
land

Article

Mediterranean Landscape Re-Greening at the Expense of South
American Agricultural Expansion

Jaime Martínez-Valderrama 1,*, María E. Sanjuán 2, Gabriel del Barrio 2 , Emilio Guirado 1 , Alberto Ruiz 2 and
Fernando T. Maestre 1,3

����������
�������

Citation: Martínez-Valderrama, J.;

Sanjuán, M.E.; del Barrio, G.; Guirado,

E.; Ruiz, A.; Maestre, F.T.

Mediterranean Landscape

Re-Greening at the Expense of South

American Agricultural Expansion.

Land 2021, 10, 204. https://doi.org/

10.3390/land10020204

Academic Editor: Marta Debolini

Received: 8 January 2021

Accepted: 13 February 2021

Published: 17 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef”, Universidad de Alicante,
Carretera de San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Spain; emilio.guirado@ua.es (E.G.);
ft.maestre@ua.es (F.T.M.)

2 Estación Experimental de Zonas Áridas, CSIC, Ctra. Sacramento s/n, La Cañada, 04120 Almería, Spain;
marieta@eeza.csic.es (M.E.S.); gabriel@eeza.csic.es (G.d.B.); aruiz@eeza.csic.es (A.R.)

3 Departamento de Ecología, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n,
03690 San Vicente del Raspeig, Spain

* Correspondence: jaime.mv@ua.es

Abstract: The stabling of livestock farming implies changes in both local ecosystems (regeneration of
forest stands via reduced grazing) and those located thousands of kilometers away (deforestation
to produce grain for feeding livestock). Despite their importance, these externalities are poorly
known. Here we evaluated how the intensification and confinement of livestock in Spain has affected
forest surface changes there and in South America, the largest provider of soybeans for animal
feed to the European Union. For this purpose, we have used Spanish soybean import data from
Brazil, Paraguay and Argentina and a land condition map of Spain. The area of secondary forest
in Spain that has regenerated as a result of livestock stabling has been ~7000 kha for the decade
2000–2010. In the same period, 1220 kha of high value South American ecosystems (e.g., Chaco dry
Forest, Amazonian rainforest or Cerrado) have been deforested. While these figures may offer a
favorable interpretation of the current industrial livestock production, it is not possible to speak of
compensation when comparing the destruction of well-structured ecosystems, such as primary South
American forests, with the creation of secondary forest landscapes in Spain, which are also prone to
wildfires. Our results highlight how evaluating land use change policies at a national or regional
level is an incomplete exercise in our highly telecoupled and globalized world.

Keywords: livestock; feeds; deforestation; re-greening; soybean; telecoupling

1. Introduction

Globalization, defined as “the increased connectivity and interdependence among
people worldwide and the intensified consciousness of the world as a whole” [1] largely
defines how we live and use land today. The drivers of this phenomenon, which include
trade, transport, technology and consumption, are not new but their scale and speed
certainly are [2]. In the agricultural sphere this means that nearly one third of arable
land use is embedded in international trade [3]. The distancing from production and
consumption centers is evidenced by the consumption-based land use inventory [4], i.e.,
the proportion of domestic land used within the territory of a country compared to land
used outside a country’s territory. The World average share is 73–27% but in some island
countries the balance shifts to a stunning 8–92%, as in the case of Japan, or a 20–80% for
the UK. In Europe the foreign land is, on average, above 50%, with 13–87% in Germany,
33–67% in France and 37–63% in Spain [4].

One of the most important consequences of the globalization of the primary sector is
that a country’s consumption patterns can deeply alter production ecosystems at distant
locations, within and across sectors [5]. This is especially noticeable in countries that
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are committed to implementing sustainable agricultural production but do not apply the
same standards to agricultural products coming from abroad [6]. The livestock industry,
which revolves around the use of compound feed, is a good example of global telecoupling,
i.e. global supply chains involving large geographical distances and creating environmental
pressures (including deforestation and other types of land conversions) remote from the
places where the consumption of goods and services take place [4]. Driven by the global
increase in the demand of meat [7], extensive livestock grazing is being replaced by
increasingly intensive systems worldwide, where animals become stabled and detached
from the land [3,8]. This change transfers some of the environmental impacts of this activity
to the countries producing the raw materials used in animal feeds [9,10]. The cornerstone
of this change relies in the production of feed. Nearly two thirds of cereal production
in the European Union are used for animal feed [11], and globally the figure is 36% [12].
Additionally, around three-quarters of soy worldwide is used for animal feed [13,14].
This dependence is expected to increase; by 2050 annual cereal and soybean production
are forecasted to increase by 940 Mt (+46%) and 390 Mt (+80%), respectively [7]. In this
way livestock remains the world’s largest user of land, but its use has shifted steadily from
grazing to the consumption of feed crops [15].

Soybean trade exemplifies the environmental and socio-economic impact of global
markets and agricultural policies [9]. It represents an essential change in the destiny
of food that, instead of being diverted directly for human consumption, is used to feed
livestock [16,17]. This ‘diet gap’, i.e. human-edible crop calories that do not end up in
the food system [18], ‘represents a net drain on the world’s potential food supply’ [19].
Soy imports into the European Union to feed its livestock from South America [9,20]
(27.7 Mt in 2012 [14]) entail the expansion of soybean cultivation, promoting a cascade
of effects there. On the one hand, soybean fields occupy former rangelands, forcing
the displacement of livestock and the clearing of new areas for animals to graze [21],
many of them previously occupied by valuable primary forests [22,23]. The result is the
destruction of natural ecosystems of great ecological value such as the Gran Chaco in
Argentina and Paraguay [24–26], or the Amazon rainforest in Brazil [9,14]. Deforestation
has been estimated at 97 m2·t soy-1·year-1 [23]. On the other hand, it favors the imposition
of monocultures cropped following intensive agricultural practices, which have serious
environmental [27], and social [28] consequences.

Within the EU, the case of livestock intensification in Spain is particularly relevant
when exploring the externalities and land impacts associated to livestock farming. In Spain,
livestock breeding has been continuously growing since 1900 [29]. Over the last decades,
and coinciding with the rural exodus to the cities of the 1960’s [29–31], extensive livestock
farming has practically disappeared as a result of the progressive confinement of live-
stock farming, which has made Spain the leading European producer of animal feed [32]
(Figure 1A). There have also been changes in the composition of the livestock during this
period (Figure 1B). The mixed use of breeds, which were used for work, produced manure
that served to fertilize the pastures on which they fed (a boast of the circular economy
that we pursue today) and produced different types of high-protein food, have gradually
become marginal [33,34]. Likewise, the number of monogastric animals has increased sig-
nificantly. According to official statistics [35], the Ruminants-Monogastric ratio (measured
in Livestock Standard Units, LSU) has changed in Spain from 52–48 in 1984 to 29–71 in
2018. Particularly noteworthy is the growth of pig farming, which with 4641 thousand tons
in 2019 represents 64.7% of the country’s meat production (Figure 1C).

The change in livestock production to more efficient monogastric animals that has
taken place in Spain has been accompanied by the rise in landless production systems.
In 2013 at least 3.8 × 106 LSU live in landless farms and another 1.4 × 106 LSU live in
farms with less than 5 ha; only one third (4.7 × 106) of the livestock (14.5 × 106 LSU) live
in farms with more than 50 ha [36]. The trend is well reflected by the evolution of the
economic size of farms, as measured by the standard economic output [37]. As can be seen
in Figure 1D, the number of farms has decreased over time for all categories except the



Land 2021, 10, 204 3 of 15

largest (over 100,000 euro; red line). These macro farms account for almost 80% (11.4 × 106

LSU in 2013) of all the livestock in Spain.

Figure 1. Evolution of: (A) Industrial production of compound feed in major EU producers (2010–2019) [32]; (B) Livestock
by species in Spain (1984–2019) [35]; (C) Meat production in Spain by species (1986–2019) [35]; (D) Number of holdings
with livestock by economic size of farm (2005–2013) [36]. Data used to create this figure are available in ref. [38].

The process of industrialization of the Spanish agriculture is also characterized by
changes in consumption habits that has led to the partial abandoning of the Mediterranean
diet in favor of diets richer in animal products [39,40]. According to the Soto and col-
leagues [29], who analyzed the main flows of biomass in Spain for the period 1900–2008,
primary productivity has increased by 28% while Domestic Extraction (DE) has done so
by 38%. They also show that the DE of primary crops has grown by 236% in detriment of
the DE of pastures (46% decrease) and forests (17% decrease). About 40 Mt, 56% of the
DE, is used for feed, and yet it is not enough to cover the needs of the entire livestock
population. As a result, Spain has become a net importer of biomass, going from 773 kt in
1900 to 31,929 kt in 2008, with 42% going to animal feed [29]. Thus, in recent decades Spain
has also followed the so called ’livestock revolution’ [12,41], i.e. the shift from plant-based
diets to more intensive demand for animal products. The extensive livestock sector has
practically disappeared in favor of an agro-industrial production model dependent on the
import of raw materials for the manufacture of animal feed. In fact, Spain has become the
main producer of animal feed in the euro area.

As widely reported [9,14,42,43], there is a direct connection between the use of one of
the main animal feed materials, soya, and the deforestation of valuable ecosystems. On the
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other hand, the reduction in livestock numbers has allowed vegetation to recover in large
areas of Spain. Here we compared naturally regenerated areas in Spain during 2000–2010
and those that have been deforested in South America as a result of the use of animal feed
in the livestock sector [44,45]. We focused on this period because it coincides with the
most updated results of the land condition product used by Spain for official reporting
to the UN Convention to Combat Desertification [UNCCD, [46]. Our aim is to highlight
the transboundary effects of national livestock policies and to illustrate how the success of
environmental policies should not be judged merely on domestic achievements, but rather
should also consider the environmental impacts it generates in other countries.

2. Materials and Methods

The growth of the livestock and its confinement has given rise to two phenomena
that run in parallel. On the one hand, the landscape that has stopped being grazed has
been recovering in terms of biomass, a dynamic that has been observed in all European
Mediterranean countries [30,31,47,48]. On the other hand, the raw materials from which
the feed is made require large areas of cultivation. As we have pointed out already, soy has
become the key piece of this productive model in Europe [9,14]. To evaluate the effects of
the prevailing intensive livestock model, we compared these two phenomena in terms of
the area deforested and regenerated.

2.1. Land Condition Trends Map

We obtained the land condition trends over time for this study from the 2dRUE results
for the period 2000–2010 [46,49]. Although this restricts the scope of our study, it is the
most reliable source of information we have for our purpose. This is the official tool used
by Spanish National Action Plan against Desertification to report to the UNCCD about
the progress in the fight against desertification [50]. Its update for the 2010–2020 decade is
still in progress. 2dRUE is a geomatic approach for the assessment and monitoring of land
condition focused to detect land degradation within a full range of ecological maturity [51].
It uses archived time-series of a suitable vegetation index and corresponding climate
fields and works at spatial and temporal resolutions of 1 km and 1 month respectively.
Land condition states are determined synchronically for the period and whole study area,
through implementation of Rain Use Efficiency (i.e. the ratio of Net Primary Productivity
to precipitation) at two temporal scales and detecting the position of every location relative
to the boundary potentials for its aridity level. In the referred application, land condition
states were validated against Soil Organic Carbon. Land condition trends are determined
diachronically for each location, by multiple stepwise regressions of the vegetation index
(as a proxy to biomass) against time and aridity. Such regressions use annual averages and
their validation is statistical. Similarly to other methods (e.g. RESTREND [52]) framed
within Sustainable Development Goal 15.3 to achieve Land Degradation Neutrality (LDN)
by 2030 [53], 2dRUE considers two main sources of variation at determining vegetation
trends: inter-annual oscillations of aridity, and human action, the latter using time as
surrogate [54]. Multiple stepwise regression enables finding the specific importance of each
predictor if, like in the case of time and aridity, both of them are correlated. Accordingly,
2dRUE only enables any of these two predictors to be included as a second variable in
the regression model if it produces a significant increment of determination. The 2dRUE
approach is fully described in del Barrio et al. [51] and has been coded as a free open-source
library of functions in R [55].

The intermediate results of the trend analyses consist of respective maps of biomass
response over time and biomass response over aridity. The contents of those maps are
significant standard regression coefficients. The simplified end-user legend focuses on
biomass trends associated to human activities. It consists of four classes: Increasing
(biomass accumulation over time whatever the response to aridity variations) (166,075 km2),
Degrading (biomass depletion over time whatever the response to aridity variations) (5911
km2), Fluctuating (no net biomass change over time, but significant response to aridity
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variations) (141,331 km2) and Static (no response to time neither to changing aridity)
(192,175 km2). Whilst Degrading trends involve usually active degradation, it should be
noted that Increasing trends may be associated with either ongoing ecological secondary
succession (e.g. after abandonment) or with certain types of management (e.g. agricultural
intensification).

We targeted the two classes reporting change over time (i.e. Degrading and Increasing)
for this study. In addition, we restricted the analysis to potential grazing areas (Table 1), i.e.
those where the animals were fed on site with the fodder resources [56] according to the
CORINE Land Cover (2006) dataset [57]. The native resolution of 250 m of this dataset was
rescaled to 1000 m to match that of 2dRUE by finding the statistical distribution of land
cover classes within each target 1000 grid cell, and allocating the modal class to it.

Table 1. Potential CORINE land cover classes [57] suitable for livestock grazing used in this study.

CORINE Land Class Name Description

2.3.1 Pasture

Permanent grassland characterized by agricultural use or strong human
disturbance. Floral composition dominated by graminacea and influenced by
human activity. Typically used for grazing-pastures, or mechanical harvesting

of grass–meadows.

2.4.4 Agro-forestry areas Annual crops or grazing land under the wooded cover of forestry species.

3.1.1 Broad-leaved forest Vegetation formation composed principally of trees, including shrub and bush
understorey, where broad-leaved species predominate.

3.1.3 Mixed forest Vegetation formation composed principally of trees, including shrub and bush
understorey, where neither broad-leaved nor coniferous species predominate.

3.2.1 Natural grassland
Grasslands under no or moderate human influence. Low productivity

grasslands. Often situated in areas of rough, uneven ground, steep slopes;
frequently including rocky areas or patches of other (semi-)natural vegetation.

3.2.3 Sclerophyllous
vegetation

Bushy sclerophyllous vegetation in a climax stage of development, including
maquis, matorral and garrigue.

3.2.4 Transitional
woodland/shrub

Transitional bushy and herbaceous vegetation with occasional scattered trees.
Can represent woodland degradation, forest regeneration / recolonization or

natural succession.

2.2. Soy Imports and Land Use Overseas

This estimation can be done by different procedures and using several databases.
Therefore, the assumptions we have used in our study are as follows (the data used and
the calculations made can be found in ref. [38]):

(1) We focus on the study of soy because: (a) soy production is directly linked to the
deforestation of South American ecosystems, as mentioned above; (b) the soybean
area cultivated in Spain is only 1480 ha [58] and is therefore totally dependent on
imports; (c) the main use of soybeans in Spain is to manufacture animal feed.

(2) Although land use transformations are occurring worldwide, our analyses are re-
stricted to South America because in this region natural ecosystems are being trans-
formed into farmland to produce soy [14,45,59], while the soybeans from the United
States come from a historically agrarian landscape [60].

(3) Our assessment focuses on Brazil, Paraguay and Argentina as they represent more
than 99% of Spain’s soy imports from South America [61].

(4) European Compound Feed Manufacturers’ Federation (FEFAC) advises members
on which sustainability rules to follow when producing or buying feed. However,
just 22% of soya used in Europe was compliant with FEFAC’s guidelines. Only 13%
was certified as deforestation-free. In the case of Spain this percentage is zero [62].

(5) Soybean import data by NUTS2 for the decade 2000–2010 [61] are used, which are
then aggregated to the national level. Another possibility would have been to use
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feed production data by species, available in national [63] and European [32] statistics.
However, and given that our analyses refer to soybean, it would have been necessary
to know the percentage of soybean in these feeds, which is not the same for each year
or for each species, since the use of this raw material in the manufacture of feeds
depends on the protein needs of each species and the price of this raw material.

(6) Spanish soybean imports have been converted into soy field area (ha) by dividing the
volume imported from each country (t) by the yield in that country (t ha−1) in each of
the years of the study period [64].

(7) We are assuming that the soybeans imported during this period come from areas that
have been deforested or from rangelands [9,14,21–26]. In the latter case, the displaced
cattle have forced the creation of new rangelands by occupying forest land. Therefore,
in both cases soybean cultivation has implied deforestation.

(8) We assume that soybeans can be grown on the same site for more than ten years.
Therefore, the deforested area is not the sum of the cultivated area in each of the
eleven years of the series (2000–2010), but the maximum of that series.

(9) We have used information from [9,14,24,26] to situate the ecosystems affected by
soybean cultivation.

3. Results and Discussion
3.1. Re-Greening and Deforestation

Net biomass accumulation over 2000–2010 is found in mountain ranges throughout
Spain and in hilly areas of the northwest of the country (Figure 2) [49]. It is often associated
with forests and scrublands and rare in agricultural mosaics. Areas showing this trend can
be considered as transitional from former extensive grazing to current land abandonment,
therefore these are the primary targets of this study. In contrast, biomass depletion trends
occur in small clusters that are always associated with limited lifespans of intensive agri-
culture or, to a lesser extent, afforestations of exotic broadleaved species. Figure 3A shows
the balance of Increasing and Degrading trends for each of the CORINE land cover classes
considered in this study. As can be seen in this figure, in all categories the surface area
that has re-greened is much larger than the areas where biomass has been lost. Overall,
the total area in which biomass has accumulated is 7078 kha, compared to the 130 kha of
’Decreasing’ land condition trend.

The soybean supply for the compound feed industry in Spain for the period 2000–
2010, which amounts to 31,888 kt, comes mainly from South America (68%; leading Brazil
with 59.7%) and the United States (29.5%) [61]. The share coming from other South
American countries such as Argentina (2.6%) and Paraguay (4.6%) are also significant
(Figure 3B); it is worth noting that another 1.8% comes to Spain through third countries
of the European Union. The area required to produce all this soybean during the period
2000–2010 can be seen in Figure 3B. As noted above, the estimate of the area of forest and
other ecosystems that had to be destroyed for this purpose is not derived from the sum of
each year, since soybeans can be grown on the same site for several years. To find out how
much area has been used, we have taken the maximum value of the series for each country.
These values are 884.32 kha (2005), 164.17 kha (2002) and 140.25 kha (2010), for Brazil,
Argentina and Paraguay respectively, for a total of 1188.74 kha.

Intensive livestock farming is not the only feed consumer, although it is the majority.
It is important to point out the importance of feed use in extensive livestock farming to
supplement their needs in times of fodder shortages. This is one of the main drought-
enduring strategies in Spain, once the movement of livestock in search of grazing areas
has become a testimonial activity. As we have been able to verify recently [65] the use of
supplementary feeding seems to protect these extensive farms against climatic variability
and drought, at the cost of transferring degradation to other ecosystems. Although we
were unable to track the precise origin of each ton of soybeans, we do know that these
fields have directly or indirectly (as livestock is displaced from rangelands to forests or
marginal lands) deforested the natural ecosystems of these countries [14,66,67]. We can
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assume, with a good deal of certainty [9], that the 915 kha cultivated in Brazil correspond
to the destruction of 430 kha of Cerrado, 275 kha of Atlantic forest, 100 kha of Amazon
rainforest, and 110 kha of Pampean ecosystems, considering the distribution proposed
by several studies [21,68,69]. In Paraguay and Argentina, the deforestation to grow soy is
concentrated in the Pampa region and the Gran Chaco dry forest [14,24,26].

Figure 2. Biomass accumulation (‘Increasing’, green) or depletion (‘Degrading’, red) trends over time in mainland and
Balearic Spain for the period 2000–2010. In gray the territory that does not show any significant temporal trend during the
study period. Derived from Sanjuán et al. (2014) [49].
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Figure 3. (A) ‘Increasing’ (green) and ‘Degrading’ (red) land condition area in Spain for the period 2000–2010 for different
CORINE land cover classes [57]; (B) Evolution of the estimated area of soybean fields by country of importation and total
imports by country (2000–2010). All of the data used in this paper are available in ref. [38].

3.2. The Dark Side of Efficiency and Land Degradation Neutrality Paradigm

The increase of industrial livestock production is justified by its greater efficiency
compared to the traditional livestock model based on extensive grazing. The ability to
raise a large number of animals in a relatively small space enables larger operations that
benefit from technical advances and economies of scale [70], improving productivity and
resource use efficiency per livestock unit [8]. The booming production of monogastric
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animals, such as chickens and pigs, is facilitated by the fact that these species metabolize
concentrated feed more efficiently than cattle (or sheep) [59] and by their short life cycles,
which accelerate genetic improvements [15]. In Spain, carcass weights increased by about
99% for chicken and 92% for beef cattle from the early 1960s to 2019, but surprisingly
decreased by about 2% for pigs [64]. Likewise, increases in milk production per animal
and egg production per chicken have increased by up to 352% and 130% respectively over
the same time period [64]. Conversion rates of feed to meat are another indicator showing
the high efficiency of the intensive production system. The United States Department
of Agriculture [71] reported that it takes up to 2.6 kg of feed to produce 1 kg of chicken
meat, 6.5 kg of feed to produce 1 kg of pig meat and 7 kg of feed to produce 1 kg of
beef. The conversion rates for Spain are, respectively, 1.8 [72], 3–3.2 [73] and 4.3–4.5 [74],
considerably more efficient.

The current specialized livestock breeds oriented to produce meat and milk depend
on high-quality processed feed, require a lot of care (controlled environments, medication)
and only convert 10–30% of their feed intake into edible products [75,76]. An alternative set
of conversion indicators can be used to show aspects that do not take conventional ratios
into account. For example, if not including material that is not normally eaten, such as
bone, then producing 1 kg of edible meat in the U.S. by industrial methods requires 20,
7.3 and 4.5 kg of feed for beef, pig and chicken, respectively [77]. The balance is also not
very favorable if calorie and protein conversion rates are used: For every 100 calories of
grain fed to animals, we get only about 40 new calories of milk, 22 calories of eggs, 12 of
chicken, 10 of pork, or 3 of beef. Similarly, for every 100 grams of grain protein that we feed
to animals, we get only about 43 new grams of protein in milk, 35 in eggs, 40 in chicken,
10 in pork, or 5 in beef [12].

It might be tempting to extrapolate the discourse of efficiency to compare the areas
regenerated by the abandonment of livestock with deforestation resulting from the produc-
tion of compound feed. Our data [38] show 7077.8 kha for the former, and 1188.7 kha for
the latter within 2000–2010. A shallow conclusion would be that land regeneration in Spain
largely offsets land degradation overseas. Moreover, it could be also argued that lands in
tropical regions are more productive than Mediterranean rangelands, and that the excess
degradation shown by these figures accounts in reality for the increase in meat consump-
tion. However, this would be fallacious and against the founding principles of the LDN
paradigm promoted by the UNCCD [78,79] and of the UN Sustainable Development Goal
15.3 [80]. First, because by shifting land degradation to another country, any neutralization
must be considered at a higher aggregation level. This goes against any equity principle.
Second, when comparing reforestation/deforestation balances at the global level [81] the
compensation mechanism foreseen by LDN runs the risk of being misinterpreted as a
license to degrade, even though the UN explicitly denies this possibility [79]. The scientific
conceptual framework for LDN explicitly advises to ‘ensure at the national level a neutral
balance between degraded and not degraded land’ [82] and to implement it within unique
land types [83]. And third, in the case at hand, it is not possible to speak of compensation
when comparing the destruction of well-structured ecosystems, such as primary South
American forests, with the accumulation of biomass in anthropized landscapes that have
been abandoned in a disorderly manner. In addition, agricultural yields in tropical fields
that have been deforested are low compared to their temperate zone counterparts [19].

Although at first glance the technification of livestock farming can be considered as
a new achievement of human domination of Earth’s ecosystems [84], the fact is that it is
a highly inefficient production model. Estimates by the UN Environmental Programme
show that a kg of cereals provides six times as many calories if eaten directly by people
than if it is used to feed livestock [76], i.e. 83% of those calories are invested in main-
taining the metabolism of the confined animals. Native breeds that have been perfectly
adapted for centuries or millennia to producing food in harsh environments and exploiting
resources that cannot be used otherwise (e.g. harvest residues) have been lost. The ter-
ritory historically allocated to livestock was rangelands, lands discarded for cultivation
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where herbivores were able to use to transform grass/shrubs and agricultural residues
into high-quality protein. The productivity of the agroindustrial model is based on using
artificial inputs (chemical fertilizers use has increased in Spain from 0.5 to 51.2 kg/ha of N
and from 1.2 to 21.8 kg/ha of P2O5 between 1900 and 2008 [29]) and generating negative
externalities that are not usually included in the calculation of livestock efficiency.

3.3. Creating More Vulnerable Landscapes: Wildfires and Monocultures

The lack of grazing and maintenance of natural vegetation cover has led in many
Mediterranean countries to a process of secondary succession, in which the slopes are
initially colonized by shrubs and later by forests [85–87]. This has created enormous exten-
sions of homogeneous ligneous vegetation masses with increased fuel loads and without
discontinuities [88], giving rise to fire-prone landscapes [89]. As a result of this risk, the Na-
tional Action Program against Desertification considers abandoned lands as one of the five
scenarios of desertification in Spain [50,90]. This is a peculiar scenario, since desertification
is usually related to the overexploitation of resources. However, the abandonment of
croplands and grazing lands in ecosystems adapted to human intervention are behind
erosion problems and the increased risk of wildfires. Although low intensity and low
frequency fires have always occurred naturally and play a regulatory role in Mediter-
ranean ecosystems (against phytotoxic agents, promoting seed germination, etc.) [91],
when their virulence and recurrence increase (median fire return has been reduced from
~30 to ~10 years in some areas [92]) they cause serious damage by exposing the soil to
heavy rainfall, preventing seeders from replenishing seed banks [93], depleting resprouters
bud banks [94], and/or favoring invasive species [95].

The speed and intensity of the regeneration of natural vegetation in Spain over the
last decades because of land abandonment has triggered the incidence of forest fires [87,96].
Although for the period 2010–2020 the average area affected by forest fires decreased
by 27% compared to the previous decade [97], the proportion of megafires (a burned
surface area greater than 500 ha of forest) is growing year by year [97,98]. Global warming,
which is being particularly acute in the Mediterranean Basin [99,100], announces that this
is a problem that will increase and that we must expect higher fire risk, longer fire seasons
and more frequent large, severe fires [101–103]. Although megafires only represent 0.18%
of the total number of fires, they account for 40% of the area burned [97]. This type of
wildfire is born from the abandonment of traditional rural activities that maintained a
landscape mosaic that provided sufficient fuel fragmentation [104,105]. The fire, finding no
obstacles in its path and spurred by drier conditions due to climate change [91,106], creates
enormous fronts that are very difficult to combat with the usual means of extinction. One of
the most promising solutions to combat megafires is, ironically, to bring back extensive
livestock to create a grazed fuelbreak network [86,87,105].

It is worth to mention that not all of the biomass accumulated has been in potentially
grazable land uses. Re-greening has also occurred in abandoned agricultural lands and in
forests that have increased their biomass. In total, this natural reforestation has occurred in
16,600 kha [49], and therefore the uses studied represent 42% of the total of this territory in
which the land condition has increased.

If in the Mediterranean one of the consequences of the current livestock model is the
creation of more flammable landscapes, soybean monocultures have taken over large areas
across South America. In fact, of the 24 Mha that were cultivated in South America between
2000 and 2010, the production of soybean fields occupies 20 Mha [14]. This agricultural
model has been driven by the international demand for soy. The result of replacing
natural ecosystems with annual monocultures is the production of an artificial ecosystem
requiring constant human intervention that mostly benefits a few large producers [107].
The increase in production costs forced by this type of agriculture can only be overcome
by large-scale production that lowers the cost per unit. Then, as price falls and costs
goes up (as in USA [27] or in the European Union [108]), small holders are excluded from
the agricultural market and their only option is to become employees or franchisees of
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large agricultural companies. This self-reinforcement mechanism, known as Agricultural
Treadmill, was already described in the 1950s [109] and the result is that agriculture is left
in fewer hands [27,110].

4. Conclusions

We have explored how the changes in the way livestock is farmed that have taken
place in Spain over the last decades have affected its land during the period 2000–2010.
On the one hand, we have estimated that 7078 kha have improved their condition after
the abandonment of grazed areas and the subsequent process of secondary succession.
On the other hand, we have estimated that 1188 kha of the Amazon rainforest, Gran Chaco
dry forest and other valuable ecosystems have disappeared to make room for soy fields
producing feed used by Spanish livestock. Although these figures are not negligible,
we must bear in mind that Spain only represents 2.23% of the total value of international
soybean imports, while China alone accounts for 57% [111].

Although in a first and simplistic interpretation it seems that the current agro-livestock
model can be considered as a net gain in biomass, the truth is that, far from reducing the
impact on the environment, there are global (destruction of primary forests) and local
(increase of megafires) repercussions that should not be hidden under this increase in forest
biomass. It must be emphasized that this type of compensation does not fall under the
LDN initiative, which explicitly warns that neutrality must be achieved at the country
level and within similar land cover types. Moreover, the increase in biomass or plant cover
per se cannot be considered as a success of environmental policies. Proof of this is that
the increase in megafires being observed is due in part to the accumulation of firewood
and the creation of homogeneous forest masses because of the abandonment of extensive
livestock grazing.

In this globalization era, integrated planning is needed more than ever, so that the
potential negative externalities of a new land use model can be foreseen and deactivated
(or at least minimized). Our results show that restricting ourselves to political borders
makes little sense when assessing the impacts of livestock farming on land, and that actions
to manage a territory must be cross-sectoral, since the success of one action can mean the
complete failure of others.
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