed with the background
land covers, such as cropland, bare soil, forest, etc. Similar to urban areas, rural settlements
also present high, medium and low-density characteristics.
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2.2. Datasets

All the available Landsat surface reflectance products (with cloud masked) in the time
range 1987–2018, including Thematic Mapper (TM4, TM5), Enhanced Thematic Mapper
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Plus (ETM+), Operational Land Imager (OLI), and Sentinel-1A SAR data, were used in this
study. Six spectral bands of Landsat data (blue, green, red, near infrared (NIR), shortwave
infrared 1 (SWIR1) and shortwave infrared 2 (SWIR2)) were utilized to generate spectral
and temporal features. The texture features were derived from the backscattering coefficient
of Sentinel-1A SAR data from 2016 to 2018. The process of preprocessing SAR, including
thermal noise removal, radiometric calibration and terrain correction, was conducted
using the Sentinel-1 Toolbox with additional conversations of decibels using log scaling
(https://developers.google.com/earth-engine/sentinel1 (accessed on 20 January 2021)).
Here, the VV polarization of Sentinel-1A was chosen to guarantee the complete coverage
of our research region. Furthermore, the Visible Infrared Imaging Radiometer Suite (VIIRS)
nighttime light (NTL) image was used to generate urban masks. The number of datasets
used in this study is displayed in Figure 2.
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Figure 2. The number of Landsat and Sentinel images used in this study.

The ancillary land cover products, Global Food Security Analysis-Support Data at
30 Meters (GFSAD30) and the 12-m GUF were collected as reference maps to generate
samples of crop and rural settlements respectively. GFSAD30 was generated by using
multisource satellite data (primarily with Landsat) for 2015 [26], and the GUF was produced
by the German Aerospace Center (DLR) for 2010 using TanDEM-X and TerraSAR-X datasets
with an overall accuracy of 85% [12].

3. Methods

Our method consists of 5 steps as displayed in Figure 3: (1) constructing temporal fea-
tures: maximum NDVI composite (NDVI_max), NDBI minimum composites (NDBI_min),

https://developers.google.com/earth-engine/sentinel1
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VV polarization of SAR mean composite (VV_mean), and NDVI gradient; (2) generating
objects and calculating object-level features; (3) obtaining samples for different land cov-
ers; (4) calibrating thresholds and applying them to object- and pixel-based features; and
(5) assessing accuracy.
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3.1. Creating Feature Composites from Landsat and Sentinel Time Series

Annual spectral NDVI_max, NDBI_min, and texture composite VV_mean during
1 January 2016–31 December 2018 were composed using NDVI, NDBI and VV time series
respectively. NDVI_max highlights the contrast between vegetated areas (cropland and
forest) and others (i.e., bare soil and rural settlements). NDBI_min was used to discriminate
against most rural settlements with other land cover classes by highlighting mid-infrared
features. VV_mean was adopted to separate land cover with rough surfaces from covers
with flat surfaces [16]. The NDVI and NDBI metrics are shown in Equations (1) and (2),
and the composites process are shown in Equations (3)–(5).

NDVI = (NIR − Red)/(NIR + Red) (1)

NDBI = (MIR − NIR)/(MIR + NIR) (2)

NDVI = (NDVI)
j
i

(3)

NDBI = (NDBI)
j
i

(4)

VV = (VV)
j
i

(5)

For Landsat 4, 5, and 7, the MIR and red bands correspond to Band 5 and Band 3. For
Landsat 8, the MIR and red bands correspond to Band 6 and Band 4, respectively, and i
and j represent the time range.
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Due to the spectral similarity between bare soil and settlements, settlement products
are easily mixed with bare soil information [8]. Therefore, we introduced a temporal-based
feature to alleviate the misclassification. We assumed that the rural settlements remained
relatively constant over a long period. Conversely, bare soil would experience fluctuations
due to human activity or natural factors. Hence, we used the slope (Figure 4) of the linear
fitting model that was applied to annual NDVI_max, namely, the gradient of change (using
gradient for simplicity), as the indicator to capture the magnitude of change.
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3.2. Generating Objects and Calculating Object-Level Features

Image segmentation is a process that separates input images into homogeneous
patches, of which pixels within each patch have the same property but are different from
surrounding neighborhoods [21]. The segmented objects reduce within-class variations in
land covers. To date, a variety of segmentation methods have been developed such as the
edge boundary method, the watershed method, the graph cuts method, the seed region
growing (SRG) method or their hybrid approaches [27]. Among them, SRG is the most
widely used due to its simplicity and efficiency. A complete SRG segmentation procedure
commonly comprises three steps: (1) the selection of seeds, (2) the application of the SRG
method and (3) the merging of segmented patches. To increase the computing efficiency of
SRG methods, the selection of seeds is one of the key steps. Here, we adopted the method
proposed by [27], namely, the directional gradient minima-based method (DGM), which
aims to extract the seed location using the regional minima from horizontal and vertical
gradient maps (Figure 5a). These selected seeds were further used for the segmentation
process (Figure 5b). Then, NDVI_max, NDBI_min and VV_mean were stacked together to
perform initial segmentation.
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Figure 5. (a) The distribution of seed locations on the gradient image and (b) its corresponding segmented result
(115.9072◦ E–115.9344◦ E, 35.68809◦ N–35.71531◦ N).

After segmentation, the pixel-based NDVI_max feature was aggregated to OBC based
features by calculating the median value within each patch. The same procedure was
applied to NDBI_min, VV_mean and gradient_mean, thus, four new object-based fea-
tures, namely, NDVI_max_med, NDBI_min_med, VV_mean_med and gradient_med were
finally generated.

3.3. Automatic Generation of Samples for Different Land Cover Class

Rural settlements, crops, forests, bare soil and water bodies are five land cover types in
our research region. Since the water body could be easily masked out using the modification
of the normalized difference water index (MNDWI) [28] and forests are not easily confused
with rural settlements, we focused more on selecting the other two nonrural settlement
land cover samples (crop and bare soil) in this study. To generate samples for each land
cover type, the ancillary land cover products GUF and GFSAD30 were introduced. First,
urban samples were randomly generated based on GUF products. Then, the percentage of
GUF within each segmented patch greater than a predefined threshold (here set as 80%)
was kept as the rural sample otherwise, it was removed from potential rural samples. This
kind of filtering process helps to automatically produce samples by removing noise caused
by the neighboring land covers near rural settlements. The generation of crop samples was
similar to rural settlements except that the threshold for filtering was set to 90% due to the
high crop density in our research region. In terms of soil samples, as there are no available
soil products, we visually selected samples by taking Google Earth images as a reference.
The number of samples for each land cover class per region is displayed in Table 1. We can
see that the high-density rural areas have a high percentage of rural settlement samples
and vice versa. For research regions, such as North China (NC) and Northern Malaysia
(NM), there are no bare soil samples.

3.4. Determining Pixel- and Object-Based Thresholds

The filtered samples were applied to pixel (NDVI_max, NDBI_min, VV_mean and
gradient) and object-based features (NDVI_max_obc, NDBI_min_obc, VV_mean_obc and
gradient_obc). To avoid using a user-defined threshold, we propose a simple-operated
method to obtain the thresholds for pixel- and OBC-based features simultaneously. Figure 6
displays the scatter plot between NDVI_obc and NDVI_pixel for three land covers. Note
that the scatter plot between gradient_obc and gradient_pixel displays only the rural and
bare soil samples.
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Table 1. The number of samples for each land cover class per region.

Research Region
Land Cover Types

Rural Settlements Crop Soil

NI 208 1338 93

CA 38 229 24

SC 58 286 0

CT 37 257 7

NX 27 91 30

SI 173 684 72

NM 23 78 0

NC 228 385 0Land 2021, 10, x FOR PEER REVIEW 9 of 19 
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We take the scatterplots for NDVI and rural settlements as an example to illustrate the
process of automatic identification of pixel-and-object based thresholds. We assume that
these land cover samples have a t distribution, which is suitable to delineate the central
tendency of small samples. The stat_ellipse method in R language was utilized to circle their
distribution with 95% confidence of all the samples (ellipse in Figure 7). We can see that
the ellipse captures the most representative land cover samples with the outliers removed.
Here, we selected the location of the ellipse boundary (red solid dot) as the threshold to
discriminate rural settlements from photosynthetic materials. The red point is from the
right end point of the major axis of the ellipse. For other features (NDBI, VV and gradient)
and land cover types, the same strategy was applied to obtain corresponding thresholds.
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ral settlement.

The equation for extracting rural settlements applied in GEE is shown in Equations (6)–(9):

Settlement_obc =

NDVI_obc.lt(a).and(NDBI_obc.gt(b)).and(VV_obc.gt(c)).and(Gradient_obc.lt(d))
(6)

Settlement_p =

NDVI_obc.lt(a1).and(NDBI_obc.gt(b1)).and(VV_obc.gt(c1)).and(Gradient_obc.lt(d1))
(7)

where a, b, c, and d are the object-based thresholds and a1, b1, c1, and d1 are the pixel-
based thresholds. Settlement_p represents Settlement_pixel and the same for other features.

Then, the final rural settlements were obtained using the Equation (8):

Settlement = Settlement_obc.and(Settlement_pixel) (8)

Rural settlement = Settlement.and(NTL .lt(e)) (9)

Here, e is the empirical threshold used for urban removal and it varies with region.
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3.5. Accuracy Assessment

Validation samples were randomly generated based on extracted products and a 3 × 3
rectangle buffer (90 × 90 m) was created around each validation point (Figure 8). Each
research region has 200 rural and 200 nonrural samples, hence there are 1600 samples
in total for eight research regions. Ground-truthed rural/nonrural areas were visually
interpreted from high-resolution Google Earth images. Our verification rules were as
follows: if there was at least one house located in a 3 × 3 buffer zone, this plot was set as a
rural settlement; otherwise, the sample was interpreted as nonrural. The commonly used
indices, producer’s accuracy (PA), user’s accuracy (UA) and overall accuracy (OA) were
adopted to quantitatively validate the extracted result.
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4. Results
4.1. The Extracted Results

Table 2 compares the extent of our rural settlements and existing products. Visually,
our maps provide good representations of rural settlements across study areas, which are
all superior to existing maps (except for GUF in some cases). Our map accurately captured
the extent and boundary of rural settlements in study area 1 (NI). However, the GUF,
GHSL and GlobeLand30 products missed most rural settlements in region 1. For study
area 2 (CA) with linear low-density rural settlements, our product performed well but
not as well as GUF. Similar to the first case, most rural settlements were not captured by
GHSL. Although GlobeLand30 characterizes the boundary of rural settlements well in this
landscape, spatial details were lost within the settlement patch. In research region 3 (SC),
our extracted results are similar to that of GUF. In addition to depicting patchy settlements,
some linearly distributed rural settlements (in the east and west) were also well presented
and were not captured by GUF. GHSL only provides the location of rural settlements
with loss of the accurate boundaries and spatial patterns. GlobeLand30 missed most rural
settlements by only providing the location of the largest rural patches. In research region 4
(CT), our map is generally the same as that of GUF. However, GUF misclassified trees show
textures similar to rural buildings in SAR images. Our map provides a larger extent of rural
settlements than GUF with some scattered houses identified. However, sometimes our
maps contain noise from bare land and nearby cropland confusions. GHSL only recognizes
the central location of the rural region with a miss of 50% in rural areas and GlobeLand30
only detects larger rural patches and misses many small clusters. In research region 5
(NX), our method captured relatively accurate boundaries of rural settlement. The GUF
delineates more individual houses whose size is less than 30 m (as seen in column 3, Table 2)
that cannot be captured by Landsat images. GlobeLand30 only determined some regular
and large-patch settlements, leaving out all the small and irregularly shaped settlements.
Similarly, GHSL lost almost all rural settlements. In research region 6 (SI), our method
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performs better than all the other products, especially for some small-patch settlements.
GlobeLand30 missed almost all rural areas, which is a common case for this product. GUF
performs better than GHSL, which only provides sporadic distributions of settlements. In
research region 7 (NM), our results provide similar results to GUF except that many more
small-patch settlements with sizes less than 30 m were captured by GUF but not our maps.
GlobeLand30 provides the location of rural settlements with some spatial details lost, and
GHSL only picks 30% of rural settlements. In research region 8 (NC), our results provide a
clear and accurate description of rural settlements which is similar as GUF. GlobeLand30
provides a complete description of the rural patch but with the spatial details lost. GHSL
fails to delineate rural settlements in this kind of landscape. From our t-test analysis, there
are statistically significant differences (p < 0.05) between our and other products (GHSL,
GUF and GlobeLand30) in all eight regions, except of GHSL in research region 2 with a
p value of 0.4.

4.2. The Accuracy of Extracted Rural Settlements

The commission and omission errors were balanced with each other in current settle-
ment products as displayed in the PA and UA of GHSL, GlobeLand30 and GUF (Figure 9).
The high UA and low PA of GHSL, GLS and GUF indicate that these products lost many
rural settlements but seldom misclassified other land covers as rural. However, there are
also some cases with both low PA and UA such as in research region 1 (north Indian),
that should be paid more attention to, particularly conducting regional analysis in this
region. For the eight selected regions, our results provide higher PA than others, indicating
that more rural settlements were delineated within our product. However, the UA value
was less satisfactory compared with PA, indicating that misclassifications from nonrural
settlements were introduced by our method, but the magnitude was less than PA. Thus, in
terms of the overall accuracy, our method performs better than all other products, with a
10% increase compared with GlobeLand30 and GHS and a 5% increase compared to GUF.
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Table 2. Comparison of the extent of rural settlements mapped in this study and existing products.

Research Region Google Earth Image Our Maps GHSL GUF GlobeLand30
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5. Discussion
5.1. Comparison between Different Products from the Algorithm Perspective

The algorithmic performance of different settlement products are shown in Table 3
(a), (b) and (c). For the GUF products, noise is mainly from tree canopies near houses. For
example, as GUF products rely on the TerraSAR and digital elevation model (DEM), the
settlement corners and tree canopies all present strong scattering characteristics, leading
to high brightness on TerraSAR data. These similar textured features lead to the misclas-
sification of tree canopy with settlements (see second column in Table 3), even though
postediting efforts have been placed on the extracted products. For the GHSL that lost
almost all the settlements, the poor performance (not accurate delineation or totally lost, see
third column) was from the step-by-step processing chain of producing GHSL products, of
which the key concept was to remove the nonsettlements step by step. Hence, the incorrect
classification of other land covers, shrubs, forests, etc. would influence the accuracy of final
GHSL layers. For GlobeLand30, the settlement patch did not match well with the ground
truth, and even small rural objects were lost (fourth column). Given the land cover shapes
and the algorithmic description of GlobeLand30, the inaccurate performance in delineating
rural settlements lies in the initial segmentation stage is not fully describe the accurate
settlement boundary.

Table 3. The example of algorithm performance for extracted rural settlements of three selected cases
(a), (b) and (c). Here, the GUF and our map were overlaid to highlight their differences.

Google Earth Image Our Map (Red) GUF
(Blue) GHSL GlobeLand30
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The misclassification between bare soil and settlements is one of the most important
unsettled issues in urban remote sensing due to the spectral similarity between them.
Therefore, the commonly used spectral-based indices NDVI, NDBI, and the biophysical
composition index (BCI, [29]) still have limited performance in removing bare soil without
affecting the identification of settlements. Seasonal or long-lasting bare soil broadly existed
in sandy land, river beaches, and fallow land which are mostly located in rural regions,
leading to the overestimation of settlements being more common in rural than urban areas.
In this study, we utilized the temporal-based feature gradient to suppress soil to the utmost
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extent. The compared results were shown in Table 4, with red and light blue representing
settlement results with or without gradient features. We can see that large areas of bare soil
in the sandy region were removed as illustrated in (a) and (b) in Table 4. In addition, the
bare soil among cropland was also moderately removed as displayed in Table 4 (c).

Table 4. Examples of soil-minimization using gradient feature for three selected cases for (a), (b) and (c).

Google Earth Image Settlement Extraction with Gradient
Feature

Settlement Extraction without Gradient
Feature
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6. Conclusions

Few studies have specifically focused on rural settlement extraction, even with the
existence of large open-access satellite images and advanced classification methods. In this
study, a threshold-based rural settlement extraction method was proposed using spectral-
texture-temporal information by integrating a pixel- and object-based strategy. Most of the
processes were performed directly in the GEE platform except segmentation, as the inherent
segmentation method within GEE is not powerful enough to obtain accurate object-based
results. This shortcoming hinders our progress towards contiguously large-scale rural
mapping in GEE. We tested our method for eight selected Asian regions and found the
following:

1. Our obtained rural map achieved higher accuracy than current mainstream settle-
ment layers/products and could provide complementary materials to the existing
operational land cover maps. We also find that the current rural settlement product
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(even our result) has relatively poor performance (settlements lost) in the Indian area.
Researchers should pay more attention when using the rural products for this region.

2. Our method facilitated the removal of bare soil by using the gradient feature from
annual NDVI_max information. This simple and easily obtained index effectively
solved soil-impervious misclassification issues.

Our method still has some room for improvement, especially concerning the filtering
process for obtaining rural samples. For example, more filtering criteria, such as spectral
and texture-based thresholds, could be combined to filter the initial generated samples.
Last, our method is very promising for time-series large-area mapping if the advanced
segmented algorithms are fully transplanted to the GEE platform.
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