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Abstract: Carbon emission (CE) threatens global climate change severely, leading to the continuous
strengthening of the greenhouse effect. Land use changes can greatly affect the ecosystem carbon
budget and anthropogenic CE. Based on the land use grids, net ecosystem productivity (NEP), energy
consumption-related CE, this study employed various methods to investigate the impact of land
use change on carbon balance. The results showed 10.03% of total land use area has land use type
changed between 2000 and 2015. Built-up land occupied cropland was the main land use transfer
type. The period with the most intense land use changes was 2005–2010, which was constant with the
process of China’s urbanization. NEP presented an overall increasing trend excluding built-up land
and water areas. Temporally, CE showed an increasing trend in 2000–2015, especially in the industry
sector. Spatially, areas with the high energy-related CE were mainly distributed in the south, which
has a relatively high economic level. The land use intensity values of cities in Jiangsu all presented an
overall increasing trend, which is related to the economic development and local endowment. Cities
with higher land use intensity were usually accompanied with high CE, suppressing NEP growth.
From 2000 to 2015, soil carbon storage reduced by 0.15 × 108 t, vegetation carbon storage reduced by
0.04 × 108 t, and CE reached 17.42 × 108 t. Total CE caused by land use change reached 15.46 × 108 t.
The findings can make references for the low-carbon development from ecological land protection,
strengthen land management, and optimize urban planning.

Keywords: land use; carbon balance; land use intensity; net ecosystem productivity; land management

1. Introduction

To alleviate the enormous damage caused by CE to global climate change, more than
100 countries have proposed carbon neutrality goals. China has stated the dual carbon goal
of reaching a carbon peak by 2030 [1] and achieving carbon neutrality by 2060 [2]. Reducing
CE and achieving carbon neutrality are urgent for the development of most countries in
the world [3]. In the context of global climate change, land use is an important topic in
regional carbon cycling and sustainable science [4–6]. REDD + encourages countries in the
global South to reorganize their land use and forest governance to reduce CE, this is very
important for increasing carbon storage and CE reduction [7–9]. Land is a common carrier
of the “natural-social” system, and land use change has an important influence on both
the carbon budget of terrestrial ecosystems [10–12], and anthropogenic CE [13–17]. Land
use change can affect the carbon storage through land use pattern change and land cover
change, including soil carbon storage and vegetation carbon storage [18,19]. Vegetation,
soil carbon accumulation capacity, and carbon source/sink capacity of different land
use types are quite different [20]. In addition, there is a large difference in the carbon
source/sink capacity between different land use intensities of the same land use type,
such as a forest with a high surface biomass always has a higher carbon accumulation and
carbon sink capacity than a forest with low biomass [21]. Moreover, changes in land use
types and land use intensity can dramatically alter surface human activity intensity and
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anthropogenic CE [22,23]. For example, built-up land expansion may attract high-density
industrial activities and cause high-intensity energy consumption [24]. Anthropogenic CE
also widely exists in human activities on the surface of ecological land, such as agricultural
and pastoral activities that also consume energy [19,25].

Urban always expands by occupying ecological land. Vegetation carbon reduction
usually occurs through releasing carbon into the atmosphere by reducing vegetation
photosynthesis and carbon absorption [26]. The impervious surface in urban areas can
also block the amount absorbed by soil [27]. Sealed impervious ground can reduce the
respiration and exchange of soil carbon between the soil and the atmosphere [28]. Ecological
land, especially woodland, usually has higher biomass levels and higher carbon storage, the
deforestation has always been a key cause of carbon loss. Different from vegetation, how
soil carbon storage (SOC) changes caused by urban expansion has not been determined.
There is research indicating that SOC levels in urban land may be higher than others [29],
there are existing studies showing that impervious surfaces caused by urbanization can
lead to sharp SOC losses [30,31]. With the rapid urbanization process, the intensity of
human activities is often greater, and the land use change is the most intense [32,33], the
study on carbon balance change caused by land use change in high-speed urbanization
areas is more typical.

Terrestrial ecosystems not only can serve as carbon sinks, but also carbon sources, so
they can significantly affect atmospheric carbon cycle [34]. Net Ecosystem Productivity
(NEP) can usually be used to test whether the ecosystem exerts a carbon source effect or
a carbon sink effect [35]. A positive NEP value indicates that it acts as a carbon sink and
absorbs CE from the atmosphere, on the contrary, it plays a carbon source effect releasing
CE into the atmosphere. Existing studies showed that in the past two decades, the global
terrestrial ecosystem has played more of a role as a net sink [36,37]. Till now, there are
still great uncertainties for NEP simulations [38,39], the accuracy of NEP still needs to be
improved according to more and more field observations. For spatial anthropogenic CE,
some scholars have carried out spatial distribution simulations of anthropogenic CE from
built-up land using different data around the world, including population density, gross
domestic product (GDP) level [40], night light data [41–43], etc.; the accuracy of spatial
distribution has been improved. According to land use data and fields emissions survey
data, a more accurate-CE map was generated with a resolution of 1 km [44], compared
to the 10 km resolution of a global emission map from the Emissions Database for Global
Atmospheric Research (EDGAR) dataset; the accuracy has much been improved, but due
to data limitation, it cannot cover a long time series. The light data especially has been
widely applied to simulate the spatial distribution of CE [45,46].

China has been experiencing a rapid urbanization process. Considering the indus-
trial process and land use change, especially the rapid built-up land expansion and the
occupation of a large area of ecological land, the growth rate is rapidly accelerated [15].
Yangtze River Delta is one of the major economic zones in China, which is located in
the eastern coastal areas and is experiencing rapid urbanization. Domestic research on
CE has been concentrated in these regions [47–49]. Existing studies mainly focus on the
influence of land use change on carbon balance [50–52], and the perspective of urban
morphology [53–55]. While previous studies focused on the CE effect of single land use
type, carbon storage and CE effect are often discussed separately. It is urgent to study
and analyze the multi-angle changes in land and their impacts on carbon balance such
as carbon storage, carbon budget and anthropogenic CE. This study can discover which
types of land use transfer will cause significant carbon storage losses and CE changes,
which sectors and places have high-intensity energy CE, and how changes in land use
intensity affect carbon balance. It can enrich the literature related to land use and carbon
sources/sinks and provide reference for low-carbon land use. Jiangsu province, located
along the eastern coast, is one of the most economically developed regions in China, and
the core province in the Yangtze River Delta. In recent years, Jiangsu province has been
experiencing rapid urbanization, promoting economic development greatly. Along with
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the high economic growth, population increase and energy consumption enhancing, the
built-up land expansion and urban land use intensity have been increasing continually [56].
Dramatic land use changes will undoubtedly bring significant carbon balance. Thus, we
selected this province as our study area.

This study can enrich carbon balance examination research from both the “natural–
anthropogenic” aspects combining land use/land cover change, energy CE, NEP, land
use intensity. We will also put forward substantive suggestions on how to restrict energy
carbon output and optimize low-carbon land use. Details of this research include the
following: (1) the carbon storage change caused by land use change; (2) the changes in NEP
and CE; (3) land use intensity changes and its effect on carbon balance; (4) the temporal
changes of carbon balance.

2. Material and Methods
2.1. Study Area

Jiangsu province is located between latitudes 30◦45′–35◦2′ N and longitudes
116◦18′–121◦57′ E in the east of China (Figure 1). The topography is dominated by plains,
accounting for 70% of the total area. The province has a typical monsoon climate, abundant
precipitation, and excellent basic conditions for agriculture. These favorable natural condi-
tions lay the foundation for social and economic development. This province hosts more
than 80 million residents. The GDP of the province in 2020 ranked second in China, CNY
10.3 trillion, right behind Guangdong province. In recent years, rapid urbanization and
industrialization led to obvious land use change [57], significantly affecting the regional
carbon budget.
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Figure 1. Location of the study area. Digital elevation model (DEM) is a digital simulation of ground
by elevation data.

2.2. Data Sources

Data sources used in this study include energy consumption, night light data, land
use grids, vegetation and soil carbon densities of different land use types, net primary
productivity (NPP), climate data, DEM, and some economic data. (1) Energy consumption
was obtained from the “China Energy Statistics Yearbook” for 2000–2015 and “Jiangsu
Statistics Yearbook” for 2000–2015. (2) The DMSP/OLS night time stable light (NSL) data
for 2000–2013 was obtained from the data archive and distribution system of the National
Aeronautics and Space Administration (http://ladsweb.nascom.nasa.gov) (accessed on

http://ladsweb.nascom.nasa.gov


Land 2021, 10, 1310 4 of 18

17 March 2021). The NPP-VIIRS NSL data for 2014–2015 was obtained from the National
Centers for Environmental Information website (https://www.ngdc.noaa.gov/eog/viirs/
download_dnb_composites.html) (accessed on 17 March 2021). (3) The 30 × 30 m land
use grids with a time series of 2000, 2005, 2010, and 2015 were provided by the Data
Center for Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC)
(http://www.resdc.cn) (accessed on 17 March 2021), reclassified as six land use types,
as cropland, forest, grassland, water area, built-up land, and unused land, respectively.
(4) The vegetation and soil carbon densities of different land use types were referred to the
study of Chuai et al. (2011) [58]. (5) For the NEP simulation, the annual MODIS NPP data
from 2000 to 2015 used in this study were downloaded from the Numerical Terra-dynamic
Simulation Group (NTSG) at the University of Montana (http://www.ntsg.umt.edu/)
(accessed on 17 March 2021). Generally, the accuracy of the MODIS NPP products has been
validated as being consistent with the field-observed NPP [59]. Meteorological data from
2000 to 2015 were observed at more than 2000 meteorological stations in China and mean
annual precipitation and temperature values from each station were used. This data set was
provided by the Data Center for Resources and Environmental Sciences, Chinese Academy
of Sciences (RESDC) (http://www.resdc.cn) (accessed on 17 March 2021). The interpolation
method used ANUSPLIN software [60] to generate precipitation and temperature grid
maps to cover the whole area, and we extracted the Jiangsu grids from those across China.
(6) Social and economic data was obtained from the “China Energy Statistics Yearbook” for
2000–2015 and “Jiangsu Statistics Yearbook” for 2000–2015.

2.3. Methods
2.3.1. CE Calculation

Based on the energy consumption data, using the CE coefficients of various energy
sources determined by IPCC (2006), and referring to the study of Su et al. (2013) [46], nine
major energy sources were selected to calculate CE. The formula is as follows:

C = ∑
i=1

KiEi (1)

where, i represents the type of energy; Ki is the CE coefficient of energy i (104 tons of
carbon)/(104 t of standard coal); Ei represents the consumption of energy i, calculated as
standard coal (104 t). The CE coefficients and conversion coefficients of standard coal for
the nine energy sources are shown in Table 1.

Table 1. CE coefficients of various energy types.

Raw Coal Coke Crude Gasoline Kerosene Diesel Fuel Fuel Oil Natural Gas Electricity

Converted into
standard coal (t
standard coal/t)

0.7143 0.9714 1.4286 1.4714 1.4714 1.4571 1.4286 1.3300 0.3450

CE coefficient
(104 t carbon/104 t

standard coal)
0.7559 0.8550 0.5857 0.5538 0.5714 0.5921 0.6185 0.4483 0.2720

2.3.2. CE Spatialization

Before data processing, the monthly average data from January to December of
2014 and 2015 were synthesized into annual data through ENVI 5.1. NPP-VIIRS NSL
data processing includes noise removal and continuity correction with DMSP/OLS night
light data.

First, the DMSP/OLS night-time light data for 2013 was extracted as a dark back-
ground mask, and then the accidental noise in the NPP-VIIRS night-time light data of 2014
and 2015 was removed using this mask. Second, according to the study of Li (2018) [61],
the DN value of NPP-VIIRS night-time light data is exponentially associated with the DN

https://www.ngdc.noaa.gov/eog/viirs/download_dnb_composites.html
https://www.ngdc.noaa.gov/eog/viirs/download_dnb_composites.html
http://www.resdc.cn
http://www.ntsg.umt.edu/
http://www.resdc.cn
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value of DMSP/OLS NSL data, thus, we obtained the corrected NPP-VIIRS NSL data of
2014 and 2015. The formula is as follows:

Y = a ∗ Xb (2)

After further processing, Equation (1) can be transformed into the following:

X = e
ln Y−ln a

b (3)

where, Y represents the DN value of DMSP/OLS NSL data, X is the DN value of DMSP/OLS
NSL data, and a and b are coefficients.

Then, the DMSP/OLS NSL data and NPP-VIIRS night-time light data were
integrated together.

According to previous studies [45,46], the total night light index (TLI) correlated
strongly with CE. A quantitative analysis was performed on the total light index and CE,
and a linear model with no intercept was established (Figure 2). The formula is as follows:

As = 0.0111× B (4)

where, As is the energy CE and B is the total night light index.
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2.3.3. Carbon Storage Loss Caused by Land Use Change

Land use change is an important driving factor affecting the carbon storage of terres-
trial ecosystems. The carbon storage of terrestrial ecosystems mainly includes vegetation
carbon storage and soil carbon storage. Land use change alters soil or vegetation carbon
storage by changing vegetation types or land use patterns.

Cij = (Vi −Vj)× Aij (5)

where, Cij is the soil/vegetation carbon storage loss caused by the land use type i trans-
ferred to land use type j. Vi and Vj are soil/vegetation carbon densities of land use type i
and j. Aij is the area of land use type i transferred to land use type j.

2.3.4. NEP Simulation

NEP is an important indicator in terrestrial ecosystems. NEP can be regarded as the
net carbon exchange between natural ecosystems and the atmosphere without considering
disturbances [60], which can be obtained from NPP by subtracting soil heterotrophic
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respiration (Rh). Values greater than zero or less than zero indicate whether an ecosystem
plays a carbon sink or a carbon source effect [62,63]. The relevant formulas are as follows:

NEP = NPP− Rh (6)

where, NPP is the net primary productivity (gC.m−2.yr−1), NEP is the net ecosystem
productivity (gC.m−2.yr−1), and Rh is the soil heterotrophic respiration (gC.m−2.yr−1).

Rh = 0.4679× Rs + 114.42 (7)

where, Rh is the soil heterotrophic respiration (gC.m−2.yr−1) and Rs is the soil respiration
(gC.m−2.yr−1).

According to the improve model of soil respiration proposed by Yu et al. (2010) [23],
Rs can be obtained. The calculation formulas are as below:

Rsmonth = (0.588 + 0.118× SOC)× eln(1.83×e−0.006×T)×T÷10 × (P + 2.972)÷ (P + 5.657)× 30 (8)

Rsannual =
12

∑
i=1

Rsmonth (9)

where, T is the mean monthly air temperature (°C), P is the mean monthly precipitation
(cm), and SOC is the topsoil (0–20 cm) organic carbon storage density (kgC.m−2), and
Rsmonth and Rsannual are the monthly and annual soil respiration, respectively.

To analyze the changing trends of NEP between 2000 and 2015 from the grids level,
the slope analysis was used for analysis. The formula is as follows:

slope =
n×

n
∑

i=1
i× NEPi −

n
∑

i=1
i

n
∑

i=1
NEPi

n×
n
∑

i=1
i2 − (

n
∑

i=1
i)2

(10)

where slope is the NEP changing trend, n is the number of studied time intervals (years),
NEPi is the annual NEP for year i, and slope > 0 and slope < 0 represent increasing and
decreasing tendencies of NEP, respectively.

2.3.5. Land Use Intensity Calculation
Index Selection

Humans can meet their own needs for land supply capacity through altering land
use patterns and enhancing land use intensity, thus affecting the structure and function
of ecosystems. Numerous studies have shown that land use intensity is associated with
natural ecosystems closely [64]. Socioeconomic data can represent the situation of land use
intensity to some extents. According to relevant research of Chuai et al. (2019) [38], we
chose 8 indices to characterize land use intensity, presented in Table 2, of urban population
X1, the average night light index X2, GDP X3, agricultural output X4, shipment quantities X5,
investment in fixed assets X6, industrial output X7, and electricity consumption X8 (Table 2).

Table 2. Main indices of the land use intensity description.

Comprehensive Index Index Affected Direction Index Weight

Land use intensity

Urban population (X1) + 0.09
Average night light index (X2) + 0.16

GDP (X3) + 0.18
Agricultural output (X4) + 0.18
Shipment quantities (X5) + 0.06

Investment in fixed assets (X6) + 0.16
Industrial output (X7) + 0.12

Electricity consumption (X8) + 0.04
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Improved Entropy Method

The index weight can reflect the relative importance, which has an important influence
on the accuracy and reliability of the results. During the practice of applying comprehensive
evaluation methods, there are various evaluation methods. According to the different
weighting methods, there are subjective weighting evaluation methods and objective
weighting evaluation methods. This study employed the entropy method in the objective
weighting method and determined the weight through the principle of information entropy,
which can objectively and accurately evaluate the research object. In order to achieve the
comparison between different years and different cities, this study improved the entropy
method and added time variables to make the analysis results more reasonable. The
improved entropy method evaluation model is as follows:

(1) Index selection: assuming that there are r years, n cities, and m indicators, then xθij
is the j-th indicator value of province i in year θ.

(2) Data standardization: in order to eliminate the influence of the magnitude and
dimensional differences of various indicators on the calculation results, the indicators were
standardized to reduce random factors. In this study, the extreme value standardization
method was used to normalize the index data. The specific formula is as follows:

x′ij =
xij −min

i

{
xij
}

max
i

{
xij
}
−min

i

{
xij
} (i = 1, 2, . . . , m; j = 1, 2, . . . , n) (11)

In the new data obtained through this standardization, the maximum value of each
element is 1, the minimum value is 0, and the remaining values are between 0 and 1.

(3) Index weight determination:

yθij =
x′θij

/
∑
θ

∑
i

x′θij
(12)

(4) Calculate the entropy value of the j-th index:

ej = −k∑
θ

∑
i

yij ln
(
yθij
)

(13)

among them, k > 0, k =
1

ln(rn)
(14)

(5) Calculate the information utility value of the j-th indicator:

gj = 1− ej (15)

(6) Calculate the weight of each indicator:

wj =
gj

/
∑

j
gj

(16)

(7) Calculate the comprehensive score of each city’s land use intensity level:

Hθi = ∑
j

wjxθij (17)

3. Results
3.1. Changes in the Land Use Type and Carbon Storage

Between 2000 and 2015, the period of 2005–2010 presented the most obvious land use
changes. Cropland was the main land use type of Jiangsu province, from 2000 to 2015,
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cropland decreased 6596.33 km2, accounting for−9.45%. Forest also presented a decreasing
trend. Grassland accounted for a small proportion, but showed a significant decreasing
trend, its area decreased −398.87 km2 from 2000 to 2015, accounting for −26.79%. Built-up
land was the land use type with the most obvious increasing trend, its area increased
6497.01 km2 from 2000 to 2015, accounting for 44.29%, especially in the period of 2005–2010
with 4388.82 km2 increased. Water area decreased 728.85 km2 in 2010–2015. Unused land
presented a drastic increasing trend from 2000 to 2015 with 164.97 km2, accounting for
903.83% of the total in 2000 (Table 3).

Table 3. Land use area changes between typical years (km2).

Land Use Type 2000–2005 2005–2010 2010–2015 2000–2015

Cropland −1220.07 −4594.22 −782.04 −6596.33
Forest 5.00 −260.76 −43.47 −299.23

Grassland −86.60 −466.77 154.49 −398.87
Water area 307.79 1448.98 −728.85 1027.93

Built-up land 995.09 4388.82 1113.10 6497.01
Unused land −1.22 198.61 −32.42 164.97

Changing rates
Cropland −1.75% −6.70% −1.22% −9.45%

Forest 0.15% −7.70% −1.39% −8.85%
Grassland −5.82% −33.29% 16.52% −26.79%
Water area 2.19% 10.08% −4.61% 7.31%

Built-up land 6.78% 28.02% 5.55% 44.29%
Unused land −6.68% 1166.07% −15.04% 903.83%

Table 4 shows that there were obvious land use transfers in Jiangsu between 2000 and
2015. Cropland was the main exporter, mainly converted into built-up land and water area;
built-up land was the main receiver, receiving a large amount of transfer from cropland,
forest, grassland, and water area, increasing rapidly; besides water area, grassland mainly
transferred into cropland and built-up land. The area of unused land was less, without
obvious transfers. Overall, the drastic land use changes mainly include the following: first,
the area of cropland converted into built-up land reached 6493.81 km2, accounting for
9.31% of the total area of cropland in 2000, while, the area of built-up land converted into
cropland was only 317.91 km2, accounting for 2.17% of the total area of built-up land in
2000; second, the area of cropland transferred to water area was 930.51 km2, accounting for
1.33% of the total area of cropland in 2000; third, the area of grassland transferred to water
area was 463.53 km2, accounting for 31.14% of the total area of grassland in 2000 (Table 4).

Table 4. Land use and carbon storage transfer matrix between 2000 and 2015.

Cropland Forest Grassland Water Area Built-Up Land Unused Land Total

Land use transfer matrix (km2)
Cropland 62,225.44 62.11 35.62 930.51 6493.81 33.14 69,780.64

Forest 197.00 3006.18 0.99 9.40 135.30 33.96 3382.82
Grassland 208.84 1.67 708.01 463.53 103.23 3.29 1488.57
Water area 232.30 1.42 288.45 12,974.58 378.73 82.10 13,957.58

Built-up land 317.91 10.72 32.43 285.90 14,007.94 13.19 14,668.09
Unused land 0.03 1.08 0.00 2.03 1.45 13.67 18.25

Total 63,181.53 3083.18 1065.49 14,665.96 21,120.45 179.35 103,295.95
Vegetation carbon storage transfer matrix (104 t)

Cropland 0.00 8.62 −1.22 −45.97 −351.96 −1.79 −392.32
Forest −27.34 0.00 −0.17 −1.77 −26.11 −6.55 −61.94

Grassland 7.14 0.29 0.00 −7.05 −2.06 −0.07 −1.74
Water area 11.48 0.27 4.38 0.00 −1.82 −0.38 13.93

Built-up land 17.23 2.07 0.65 1.37 0.00 0.00 21.32
Unused land 0.00 0.21 0.00 0.01 0.00 0.00 0.22

Total 8.51 11.45 3.64 −53.40 −381.96 −8.78 −420.53
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Table 4. Cont.

Cropland Forest Grassland Water Area Built-Up Land Unused Land Total

Soil carbon storage transfer matrix (104 t)
Cropland 0.00 21.37 2.42 −109.80 −1292.27 −6.06 −1384.35

Forest −67.77 0.00 −0.27 −4.34 −73.47 −17.90 −163.74
Grassland −14.20 0.46 0.00 −86.22 −27.56 −0.83 −128.35
Water area 27.41 0.66 53.65 0.00 −30.68 −5.34 45.70

Built-up land 63.26 5.82 8.66 23.16 0.00 0.21 101.11
Unused land 0.01 0.57 0.00 0.13 −0.02 0.00 0.68

Total 8.71 28.87 64.46 −177.07 −1424.00 −29.91 −1528.94

Based on the land use transfer matrix between 2000 and 2015, the carbon storage
change caused by land use change can be obtained. The results only considered the change
caused by land use type change, without considering change during the process of land
use type change. The results showed, between 2000 and 2015, the carbon storage decreased
1949.47 × 104 t, including 1949.47 × 104 t of soil carbon storage and 420.53 × 104 t of
vegetation carbon storage. Land use changes led to the release of organic carbon. The
transfer of cropland to built-up land reduced vegetation carbon storage by 351.96 × 104 t
and soil carbon storage by 1292.27 × 104 t. The transfer of forest to cropland resulted
in the reduction of vegetation carbon storage by 27.34 × 104 t and soil carbon storage
by 67.77 × 104 t. The transfer of forest to built-up land led to 26.11 × 104 t reduction in
vegetation carbon storage, and 73.47 × 104 t reduction in soil carbon storage (Table 4).

To better exhibit the spatial distribution of land use transfer, this study chose 11 typical
land use transfer types, the total area of these 11 land use transfer types accounted for
95.87% of the total land use change area. Areas with larger land transfer patches were
mainly distributed in the south and some northern core areas. The conversion of cropland
into built-up land was the main land transfer type, accounting for 65.38% of the total area
of 11 land use transfer types, which was mainly distributed in the south area. Cropland
transfers were mainly distributed in the southeast and southwest areas, the central area also
had sporadic distribution; the transfer of grassland to water area was mainly distributed in
coastal areas; the transfer of built-up land to water was mainly distributed in the northeast
edge area (Figure 3).
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3.2. Changes in NEP and CE

Figure 4 shows the distributions of annual mean NEP and the changing trend between
2000 and 2015. The average annual NEP values ranged from−373.37 to 1013.51 gC.m−2.yr−1
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between 2000 and 2015, and the mean NEP for the entire area was 172.16 gC.m−2.yr−1,
which means it acts as a carbon sink. Grids with lower NEP values were mainly distributed
in the surrounding water area and urban area. Grids with negative NEP values were mainly
scattered in the part of the middle and south areas, which indicates that the ecosystem
plays a role as a carbon source. Grids with positive NEP values were primarily located in
most of the province, acting as carbon sinks. Grids with NEP values in the range of 0.01
to 168.13 gC.m−2.yr−1 were mainly distributed in the western part of the area, and grids
with NEP values ranged from 280.04 to 1013.51 gC.m−2.yr−1 were mainly concentrated on
the coast (Figure. 4a). The slope of NEP varied between −760.85 and 40.21 gC.m−2.yr−1.
Grids with positive values were distributed in the largest area, indicating NEP presented
an increasing trend. Grids with negative values were mainly scattered on the edge of water
areas and built-up land (Figure 4b).
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Figure 5 shows the spatial distribution of energy-related CE in 2000 and 2015, and the
average annual values between 2000 and 2015. Energy-related CE intensities were densely
distributed in the south area and presented an increasing trend, changing from a range of
1.34 × 104 t.km−2 to 2.57 × 104 t.km−2 in 2000 (Figure 5a) to a range of 0.78 × 104 t.km−2

to 5.43 × 104 t.km−2 in 2015 (Figure 4b). Mean annual energy-related CE intensities ranged
between 1.67 × 104 t.km−2 and 5.67 × 104 t.km−2 from 2000 to 2015. Areas with values
ranging between 1.67 × 104 t.km−2 and 2.80 × 104 t.km−2 were mainly located in parts of
the north and southeast area. Areas with high values in a range of 2.81 × 104 t.km−2 to
5.67 × 104 t.km−2 were distributed in the part of the southwest area (Figure 5c).

Overall, CE presented an increasing trend, increasing from 4663.40 × 104 t in 2000
to 16,712.35 × 104 t in 2015. Figure 6 shows the changing trend in the various industries
from 2000 to 2015. Specifically, the industry was the biggest contributor to the total CE,
accounting for 82.50%, 84.17%, 82.79%, 80.76%. Transportation, warehousing, and postal
industry was the secondary contributor, with an increasing trend from 4.28% in 2000
to 7.18% in 2015. Agriculture, forestry, animal husbandry, fishery, water conservancy,
construction industry, wholesale, retail, accommodation, and catering, others, and living
consumption all presented increasing trends. All these CE can be assigned to corresponding
land use types.
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wholesale, retail, accommodation, and catering; others; living consumption.

3.3. Changes in Land Use Intensity and Its Impact on Carbon Balance

Figure 7 shows that the land use intensity values of all cities presented similar increas-
ing trends from 2000 to 2015. In 2000, the land use intensity values of all cities ranged
between 0.038 and 0.209. Xuzhou had the highest land use intensity value, followed by
Yancheng, Nantong, Suzhou, Wuxi, Nanjing, and Huai’an. After rapid economic develop-
ment and urbanization process, Suzhou ranked the first with the highest land use intensity
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values in 2010 and 2015. Zhenjiang was always the city with the lowest land use intensity
values, of 0.038, 0.089, 0.097, and 0.216 (Figure 7).
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As shown above, land use intensity values increased to varying degrees. Then, how
does the increase of land use intensity affect carbon balance? As the Figure 8 shows, land
use intensity and energy-related CE, NEP showed a positive correlation and negative
correlation relationships overall.
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Figure 8. Classifications of 13 cities on the basis of land use intensity change and energy-related CE change (a), and NEP
change (b), respectively.

From the relationship between land use intensity change and energy-related CE
change, most of the cities were concentrated in the third quadrant with low added value
of land use intensity and low added value of energy-related CE, including Zhenjiang,
Lianyungang, Yancheng, and Yangzhou. Nanjing, Wuxi, and Suzhou were located in the
first quadrant, among which Suzhou had the highest land use intensity added value and
CE added value, which were 0.57 and 3520.83× 104 t, respectively; Xuzhou was distributed
in the fourth quadrant with a high added value of land use intensity, but low added value
of energy-related CE (Figure 8a). From the relationship between land use intensity change
and NEP change, the distribution of cities in the four quadrants was relatively balanced.
Xuzhou was the only one located in the first quadrant with a high added value of land use
intensity but a high NEP added value. Yancheng, distributed in the second quadrant, was
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the city with the highest value added of NEP. Corresponding to this, Suzhou was located
in the first quadrant, with the lowest value added of NEP, −3.39 × 104 t (Figure 8b).

3.4. Temporal Changes of Carbon Balance

We performed a comprehensive examination on the carbon sinks/sources in Jiangsu,
calculated the total carbon storage and CE related to land use change. Due to the limitation
of the land use grids, the changes of soil carbon storage and vegetation carbon storage
were calculated at intervals of 5 years. From 2000 to 2015, soil carbon storage reduced by
0.15 × 108 t, vegetation carbon storage reduced by 0.04 × 108 t, and energy consumption
CE was 17.42 × 108 t. Total CE caused by land use changes reached 15.46 × 108 t. CE
showed an increasing trend, of 3.64 × 108 t in 2000–2005, 6.06 × 108 t in 2005–2010, and
7.71 × 108 t in 2010–2015. The carbon sequestration capacity of NEP showed a fluctuating
change and a phased decreasing trend, from 0.75 × 108 t in 2000–2005 to 0.72 × 108 t in
2005–2010 and 0.68 × 104 t in 2010–2015, respectively. Soil and vegetation carbon storage
decreased due to land use change, which played a carbon source role, with the largest
reduction in 2005–2010, 0.11 × 108 t in soil carbon storage reduction, and 0.03 × 108 t in
vegetation carbon storage reduction (Table 5).

Table 5. Carbon balance change in 2000–2015 (104 t).

Year Soil Carbon
Storage Loss

Vegetation Carbon
Storage Loss

CE from Energy
Consumption NEP Carbon Balance

2000

−0.02 −0.01

−0.47 0.08
2001 −0.47 0.15
2002 −0.50 0.14
2003 −0.57 0.12
2004 −0.76 0.16
2005 −0.88 0.10

2000–2005 −0.02 −0.01 −3.64 0.75 −2.92
2006

−0.11 −0.03

−1.00 0.15
2007 −1.13 0.14
2008 −1.25 0.17
2009 −1.35 0.12
2010 −1.34 0.14

2006–2010 −0.11 −0.03 −6.06 0.72 −5.48
2011

−0.02 −0.01

−1.39 0.10
2012 −1.43 0.16
2013 −1.57 0.14
2014 −1.66 0.13
2015 −1.67 0.15

2011–2015 −0.02 −0.01 −7.71 0.68 −7.06
2000–2015 −0.15 −0.04 −17.42 2.15 −15.46

4. Discussion and Policy Implications

For the analysis of land use change, built-up land occupied cropland was the main
form in Jiangsu province, which is the universal phenomenon in China’s urbanization
process [65]. Within the study area, the built-up land expansion in the south area was more
obvious than that in the north area [66]. This is because the south area is the economic
engine of the province with abundant resources, such as high-quality education, medical
care, and highly developed commerce and industry, these factors will attract more people
and require more built-up land to feed residents [57]. Moreover, considering the economic
output benefit of land use, many croplands were converted into reservoir ponds in the
coastal area [67]. During the critical period of rural revitalization, the government should
reasonably guide urban-side industries to promote rural development [61], implement
the balance of increase and decrease of urban and rural built-up land policy [68]. The
period with most intense land use changes was 2005–2010. In recent years, the process
of urbanization has slowed down, which is the general state of national urbanization
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development [69], land urbanization lags population increase, because population flow
into urban areas seems to be much easier than building construction [70].

Urban areas have high population density and frequent human activities. It is reported
that 2% of the world’s urban land accommodates more than 50% of the world’s population
and emits about 75% of the world’s CE [51,71]. The rapid urban expansion will bring
resource agglomeration, industrial development, energy consumption, and a large number
of environmental problems [72]. In addition, the occupation of the surrounding cropland,
forest, and other ecological land by urban expansion can release carbon into the atmosphere
by reducing the light and function of vegetation [26], and finally, result in the increase in CE
and decrease in carbon storage [56]. Increasing the rate of green space in urban areas seems
to be an effective way to offset carbon losses [73]. Forest is a land-use type with the highest
biomass and the highest vegetation carbon density. More vegetation with higher biomass
should be planted in central urban areas, which can promote the biodiversity of ecosystems,
activate soil biological activities, and increase soil fertility [43,74,75], thus increasing carbon
storage. Land managers should take seriously consideration of environmental impact and
urban green development when making land-use policies.

During rapid economic development, changes in CE intensity and NEP are substan-
tial, both spatially and temporally. First, this study corrected and integrated the two
types of NSL data from different sources, the reliability can be validated by the existing
study [61]. Relevant studies have proved that NSL data can simulate CE well, using both
the DMSP/OLS and NPP-VIIRS data [76,77]. Spatial changes in CE were more widely and
densely distributed in the south. Resource consumption, an increase of industry intensity
was the main reason for the increase in energy-related CE [78,79]. The backwardness of
production technologies such as combustion and industry, fossil fuels, is another major
reason for CE [80]. NEP are representative indicators that can present the carbon sinks
capacity of vegetation growth. The NEP simulation used the latest soil survey data, us-
ing models based on field observations in China. Applications across China show that
the simulated NEP can be well validated by field observations with high accuracy [81].
According to our results, except for downtown areas, some areas, such in the south and
middle, displayed a decreasing trend in NEP, which may be partly caused by an expansion
in water areas for aquaculture and urban expansion. Some areas that did not experience
land transfer also showed a decrease in NEP, which should alert the attention of relevant
departments, so that they can take effective measures to alleviate land degradation [81]. A
certain degree of land management intervention can not only optimize land-use, but also
affect ecosystem carbon balance [82,83]. Overall, the NEP reflects the predominant carbon
sink capacity of terrestrial ecosystems, which was mainly attributed to the stable climate
and good hydrothermal conditions in Jiangsu province [38].

Jiangsu province has experienced rapid urbanization in recent years, causing the
land-use intensity to enhance rapidly [38]. Land-use intensity presented a descending
trend from the south to the north overall [84], which was consistent with the previous
study by Yang et al. (2018) [85], who demonstrated that land-use intensity increased with
the improvement of urbanization level. Areas where land-use intensity has an obvious
enhancing trend always have large percentages of artificial vegetation and land [86], which
can also explain the lower NEP value [87]. The areas with greater natural and semi-natural
land-use usually have lower land-use intensity [50], such as areas with large parts of
cropland, forests, and grassland. This can also explain Xuzhou, which has high land-
use intensity, while high NEP and low CE. Adjusting the energy structure, introducing
green production technology will play important roles in reducing CE, and promote the
sustainable development of cities. As more built-up land occupies ecological land, policies
and measures for promoting intensive land-use should be carried out to adjust land-use
intensity; this should be matched with the local socio-economic condition [88]. In addition,
social-economic circumstances, climate change [89], ecological conditions, and crop plant
structure all can affect land-use intensity to some extent.
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For the examination of carbon balance, this study discussed the multi-angle changes
of land use change, land-use type, and land-use intensity, and their impacts on carbon
balance such as carbon storage, carbon sequestration, and anthropogenic CE. It compre-
hensively considers both natural and anthropogenic aspects. However, there are still some
uncertainties in this study. Firstly, the calculation of energy CE is mainly based on the IPCC
coefficient method [90], the coefficients used internationally may not be suitable for use in
China, and there are certain errors. Second, the soil carbon densities and vegetation carbon
densities of different land-use types in this study were regarded as constant values due to
the data limitation and the property that carbon density change needs to take a long time.
Third, due to data constraints, NEP spatial accuracy at the urban level may be relatively
rough, which may lead to a certain deviation in the NEP test.

5. Conclusions

Land use changes have a significant impact on the carbon storage of terrestrial ecosys-
tems and anthropogenic CE. This study found that about 10.03% of total land use area has
experienced land use type change between 2000 and 2015. Built-up land occupied cropland
was the main land use transfer type, accounting for 62.68% of the land use change area.
Besides the impact on carbon balance, the reduction of cropland will also pose a threat to
food security. Cities with higher land use intensity were usually accompanied with high
CE of energy consumption, suppressing NEP growth. NEP presented an overall increasing
trend excluding built-up land and water area, the total NEP was decreasing year by year,
which is the combined impact of human activities and climate change. Planting trees with
high biomass in the urban green area is the best way to increase carbon storage. In the
future, we will focus on finely simulating the urban spatial changes and the impact on
carbon balance of natural resources to achieve the goal of carbon neutrality.
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