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Abstract: Grain security is an essential issue for countries across the world. China has witnessed
over the last decades not only a rapid growth in the volume of the grain production, but also a
divergence in its geographical distributions. Existing studies on the influencing factors of grain
production have overlooked thus spatial heterogeneity. This paper investigates the factors that cause
the geographical heterogeneity in grain output levels in Guangdong province of China, in terms
of land, labor and capital. To address the spatial attenuation effect of the influencing factors, we
use the Geographically Weighted Regression (GWR) on samples of different spatial ranges, which
include a total of 530 southern counties from 2015 to 2017. The results show that (a) the effect of
land endowment on grain output vary across the east and the west, and between coastal and inland
areas; (b) the effect of labor endowment on grain output are inconsistent in the sign and magnitude
of the estimates across counties; (c) the effect of agricultural capital on grain production shows
heterogeneity spatially (across the east and the west) and economically (across developed and less
developed regions). We then analyze the potential mechanism behind this spatial heterogeneity, as
well as its policy implications.

Keywords: grain main sales area; spatial heterogeneity; agricultural informatization

1. Introduction

Since its reform and opening, China has witnessed rapid economic and social develop-
ments in the southeastern coastal area. As industrialization, urbanization, and population
agglomeration advance accordingly, the de-agriculturalization and de-grainization of
arable land has gradually become an issue. The southeastern coastal provinces face se-
rious shortage of agricultural products and have become the main sales area of grains.
Although the de-agriculturalization and the de-grainization of cultivated land in this area
are mainly the results of market allocation of land resources, the Chinese government
has set policy goals to “maintain the food security in the main sales area.” Therefore, it
is theoretically significant and empirically valuable to study the evolution of the grain
production and the effects of factor endowments on grain output in the main sales areas.
It is also important to understand the underlying mechanism of the spatial changes in
grain production in the southeastern coastal provinces and to formulate effective policies
to incentivize county-level grain production to satisfy the huge demand in the main sales
area. Historical evidence across the world shows that all the main sales areas of grain
have experienced rapid economic development, scientific and technological progress, and
reduction of rural industries brought about by global urbanization [1–3]. Agricultural
sectors across the globe have followed a similar trend of spatial aggregation [4]. Decline in
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rural population was the first element to bring about a shrinking of agricultural production.
In China, the application of mechanical technology and fertilizers has been shown to offset
the decline in food production caused by the outflow of rural labor [5]. In the context
where de-agriculturalization and de-grainization have gradually become one of the main
characteristics of land use in China [6], the food security issue and the shortage of agri-
cultural production factors are increasingly significant [7–10]. Given that change in land
use is a process of human-induced spatial change, it is essential to take it into account the
difference and complexity in the distribution of land-use patterns [11–14] and to precisely
measure the different effects of changes in factors, such as labor, land and, technology, on
food production in different regions [15–18].

Existing studies have shown that the grain production areas in China have been
shifting over time, and that the grain production across regions has a certain degree of
spatial correlation. There is also a large body of literature that investigates different factors
affecting grain output. These factors include regional advantages in grain production,
rural economic structure and factor returns, crop scale and efficiency, nonagricultural
employment opportunities, arable land per capita, and so forth. However, the influencing
factors across regions are greatly different. For instance, Zhang et al. (2011) pointed out
that human factors (e.g., changes in land-use structure, changes in farmers’ behavioral
patterns, and environmental pollution) and changes in precipitation intensity are the main
contributing factors to the changes in the spatial pattern of grain production in Jiangsu
province of China [19]. Zheng et al. (2014) concluded that there is a large heterogeneity
in the changes in grain production across regions in China: the areas of grain production
in most regions are declining; the decrease in arable land and the shift from grain to cash
crops are the main reasons for this decline, whereas the increase in the multiple cropping
index has eased this downward trend; and in some special cases, there are even small
jump-ups in the areas of grain production due to the sharp increase in the multiple crop
index and the relatively small pressure on economic structural adjustments [20]. Zhang
et al. (2017) indicated that in the past three decades, the grain output in China has shown
a spatial pattern of “(going) down in the south and up in the north,” and the main cause
of cross-provincial differences in grain output is the areas of production [4]. In fact, one
influencing factor may promote grain output growth in one location but inhibit it in another
location [21]. Spatial heterogeneity can yield different results in land-use changes from
different observation locations [22]. Therefore, to correctly characterize the heterogeneity
of grain production, it is essential to incorporate it into the driving factor model to better
predict future scenarios and support planning and decision-making [23].

As shown above, there is a rich body of literature that uses spatial econometric
methods to explore the spatial pattern of China’s grain production [24,25], and some use
spatial measurement methods (SAR) based on spatial correlation to consider the spatial
relationship between grain production levels and the driving factors. However, the existing
literature does not address the boundary issue of special influence. Regardless of whether
spatial correlation or spatial heterogeneity is studied, the effect of each driving factor on
the surrounding areas should be defined within a boundary, and this boundary should
be represented as a radiation attenuation function in the model, but there are few studies
providing a reasonable explanation for the sampling range. In view of this, this paper
studies the spatial heterogeneity of the factors affecting grain production levels with a
sample of 530 counties in Guangdong and its neighboring provinces, and compares the
effects on grain production at different scales by establishing three-level buffer zones.

2. Materials and Methods
2.1. Theoretical Analysis

Technological advancement has weakened the role of natural resources in the agri-
cultural production process, while technology and labor have become more and more
important. The “invisible hand” directs all mobile factors of production to move to places
where the maximum efficiency is achieved, and historical trends indicate that both labor
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and technology will aggregate over time to certain regions due to the economies of scale.
Land, labor, and technology serve as important driving factors for grain production across
counties. What role do these factors have on the evolution of regional grain production?
This paper focuses on analyzing the spatial heterogeneity of the impact of land, labor, and
technology endowment on grain production at the county level.

2.1.1. Effect of Land Endowment on Regional Grain Output and Its Heterogeneity

Land endowment is the most stable factor of agricultural production. Since a land
area is fixed in the short run, change in land endowment reflects more in changes in land
property rights and planting structure. Therefore, compared with more mobile factors,
such as labor and capital, land endowment is relatively stable. At the micro level, the
impact of land endowment on grain production is mainly reflected in the topography,
soil fertility, irrigation water, climatic conditions, degree of fragmentation, and changes in
planting structure [26–30]. When applied to macro-aggregated data, land endowment is
usually represented by the total amount of cultivated land [31] and the stock of agricultural
infrastructure [32]. In theory, increase in agricultural land endowment has a positive impact
on grain production.

A few studies have found that the level of grain production and the factors of pro-
duction are spatially heterogeneous [33], which means that the elasticity of grain output
to production factors varies in geographical areas. For example, let counties A and B be
two adjacent administrative regions, both of which have relatively similar natural resource
characteristics (e.g., total area of arable land, topography, and water and soil conditions),
and let us assume that the agricultural labor and the agricultural capital market are cleared.
Farmers in county A mainly plant double-cropping rice. County B has developed high-
value-added characteristic agriculture in recent years, which has led a group of farmers
to adjust their planting structure and implement the “double-to-single” planting system,
such as shrimp–rice symbiosis and single-cropping rice rotation. Then, when the land
endowments of the two counties have increased by the same amount, for example, get-
ting the same amount of high-standard farmland facility construction funds, then the
grain output elasticities of A and B will be different in terms of the effect of farmland
construction—county A would have a larger output elasticity than county B. This is caused
by the difference in the planting structures of the two places. In light of this, this paper
proposes the following hypothesis:

Proposition 1. Increase in land endowment has a positive impact on the level of grain production,
but with spatial heterogeneity in terms of magnitude.

2.1.2. Effect of Labor Endowment on Regional Grain Output and Its Heterogeneity

Agricultural labor is the most active factor in grain production, and is highly mobile.
In the past two decades, agricultural labor has evolved from excess to insufficient supply.
The main changes on a micro level are the transfer of agricultural labor across regions and
industries and the aging labor issue. There are studies on spatial relations in agricultural
economics that have already found the spatial spillover effect of labor transfer on the level
of food production [34]. They suggest that there exists a turning point in the impact of labor
transfer on agricultural ecological efficiency; that is, the effect is not consistently positive or
negative. There is spatial heterogeneity in the effect of agricultural labor changes on the
level of food output, and the sign and magnitude of the impact also vary across regions.
Take counties C and D as examples. County C is located in western Guangdong and is a
traditional grain-producing county with sufficient agricultural labor; county D is located
on the edge of the Pearl River Delta, with high labor prices and insufficient supply of
agricultural labor. Obviously, cultivating new agricultural businesses in county C can
support a number of grain farmers, specialized farmer cooperatives, or social organizations
of production services. The growth of these organizations will help increase the scale of
business operations and radiation belt capabilities of grain farmers in order to increase
grain production. However, the cultivation of new agricultural businesses in county
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D is likely to focus on downstream grain processing firms or local leading enterprises.
These organizations with a background of industrial and commercial capital can, on
the one hand, increase the value-added and marketization level of agricultural products
from the industry optimization perspectives. On the other hand, it is not conducive for
increasing and stabilizing grain production and might even aggravate the phenomenon of
“de-grainization” of agricultural land. This is due to the differences in the labor prices and
industrial bases between the two counties. This paper proposes the following hypothesis:

Proposition 2. The impact of increase in labor endowment on the level of grain production is
spatially heterogeneous, and the magnitude and direction of the effect across regions are different.

2.1.3. Effect of Technology Endowment on Regional Grain Output and Its Heterogeneity

Generally speaking, the higher the level of agricultural technology in a specific region
is, the stronger the grain production capacity is. In terms of spatial relationship, agricultural
technology has a high degree of spatial correlation. For example, Yang et al. (2017) showed
that the advancement of agricultural frontier technology and technical efficiency can
increase food production, and it is manifested as a spatial spillover effect [35]. On the other
hand, due to the strong diffusion of agricultural technology, the differences in the industrial
structure across counties will promote the development and diffusion of agricultural
technology in different directions. For example, the development of local informatization
will promote a more flexible allocation of agricultural resources by agricultural producers.
This can not only increase the income of grain farmers but also nudge the farmers to be
more inclined to nonagricultural and nongrain land use. The result of that is a decline in
grain production capacity in counties with high levels of informatization. This shows that
in the study of spatial relationships, the difference in industrial structure across counties
makes the spillover effects of agricultural technology on grain production either positive
or negative. Based on the above analysis, this paper proposes the following hypothesis:

Proposition 3. The effect of increase in the level of agricultural capitalization on the level of grain
production exhibits spatial heterogeneity, and the magnitude and direction of the effect across regions
are different.

2.2. Regression Model, Data, and Sample Range
2.2.1. Regression Model

Spatial heterogeneity refers to the non-uniformity of spatial effects at the regional
level due to the heterogeneity of spatial units [36]. This spatial heterogeneity is mainly
derived from the differences in geographical conditions of the research objects in each
region. These differences in geographical conditions are the result of an overall effect
of physical and chemical characteristics, such as topography, light and heat conditions,
monsoon climate, and soil composition. These differences are often difficult to control
in macroscopic research. Spatial regression is a particularly suitable method to describe
spatial heterogeneity, because it combines the geographic location of industrial growth
and its driving factors to characterize its spatial changes [37–41]. Similar to nonspatial
methods (such as ordinary least squares, OLS), spatial regression produces parameter
estimates with clear economic interpretations. These parameter estimates represent the
impact of each driving force on industrial growth. Specifically, spatial regression considers
the spatial autocorrelation between nearby cells and the location of each observation [42,43].
Spatial autoregressive regression (SAR) and geographically weighted regression (GWR) are
two typical spatial regression methods that have been widely applied to the analysis and
modeling of land-use change. Representative SAR methods include the spatial lag model
(SLM) and spatial error model (SEM). The spatial autocorrelation between observations
is considered to reduce the spatial clustering in the model residuals [44]. SAR implicitly
solves spatial heterogeneity. In contrast, GWR explicitly solves the problem of spatial
heterogeneity by generating position-based regression parameters. It considers local
characteristics and the influence of locations [45].
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This section describes the geographically weighted regression (GWR) model based on
the ordinary least squares (OLS) model and uses the weighted least squares (WLS) method
to explore the spatial variability and influencing factors of grain output in Guangdong
counties.

Baseline model. Based on the above discussion of spatial correlation, the assumptions of
the GWR model in this paper are (a) the spatial relationship of grain production conforms
to the first law of geography—that is, the correlation between neighboring counties is
stronger than that in distant counties; (b) the driving factors are non-uniformly distributed,
so the effect of one factor has different coefficient estimates in different counties; and (c)
the grain output at a specific time and a specific political environment will be affected by
land endowment, labor endowment, and technology level. Based on these assumptions,
the baseline regression model is

Yi = β0 + β1 Lei + β2 Ldi + β3 Api + β4 Dpi + β5 Aci + β6 Ngi + εi (1)

where Yi is the grain production level in county i, which is measured by the total grain
output; β0 is the intercept term; Ldi is the degree of land standardization in county i, which
is used to characterize the land quality endowment, and it is measured by the ratio of the
irrigated arable land area to the total arable land area; Lei is the total area of arable land in
county i, which is also used to characterize the land quantity endowment; Api represents
the labor endowment in county i, which is measured by the proportion of the labor force in
the agriculture industry in the total population; Dpi is the degree of nongrainization of labor,
which is measured by the number of workers in the vegetable and fruit plantation, forestry,
animal husbandry, and fishery sectors in county i; Ngi is the area of facility agriculture,
that is, the area of cultivated land with facilities such as sprinkler irrigation, drip irrigation,
infiltration irrigation, and greenhouse; and Aci is the level of agricultural informatization in
county i, which is characterized by the proportion of the number of people with telephones
in the total population. The specific index composition is shown in Table 1.

Table 1. Index composition.

First-Degree Indices Second-Degree
Indices Third-Degree Indices Code

Grain production
level Total grain output Total grain output (10,000 tons) Yi

Land endowment
Degree of land
standardization

Irrigated arable land area
(thousand hectares)/total
arable land area (thousand

hectares)

Ldi

Total area of arable
land

Arable land area (thousand
hectares) Lei

Labor endowment
Agricultural labor

force

Number of workers in the
primary industry (10,000
people)/total population

(10,000 people)

Api

Degree of
nongrainization of

labor

Number of workers in the
vegetable and fruit plantation,

forestry, animal husbandry,
and fishery sectors (10,000

people)

Dpi

Technology
endowment

Area of facility
agriculture

Area of facility agriculture
(thousand hectares) Ngi

Level of agricultural
informatization

Number of people with
telephone ownership (10,000

people)/total local population
(10,000 people)

Aci



Land 2021, 10, 206 6 of 17

2.2.2. Data Collection

Most of the county-level data in the paper are collected from the China County-
Level Statistical Yearbook. Some counties and municipalities are not included in the
statistical yearbook, and therefore, we collect data in these areas from their regional
statistical yearbook, the Third National Agricultural Census: Main Data Bulletin and
National Economic and Social Statistics Bulletin. As it is assumed that the samples are
spatially correlated, the data collection focuses on Guangdong and its four bordering
provinces: Guangxi, Hunan, Jiangxi, and Fujian, constituting a total of 530 county-level
regions in five provinces. Guangdong is the country’s largest province with the largest
permanent residence population and the largest grain sales area.

In addition, this paper constructs four dimensions of variables, including grain produc-
tion level, agricultural land endowment, agricultural labor endowment, and agricultural
technology level. We then descriptively analyze the characteristics of the four dimensions of
variables in each province, the relationships between the variables, and comparative analysis
across provinces to provide support for the rationality of the model construction. In order to
construct a GWR model of spatial heterogeneity, the 3-year average data of 2015, 2016, and
2017 are used to eliminate the influence of climatic factors on grain production. The range
method is used to standardize all variables and eliminate dimension factors. The question
of interest in this paper is whether there are regional differences in the influencing factors of
grain production, and if so, what are the magnitudes and patterns of the differences. The
descriptive statistics of the explanatory variables are summarized in Table 2.

Table 2. Descriptive statistics 1.

Second-Degree Indices Unit Code Max Min Mean Std. Dev.

Total grain output 10,000 tons Yi 62.44 0 11.01 11.88
Degree of land standardization N/A Ldi 0.66 0 0.08 0.09

Total area of arable land 1000 hectares Lei 2.37 0 0.51 0.58
Agricultural labor force N/A Api 0.92 0 0.69 0.19

Degree of nongrainization of labor 10,000 people Dpi 155 0 17 23
Area of facility agriculture 1000 hectares Ngi 0.38 0 0.67 0.14

Level of agricultural informatization N/A Aci 80 0 31 40
1 Notes: N/A refers to “Not Applicable,” where the variables are in ratio terms.

2.2.3. Geographical Range of the Study

The GWR model is based on the independent regressions of each sample with cross-
sectional data. If we only use the data of Guangdong province, the impact of neighboring
counties cannot be accurately estimated, and also the estimation may be biased due to
insufficient variability of the structural sample size. Therefore, we addresses this issue by
establishing buffer zones. We use the ArcGIS 10.6 neighborhood analysis tool to establish
four-level buffer areas—R (0 km), S (100 km), M (200 km), and L (400 km)—in the periphery of
Guangdong province to analyze the factors affecting grain yield at different scales. Specifically,
as shown in Figure 1, the R scale contains Guangdong province, including 123 county-level
units; the S scale is the smallest buffer zone, including Guangdong and its adjacent 187
county-level units; the M scale is between L and S, including Guangdong and its surrounding
306 county-level units; and the L scale ranges the largest, including 530 county-level units in
the five provinces of Guangdong, Hunan, Zhejiang, Jiangxi, and Guangxi.
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3. Results

The study obtains a correctly specified variable combination through OLS, and then
runs GWR using the same variable combination. Since the OLS model defaults to the
same spatial relationship between samples, data with regional differences violate OLS’s
assumption of global stationarity. In order to evaluate and compare the performances of
the OLS and GWR models, the adjusted R2 and the modified Akaike Information Criterion
(AIC) test for a small sample are used.

3.1. Comparative Analysis of the Performances of OLS and GWR Models

A comparison of the performances of the OLS regression and GWR results is sum-
marized in Table 3. Specifications (1)–(4) use OLS regression on the R, S, M, and L scales.
Explanatory variables at each scale have different effects on the level of grain produc-
tion. Under the R scale, the proportion of agricultural labor force (Ap), the area of facility
agriculture (Ng), and the level of agricultural informatization (Ac) have a significant corre-
lation with grain output. Under the S scale, the degree of land standardization (Ld), the
proportion of agricultural labor force (Ap), and the level of agricultural informatization
(Ac) have a significant correlation with grain output. Under the M scale, the proportion
of agricultural labor force (Ap) and the level of agricultural informatization (Ac) have a
significant correlation with grain output. Finally, under the L scale, the degree of land
standardization (Ld), the total area of arable land (Le), the proportion of agricultural labor
force (Ap), the area of facility agriculture (Ng), and the level of agricultural informatization
(Ac) have a significant correlation with grain production level.

Table 3. Performance comparison of OLS and GWR models under R, S, M, and L scales.

Scale R S M L

OLS (1) (2) (3) (4)
R2 0.52 0.49 0.43 0.36

Adj R2 0.50 0.47 0.41 0.35
AIC −903.68 −903.68 −1376.31 −2133.99

Significant variables Ap, Ng, Ac Ld, Ap, Ac Ap, Ac Ld, Le, Ap, Ng, Ac

GWR (5) (6) (7) (8)
R2 0.66 0.63 0.61 0.55

Adj R2 0.61 0.60 0.58 0.51
AIC −160.90 −952.70 −1473.02 −2269.33

Residual std. error 1.500 0.057 0.123 0.382
No. of obs. 123 187 306 530

3.2. OLS Regression Results

The OLS regression results are summarized in Table 4. Specifications (1)–(4) in Table 4
show how the grain output level changes when each land, labor, or technology endowment
factor changes under various geographical scales. We observe that the average value of
the variance inflation factor (VIF) is close to 1, indicating that the selection of variables
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is reasonable and the collinearity issue is not a concern. As the sample scale increases,
the number of significant variables increases, as well as the significance of the variables.
Take the degree of land standardization (Ld) as an example. Under the R scale, there are
no significant changes in grain output when the proportion of irrigated arable land area
increases by 1%. However, when we scale up the sample to S, the increase in the degree of
land standardization is accompanied with a significant drop in grain production level, at a
5% significance level. Under the M scale and onward, the significance level goes further
to 1%, marked with even larger magnitudes of the negative relationship. However, as the
sample scale expands, the explanatory power of the variables decreases successively, and
the R2 ranges from 0.52 on the R scale to 0.36 on the L scale (see Table 3). The variance
inflation factor (VIF) of each variable is less than 7.5, indicating that there is no collinearity
between the variables.

Table 4. OLS regression results (dependent variable: grain output).

Scale (1)
R

(2)
S

(3)
M

(4)
L

Ld
Coefficient 0.14 0.12 ** 0.19 *** 2.27 ***

Std. err. (0.123) (0.050) (0.072) (1.209)
VIF 1.82 1.13 1.09 1.07

Le
Coefficient −0.12 −0.75 1.19 5.87 ***

Std. err. (0.102) (1.241) (1.329) (1.113)
VIF 4.23 4.62 5.75 5.38

Ap
Coefficient 0.18 *** 0.03 ** 0.006 –0.13 **

Std. err. (0.068) (0.011) (0.011) (0.019)
VIF 1.74 1.36 1.34 1.23

Dp
Coefficient 0.05 −0.003 −0.04 −0.40

Std. err. (0.117) (0.225) (0.225) (0.244)
VIF 1.97 2.48 2.47 2.99

Ng
Coefficient 0.11 ** 0.02 0.006 0.02

Std. err. (0.059) (0.012) (0.122) (2.476)
VIF 2.61 2.28 1.95 1.67

Ac
Coefficient −0.27 *** −19.80 *** −22.70 *** −34.13 ***

Std. err. (0.048) (2.830) (2.843) (10.248)
VIF 3.54 3.52 4.21 3.20

Notes: Robust standard errors in parentheses. * denotes significant at 10%, ** significant at 5%, and *** significant
at 1%.

Based on the OLS regression results, we found that the models under all four scales
passed the VIF test, and hence, we cannot reject the hypothesis that the selection of variables
is reasonable. Therefore, we continue with the GWRs across sample scales.

3.3. GWR Results

The GWR results show how the grain production of each sample county responds
to different factors. Therefore, the estimated coefficients of each sample county under
each scale are different. Table 5 shows the robust estimates of the GWR under different
scales. Compared with the regression results of the OLS model, the GWR model has a
more intuitive and powerful explanation of the factors affecting grain production. The
coefficient range of the GWR not only covers the coefficients of OLS regression but also
reflects the degree of regional differentiation. It has a stronger explanatory power on the
factors affecting grain production, with a smaller standard error and a lower AIC value
(the difference is greater than 3). All of the above shows that the fitting of the GWR model
is better compared with that of the OLS.
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Table 5. GWR regression results (dependent variable: grain output).

Scale (5)
R

(6)
S

(7)
M

(8)
L

Ld

Mean value / 0.61 0.12 0.88
Std. err. / (0.714) (4.121) (1.236)

Min / 2.874 0.081 0.084
Max / 0.061 3.492 8.172

Le

Mean value / / / 5.13
Std. err. / / / (5.187)

Min / / / −1.363
Max / / / 31.473

Ap

Mean value 0.14 0.02 / −0.03
Std. err. (0.078) (0.015) / (0.035)

Min −0.244 −0.04 / −0.121
Max 0.329 0.032 / 0.054

Ng

Mean value 0.08 / / /
Std. err. (0.107) / / /

Min −0.113 / / /
Max 0.343 / / /

Ac

Mean value −0.30 *** −16.80 *** −20.43 *** −30.68 ***
Std. err. (0.066) (2.566) (10.440) (11.325)

Min −0.441 −25.179 −133.435 −78.974
Max −0.222 −14.334 −11.925 −13.689

Notes: Robust standard errors in parentheses. * denotes significant at 10%, ** significant at 5%, and *** significant
at 1%.

3.4. Comparative Analysis of the Spatial Heterogeneity of Grain Production in Guangdong Province

The GWR results under all four scales can pass the test, and the explanatory variables
can reflect at least 51% of the reasons for changes in grain production (see the adjusted
R2 in Table 3). As the number of observations in the sample increases, there are more
statistically significant variables, but the overall explanatory power of the model becomes
weaker. Therefore, it is necessary to compare and analyze the coefficient distribution of
each explanatory variable under different scales.

Degree of land standardization. According to the distribution of the estimated effect
of the degree of land standardization on the total grain output (Figure 2a–c), it can be seen
that the degree of land standardization has a positive effect on the total grain output, and
the effect varies across regions. Within the sampling ranges of S, M, and L, the promotion
effect of land standardization on grain production is enhanced from east to west. The
estimated effect of the degree of land standardization expresses the spatial heterogeneity
in two aspects: One is that there are differences in output dividends brought about by
the improvement of farmland water conservancy facilities. The other aspect is that there
are spatial differences in the grain yield rate across land. This gap varies from region to
region. Take Guangdong as an example. The western region mainly relies on large-scale
production to increase the income per acre of grain crops, while the eastern region mainly
improves the income by optimizing the variety structure and increasing the added value of
food products. Therefore, the increase in grain production efficiency caused by farmland
standardization is more attractive to farmers in western Guangdong but less attractive to
farmers in eastern Guangdong. This evidence supports proposition 1.
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coefficient of the degree of land standardization under the L scale; (d) Estimated coefficient of the total area of arable land
under the L scale.

Total area of cultivated land. It can be seen from Figure 2d that the magnitude and
direction of the effect of the total cultivated area on the total grain output vary from
place to place. On the whole, in the sampling range of L, the total area of cultivated
land in most areas has a positive effect on grain production, and this positive effect has
gradually increased from the southern coastal areas to the inland areas. Since the total
area of arable land reflects the land’s food production potential, the increase in agricultural
land’s potential is an important means to ensure grain production for areas lacking water
resources. Therefore, the effect of the total area of arable land on grain production is
very elastic in inland areas where water resources are relatively lacking. However, in
Guangdong province, grain production is relatively insensitive to changes in the total
cultivated land area. The layout of cultivated land in the southern coastal areas may even
have a negative impact on food production. This special case seems to be contradictory to
proposition 1, but it is very consistent with the economic reality of the main grain sales area:
of the total agricultural output value of Guangdong province, industries with higher yields,
such as fishery and fruit industries, account for the majority. These industries have higher
demand for agricultural land, and therefore, these high-value-added sectors will absorb more
in the allocation of grain production capacity. Over time, an imitation effect will be formed
among farmers, and grain production may be crowded out of arable land, which leads to a
negative effect. This, in essence, is also consistent with the assumption of proposition 1: the
difference in the effect of land endowment on grain production is caused by the difference in
the agricultural production structure across different geographical locations.

Distribution of the estimated effect of the proportion of labor force on the total
grain output (see Figure 3a–c). Under the sampling scales of R and S, the impact of the
proportion of labor on the total grain output varies in magnitudes and signs. In most areas,
the regression coefficient is positive, which means that a decrease in the proportion of
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agricultural labor will result in a decrease in grain production. However, when we expand
the sampling range to L, it is found that a decrease in the proportion of agricultural labor
force in the sample counties is correlated with an increase in grain production. This is
seen in Guangxi, Jiangxi, Fujian, and central and southern Hunan. This may be due to the
“grainization” brought about by the increase in the price of agricultural labor across the
country; that is, farmers can use capitals to substitute labor or outsource it in the labor-
intensive production process. Therefore, the smaller the rural labor force surplus, the larger
the grain planting area and the more grain output. However, the effect of the decrease in
the proportion of labor on grain production is inelastic in the southern coastal areas and
central areas. The continuing decline in agricultural labor cannot bring about an increase
in grain production. This is potentially due to two reasons. First, the price of rural labor
in these regions, such as Guangdong, is relatively high, whereas the comparative income
of part-time farmers is low, and the phenomenon of decultivation is very prominent.
Second, the fragmented farmland conditions in these regions hinder the formation of
agricultural production service markets. Farmers cannot outsource some links in the
process of production. The heterogeneity of the proportion of labor to grain production
is consistent with proposition 2, which states that the increase in labor endowment has a
dual effect on the level of grain production, which depends on the local labor price and the
agricultural production service market.
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Area of facility agriculture. Figure 3d presents the distribution of the estimated
effect of the area of facility agriculture on the total grain output. The effect of the area of
facility agriculture on the total grain output varies in signs and magnitudes across regions.
In western Guangdong, the increase in the area of facility agriculture has a restraining
effect on food production; that is, agricultural investment leads to land nongrainization.
On the other hand, in eastern Guangdong, the opposite effect is observed. The increase
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in the area of facility agriculture promotes grain production. The main reason for this
heterogeneity is the difference in the return on capital of the industry. As mentioned
above, the western Guangdong area is a small area in the province with high-yield grain
production. The grain fields are relatively abundant, and the land is contiguous. The grain
production is dominated by ordinary rice with small income elasticity of demand, while
the agricultural production in the eastern Guangdong area includes mainly fine-grained,
small-scale agricultural operations, with a low degree of specialization. Grain production
is dominated by high-quality rice with strong income elasticity of demand. The yields of
grain commercialization in the two places are different, resulting in diametrically opposite
responses to economic development.

Level of agricultural informatization. Figure 4a–d shows the distribution of the
estimated effects of agricultural informatization on the total grain output. This indicator
has a negative impact on the total grain output in the main sales area in southern China, and
the magnitude varies across areas. Within the sampling ranges of R and S, the inhibitory
effect of agricultural informatization on grain production is increased from the central to
the east and west. When the sampling range is expanded to M and L, this inhibition is
weakened in the southern main sales area, but the sign is still negative. This shows that the
more developed the informatization in an area, the more pressure grain production is under
and the greater the probability that local farmers will produce nongrain crops. For example,
in Guangdong, the process of agricultural informatization has a less restraining effect on
grain production, especially in the Pearl River Delta region, indicating that the stimulus
effect of informatization in developed regions is weaker than that in less developed regions,
and it has a weaker crowding out effect on grain production. The effect of agricultural
informatization level on grain production is inconsistent among regions, which is related
to the differences in local capital rates of return. This evidence is in line with proposition 3.
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Figure 4. Effect of agricultural technology endowment on grain output; (a) Estimated coefficient of the level of agricultural
informatization under the R scale; (b) Estimated coefficient of the level of agricultural informatization under the S scale; (c)
Estimated coefficient of the level of agricultural informatization under the M scale; (d) Estimated coefficient of the level of
agricultural informatization under the L scale.



Land 2021, 10, 206 13 of 17

4. Discussion

In light of the above analysis, it is evident that the spatial heterogeneity in the effect
of land, labor, and technology in the main grain sales areas of southern China on grain
production is significant, and hence, the policies for stabilizing grain production in various
regions should also vary under specific circumstances.

(1) Policies that improve land infrastructure are applicable in more than half of
the counties. The elasticity in the coefficient of the degree of land standardization shows
the change in the level of grain production when the sample counties’ land endowment
increases. It can be seen that when the quantity or quality of cultivated land increases,
more than half of the sample counties experience an increase in grain output, with the most
obvious effect in western Guangdong. This result is consistent with the conclusions in the
existing literature that the increase in arable land areas [46–49], the improvement in the
quality of arable land [50], and the increase in arable land per capita [51] will improve the
grain production level. This shows that the problems of land fragmentation, slow circulation,
and land abandonment have always been an unavoidable setback in grain production in the
low hilly areas in the south. It is most beneficial to facilitate policies such as high-standard
basic farmland, large-scale planting bonuses, and land transfer market construction in
these areas. However, these areas generally have a lower level of economic development.
Take Guangdong province as an example. The land promotion policies are not conducive
to increasing grain production in the Pearl River Delta region, sometimes even having
a counterproductive effect in western and eastern Guangdong, leading to a reduction in
production level. There should be appropriate adjustments in policies in these areas.

(2) Labor promotion policies are applicable to most counties. The results show that
the continuous decrease in the proportion of agricultural labor force is detrimental to the
level of food production in most areas, and the impact is relatively evenly distributed
geographically, indicating that the southern main sales area is facing a major issue of
“who will farm the land.” The existing literature has contradictory empirical results on
the effect of labor endowment on grain production. Some studies show that the labor
movement in the rural areas raises productivity and grain output because the loss of
agricultural labor will motivate the production process to shift from labor intensive to
capital intensive. This structural transformation also manifests itself in the adjustment in
plantation structure [52,53]. There are also studies that test the complementary relationship
between nonagricultural employment and grain output [31,54,55]. However, the effect of
rural labor outflow on grain output exhibits significant spatial heterogeneity. Wang (2013)
argues that the outflow of rural labor has no significant impact in the major sales area but
has a positive effect in the major production area [56]. Cheng (2015), however, indicates the
opposite [57]. Moreover, the substitutability of labor in grain production also affects grain
production [58,59]. The empirical evidence of this paper indicates that the substitutability
from labor to capital or machines is low in the sampling regions and, therefore, imposing a
negative effect on the grain output.

(3) The facility upgrading policy is applicable to the more developed areas along
the southern coast. The elasticity of the effect of the area of facility agriculture depicts
the changes in the level of grain production when the comparative benefits of planting
grain crops in the sample counties decrease. Compared with economically developed
regions, the improvement of the level of facilities in the economically underdeveloped
regions will introduce the issue of nongrainization. This is less of an issue in regions
with faster economic development. The potential mechanism could be the costs of facility
upgrading. Nevertheless, most studies argue that the application of high-quality facilities
and automation could improve the grain output [60,61]. However, if the costs of facilities
are taken into consideration, the facility upgrading would be inapplicable in less developed
regions and, in turn, reduce the grain production or hinder these areas from transforming
into growing high-value-added crops. This is consistent with the conclusion of Yang et al.
(2018) [62].
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(4) The improvement of agricultural informatization has brought a negative impact
on the stability of food production. The elasticity of the effect of the level of agricultural
informatization shows that while the informatization level of the sample counties continues
to improve, it has a negative impact on the grain production in all counties, especially
in the western region. The coastal areas experience a relatively smaller effect, while
the inland areas experience a relatively larger effect. This can be explained by the fact
that the implementation of agricultural informatization requires the basic support of
local informatization. The implementation of digital agriculture in underdeveloped areas
(currently, many agricultural projects use this as a gimmick) can easily lead to reduced
food production and dampen local agricultural output. Therefore, the promotion of
agricultural informatization in the southern main sales area needs to cooperate with other
food stabilization policies to ensure the stability of food production.

5. Conclusions

This study discussed the regional differences in the factors affecting the level of grain
production in the main sales area, as well as the magnitude and patterns of these differences.
Through analyzing the regression results of the GWR model under different sampling
ranges, it is found that, first, in the main grain sales area, the impact of agricultural land
endowment on county grain production levels is uncertain. The empirical results of the
major sales areas in the south indicate that the effect of the degree of land standardization
on grain production shows a pattern of “high in the west and low in the east.” The effect
of the total area of arable land on grain output is not sensitive. There is even a negative
feedback phenomenon in the southern coastal areas. This is related to the difference
in the structure of agricultural production in different locations. Second, the impact of
agricultural labor endowment on the level of food production has regional differences.
Under a large sample, the level of grain production in the main sales districts and counties
of the south is not sensitive to changes in the proportion of agricultural labor, which is
related to the excessively high labor price and the lagging of the agricultural production
service market. Finally, the magnitudes and signs in the effect of technological progress
on the level of food production show regional heterogeneity. The impact of agricultural
informatization on the total grain output shows a pattern of “high in the east and low in
the west.” Take Guangdong province as an example. The negative impact of the level of
agricultural informatization on the total grain output has weakened from the Pearl River
Delta to the surrounding areas. This is potentially related to the regional differences in the
return to capital.

However, there are still caveats in this study. Due to the limitation of data, there are
many explanatory variables that are not related to grains specifically. This is because the
data on factors for grain production are not collected from the national statistical yearbook.
Therefore, the data on land, labor, and technology endowment are for agricultural pro-
duction in general. This may cause biased results and requires careful interpretation. The
future work on this topic will benefit from more precise data.
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