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Abstract: Production–Living–Ecological Space (PLES) is the functional projection of sustainable
development in territory spatial planning. Its rational layout has become the most important task for
developing countries to enhance ecological awareness and achieve sustainable goals. This study took
the rural areas of Beijing-Tianjin-Hebei (BTH) as an example to analyze the relationship by means of
quantitative cumulation between regional endowments (natural factors, location and facilities) and
PLES to figure out the preference mechanism. The Boosted Regression Tree model (BRT) was used
to obtain the contribution rate of factors and the internal marginal effect between 1980~2018. Our
conclusions are as follows: Living space (LS) enjoyed the highest advantage of regional endowment
level, followed by production space (PS). Except for the distance to water, other indicators were
significantly different in the PLES, and the suitable range of various types was expanded from LS
to PS and ecological space (ES). During the transfer, elevation had a universal effect. The process
of increasing naturalness was affected by the distance of high-level urban areas, which verified the
continuous effect of Chinese ecological civilization. This study clarified the selectivity of regional
endowments to PLES, which will greatly guide the direction of regional territory spatial planning
and the next step of regional sustainable development.

Keywords: rural Production–Living–Ecological Space (PLES); regional endowments; quantitative
accumulation curve; Boosted Regression Tree model (BRT); Beijing-Tianjin-Hebei (BTH)

1. Introduction

Sustainable development has been the common goal pursued by all countries in the
world [1,2]. Since the “World Outline for Natural Resources Protection” in 1980, economy,
society and ecology had been taken as the pillars for applications [3,4]. Chinese Land Use
Planning in 2008 proposed a classification system for production land, living land and
ecological land, corresponding to the three pillars of sustainable development. Three land
types carry economic, social and ecological activities respectively. Later, it was officially
revised as Production-Living-Ecological Space (PLES) including production space (PS),
living space (LS) and ecological space (ES) in the 18th National Congress of the Communist
Party of China in 2012. PS is for providing products, including agricultural production
and industrial and mining production. LS is for residents’ daily activities, and ES is for
providing ecological products and services [5]. So far, territory spatial planning finished
the transition to a sustainable structure. PLES planning had become an important part of
planning practice, and the rationality and scientific nature of its landscape had become one
of the basic principles [6,7].
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In the past decade, most studies have cared more about the application of a PLES
pattern, such as coupling coordination and conflict evaluation based on current distribu-
tion. Yang et al. established an index system to evaluate the PLES function relationship in
rural areas of the Beijing-Tianjin-Hebei region [8]. Zou et al. analyzed land-use conflicts
in the southeastern coastal areas of China from the perspective of PLES classification [9].
Kong et al. quantitatively evaluated the protection and survival of traditional villages
based on the PLES healthy relationship [10]. Jing et al. identified PLES conflicts through
a multi-objective suitability evaluation [11]. Other research focused on the functional
strength of PLES from land-use versatility. Xie et al. established the PLES zoning method
based on the functional symbiosis theory and applied it in Henan Province, China [12].
Duan et al. analyzed the evolution of PLES from the perspective of villagers’ behavior [13].
Peng et al. measured the multi-functional value of land use and proposed a spatial clas-
sification method [14]. Tao et al. quantitatively identified the evolution process of PLES
characteristics in resource-based cities [15]. It was not difficult to find that the application of
PLES had formed a complete framework, and a large number of studies had appeared. But
what cannot be ignored is that, as a planning item, PLES is the spatial carrier of functional
activities. The selection of spatial functions should conform to the basic rules of the regional
endowments. Existing studies did not pay attention to it, which resulted in the failure
to reflect the practical value of related planning. Therefore, in order to make up for the
above-mentioned deficiencies, the endowments preferences of PLES should be investigated
to figure out the local rules for scientific territory spatial planning.

Many studies in related fields provided methodological references. In research of
soil and water cycles, Pearson’s correlation coefficient is often used for potential laws
such as land use and carbon emissions, topography and precipitation [16–18]. In land
research, the KAPPA index is often used to monitor land-use changes and evaluate the
accuracy of remote sensing classification [19–22]. It can also be used to judge the correlation
between the sample and the whole. In addition, Spearman’s correlation coefficient is used
to analyze the significance and applicability of spatial heterogeneity indicators in the study
of land-use landscape patterns [18,23–26]. The above studies provide a reliable method set
but the methods cannot reflect the correlation differences caused by the changes in index
levels. The accumulation curve, which is commonly used in soil science [27], fits the aim
of this research well. This method was originally used for the overall change process of
soil structure when soil particle size changed gradually. It was later introduced by other
disciplines, resulting in the innovative application of the Pareto curve [28]. Besides this, in
order to explore the impact mechanism, regression models are also necessary. Traditional
regression methods pay too much attention to the explanatory function and strictly reject
the correlation between independent variables [29]. Meanwhile, it is difficult to distinguish
the importance of independent variables. The Boosted Regression Tree (BRT) model could
perfectly solve the above problems. It is a self-learning machine learning method wthathas
a high tolerance for the correlation of independent variables and can clearly represent the
contribution difference and horizontal marginal effect of independent variables. Therefore,
the BRT model can provide methodological support for this study.

The subsequent chapters are as follows: Section 2 describes the data, methods and
research area. Section 3 shows the calculation results, including the quantity and pattern
characteristics of PLES in the study area, spatial cumulative scale curve of each factor and
BRT model results, etc. Section 4 discusses and analyzes the shortcomings based on the
results, and Section 5 summarizes the research conclusions.

2. Materials and Methods
2.1. Study Area

The study area (113◦11′ E–119◦45′ E, 36◦05′ N–42◦37′ N, Figure 1) includes Beijing,
Tianjin, and Hebei province, which consists of thirteen cities. The area is one of the biggest
urban agglomerations in China. It covers an area of 216,677.95 km2, with a permanent
population of 11,034,000 by the end of 2018, including 668 subdistricts and 2279 towns
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and townships (from the 2019 County Statistical Yearbook). In this study, rural area is
the collection of towns and townships in the BTH, with a total area of 205,141.89 km2,
accounting for 94.68% of the total. The characteristics of regional endowment in the study
area are complex and diverse. It consists of a terrain combination of Taihang Mountain
in the northwest and North China Plain in the central and southern region. Additionally,
Tianjin is adjacent to the Bohai Sea, connecting inland areas and Marine port resources.
Since the reform and opening up, the BTH has been the fastest developing region in north
China, with significant territorial space changes. Especially influenced by the capital
as center, it is the first to undertake the requirements of national strategies and policies.
Moreover, influenced by economic status, there have been hierarchical structures formed in
the capital as well as in municipalities, provinces, cities, districts and subdistricts on behalf
of the urban grade system. The order has constituted the different radiation to rural space.
The attraction from urban systems has become one of the most important endowments in
study area.
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Figure 1. Research area of Beijing-Tianjin-Hebei region.

2.2. Data Source

PLES dataset in this study was from 1:100,000 scale land use database of China
Academy of Sciences (http://www.resdc.cn/, accessed on 1 September 2021) [30–33].
The dataset was conducted by Resources and Environment Research Center, Institute
of Geography, Chinese Academy of Sciences. It was based on Landsat long-time series
remote-sensing images as the main data source and generated through human–computer
interaction visual remote-sensing interpretation. Land use types include 6 primary types
(cultivated land, forest land, grassland, water area, residential land and unused land) and
25 secondary types. Through verification and analysis of a large number of samples, the
comprehensive assessment accuracy of first level in China reached over 94.3%, which met
the mapping accuracy requirements of 1:100,000 scale users [34]. This data has been widely

http://www.resdc.cn/


Land 2021, 10, 1265 4 of 21

used in the study of land use, which has advantages in time span and data consistency and
can be used for land-use changes in long time series.

Besides this, endowment factors include three types: natural characteristics, loca-
tion characteristics and facility characteristics. Natural features included elevation, to-
pographic relief and the distance to water. Elevation and relief intensity index were
measured by Digital Elevation Model (DEM, GDEM_V2_30 m), which was obtained
from geospatial data cloud (http://www.gscloud.cn/, accessed on 3 September 2021).
Water surface includes level 1, 3, 4 and 5 rivers and lakes, which was obtained from
National Catalogue Service for Geographic Information (https://www.webmap.cn/, ac-
cessed on 1 September 2021), 1:250,000 National basic Geographic database. Location
characteristics include three indexes: distance to the nearest subdistrict, city and cap-
ital. Original data was the border shapefile of towns and subdistricts, which was ob-
tained from the Data Center for Resources and Environmental Sciences, China Academy
of Sciences (https://www.resdc.cn/, accessed on 1 September 2021). Rural areas and
urban areas can be clearly distinguished by unit types. Three location indexes repre-
sented the urban attractiveness from low to high. Facility characteristics were described
by the distance to interchanges and roads. The distribution of interchanges and roads
were acquired from TiandiMap (https://www.tianditu.gov.cn/, accessed on 5 Septem-
ber 2021) and AMap open platform (https://lbs.amap.com/, accessed on 5 September
2021). All distance indices were manipulated through the path distance tool in ArcGIS 10.3
(https://www.esri.com/en-us/arcgis/products/arcgis-desktop, accessed on 30 June 2021).

2.3. Methods

This study aimed at the preference of PLES selection under different endowments in
BTH region. Figure 2 shows the technology roadmap. The cumulative relationship was
established first. Endowment factors include nature characteristics, location and facilities,
and the scale of PLES in 2018 was taken as current to evaluate the preference of PLES under
different endowment levels. Secondly, the year 1980 was defined as the base year, and
the process of PLES transferred from 1980 to 2018 was identified. According to the spatial
transfer dataset, the contribution rate and internal marginal effect of different transferring
orientations were analyzed by BRT model.
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2.3.1. Classification of Production–Living–Ecological Space

In terms of the concept of PLES, it is not only the classification of spatial functions
according to human–land relationship, but also the clusters of land use types [5]. PLES
types summarize the mechanism of land use differences in the process of regional ecologi-
cal cycle, such as heat emissions [35–37], carbon emissions [38,39] and other processes with
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source and sink differences. LS, such as urban areas and rural residential areas, have the
highest carbon emission intensity and surface temperature, which constitute the source of
regional carbon emission and thermal cycle. Forest land, grassland and other ES types are
used to relieve heat and reduce carbon emissions. There are also sinks in the region. PS,
such as cultivated land, are consistent in carbon emission and heat release, but the intensity
is small and the source-sink characteristics are weak [40,41]. Therefore, PLES simplifies
the functional representation of land use characters in territory system by maximizing the
differences of action direction and weakening the difference of intensity [6,7]. Current
studies on PLES classification include basic classification system of production, living and
ecology [38], composite system of production, living and ecology and interaction of three
basic types [42], and extended system that divides production space into agricultural pro-
duction and non-agricultural production [43]. From the practical perspective of territorial
spatial planning, this study considered spatial dominant function as the primary principle,
chosen to identify the basic system of production, living and ecological space classification
(Table 1). According to the land-use types contained in rural spaces and the definition of
PLES and the basic classification system established by existing studies [38], PLES dataset
of BTH is generated.

Table 1. Classification of PLES.

Primary Land Use Type Secondary Land Use Type Classification of PLES

Cultivated land
Paddy field Production space

Dry land Production space

Woodland
Forested land Ecological space

Shrubbery Ecological space
Other forest land Ecological space

Grass land
High coverage grassland Ecological space

Moderate coverage grasslands Ecological space
Low-coverage grassland Ecological space

Water

Rivers and canals Ecological space
Lake Ecological space

Reservoir pit Ecological space
Permanent glacier snow Ecological space

Beaches Ecological space
Bench land Ecological space

Construction land
Urban land Living space

Rural residential area Living space
Other construction land Production space

Unused land

Sandy soil Ecological space
Gobi Ecological space

Salinate field Ecological space
Marshland Ecological space
Bare land Ecological space
Bare rock Ecological space

Others Ecological space

Ocean Ocean Ecological space

2.3.2. Regional Endowment Factors

In this study, the regional endowment factors were set in three objective aspects:
natural characteristics, location characteristics and facility characteristics. Natural char-
acteristics are the earliest factors that determine the function of space and the most basic
environmental characteristics in sustainable development [44]. Natural factors included
elevation, relief intensity and distance to water. Among them, elevation and relief inten-
sity determine temperature and climate, as well as whether it was suitable for residents
to carry out high-intensity construction [36,45]. The distance to water was taken into
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account because of the primary demand for agricultural production in rural areas [46].
Location was an important factor that had to be considered in rural development. Urban
area was the provider of rural life resources. Different levels of urban areas had different
attractiveness, which reshaped the layout of rural spaces [47]. The distance to the nearest
subdistrict, distance to city and distance to capitals were selected in this study. Facilities
were important catalysts for the evaluation of development potential of rural spaces [48].
Facilities such as interchanges and roads greatly improve the convenience of rural residents
and products in and out [49]. This study chose the distance to the interchanges and roads
as the facility indexes.

The distribution of indexes is shown in Figure 3. High elevation was distributed in the
northwest, and low elevation was distributed on the North China Plain in the southeast,
as shown in Figure 3a. High relief intensity area was distributed in the transition zone of
high elevation and low elevation in the north and west (Figure 3b). Only northwest area
and south area were far from the water surface (Figure 3c). As for location characteristics,
northeast and west area had higher values of distance to the subdistricts (Figure 3d). North
area was far from cities (Figure 3d) and capitals (Figure 3f). In Figure 3g, north area was
further from interchanges and roads were more evenly distributed in the study area.
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2.3.3. Cumulative Curves of PLES

Cumulative curve, known as frequency accumulative curve, was the first quantitative
expression proposed to study the particle size of soil deposition. Object of this method is
indicated by the slope change of accumulative curve [50–52]. Later, it was cited by multiple
disciplines and has a wide range of values, including the famous Pareto curve [28]. In this
study, the cumulative curve was introduced into the research to analyze the difference in
regional endowment level of PLES. The factors were divided into 0–100 grades from low
to high, and the scale of overall area, PS, LS and ES, were counted and summarized to
form four cumulative curves of each factor. The point with slope of 1 was defined as the
segmentation point, and the point with accumulation degree of 95% was defined as the
critical point to measure the accumulation process.

2.3.4. Standard Deviational Ellipse (SDE)

The standard deviation ellipse (SDE) method is used to analyze the distribution pattern
of a point set with spatial coordinates [53]. It was first proposed by Furfey to analyze
geographic concentration [54]. This method uses an ellipse to simplify spatial distribution
characteristics. The area represents the degree of distribution and concentration, the
relationship between the major axis and the minor axis represents the concentrated direction
and the center represents the spatial centroid. Many GIS applications allow for its use. In
ArcGIS, three-level ellipses can be generated, representing 68%, 95% and 99% of the sample
points, respectively [55]. In this study, the PLES transferring patches were extracted as
points, and their scale was defined as the weight. The weighted SDE of level 1 in ArcGIS
10.3 was used to identify transferring type distribution.

2.3.5. Boosted Regression Tree Model

Boosted Regression Tree (BRT) model is a machine learning method combining regres-
sion tree model and boosted model [56,57]. This method generates data sets by randomly
selecting a certain number of samples many times, and the remaining samples constitute
test sets to improve the stability and accuracy of regression results [58]. The advantage of
the model is that the interaction between independent variables can be ignored. Contribu-
tions of independent variables and the marginal effect within the value range are clearly
shown in the model results [59,60]. So far, BRT model has been successfully applied in
urban heat island factor research [61,62], ecological risk assessment research [57,63] and
many other fields, with high value.

BRT model was used in this research to conduct six models. Whether the PLES
transferring happened was defined as the dependent variable (transfer types include PS to
LS, PS to ES, LS to PS, LS to ES, ES to PS and ES to LS). The indexes of nature, location and
facilities were defined as independent variables, and the statistical average value of patch
was used as sample to participate in the calculation. The cross coefficients of independent
raster data were all less than 0.7. Calculation was carried out through R software and
“GBM” package [64]. Existing studies used the consistency measurement of the training
data correlation and the cross-validation (CV) correlation to measure the reliability of
the BRT model parameters [57]. This study followed the rules to carry out multiple sets
of verifications. After several tests, lr = 0.01, TC = 1, BAG Fraction = 0.5 and family =
“Bernoulli” were set in consideration of calculation rate and accuracy of results.

3. Results
3.1. Scale of PLES from 1980 to 2018

Figure 4 shows the area of PLES from 1980 to 2018. The results showed that PS
occupied the largest proportion in the study area, followed by ES, and LS was the smallest.
This is because the study area is an important agricultural area in north China. The
agricultural PS represented by cultivated land is the main land use type in the North China
Plain. As for the PLES scale, PS decreased significantly since 1980, ES has been basically
maintained, and LS expanded significantly. By 2018, a total of a 5326.61 km2 increment
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of LS took place or about 30.09%. Based on the analysis of the change process, the period
from 1990 to 1995 had the largest expansion stage of LS, with the expansion area exceeding
2000 km2. From 2015 to 2018, ES expanded, and the area of expansion was 2.6 times the
size of LS. Since the reform and opening up, with the improvement of the urbanization
level, agricultural technology level and ecological protection awareness, spatial functional
needs have changed. The PLES of BTH presented a significant evolution. Influenced by the
urbanization process, the study area, as an example, represented the complex relation of a
rural functional landscape and regional endowment by showing the interaction between
regional development and territorial structure.
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3.2. Basic Descriptive Endowment Characteristics of PLES Types

The PLES pattern of the study area changed a little in the past decades. The current
PLES distribution and endowment characteristics were combined for further analysis.
Table 2 shows the mean value and standard deviation of the indicators of each type.

Table 2. Mean value and STD of factors of PLES (EL—elevation; RI—relief intensity; DW—distance to water; DS—distance
to subdistricts; DCI—distance to cities; DCA—distance to capitals; DI—distance to interchanges; DR—distance to roads).

Natural Factors Location Factors Facility Factors

EL (m) RI (m) DW (m) DS (m) DCI (m) DCA (m) DI (m) DR (m)
MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN

PS 327 22 1021 20,713 45,431 109,863 11,181 386
LS 130 13 974 14,842 32,827 85,977 8095 207
ES 834 99 1113 34,862 66,259 132,104 18,505 698

STD STD STD STD STD STD STD STD
PS 493 26 1291 18,690 30,532 62,463 9825 340
LS 278 14 1108 15,246 24,603 59,160 6728 218
ES 483 56 997 22,520 35,934 64,910 14,052 577

There is a great difference among PLES types. From the natural factor index, LS
occupies the position with a lower elevation and less fluctuation, while ES is relatively
distributed in the region with a higher elevation and steep terrain, and PS is between them.
Compared with the STD of elevation and relief intensity of the other types, the values of LS
are all small, indicating that LS has more stringent requirements on terrain and a smaller
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suitable range than PS and ES. The distance from water has little difference among them.
After their differences were magnified, we found that the average distance to water in
ES is the biggest and the STD is the smallest. Considering that ecological space includes
rivers and lakes, it further shows that PS and LS had a strong demand for water. The
location factor results show consistency in all indicators, and indexes of LS are smaller
than PS and ES. It can be considered that the LS in rural areas was inherited from the
urban spatial hierarchy. Additionally, the gap among PLES types shown in the distance to
the capital is bigger than in the distance to subdistricts. A higher level of urban area has
more attraction to rural LS. PS and ES are distributed around the LS patches, which made
ES have a maximum distance to the urban area at every level. The facility factor indexes
results show that the expressway is an important factor to change spatiotemporal distance,
as it connects large cities, towns and the wide rural space. Interchanges are also the spatial
trigger of rural development. The distance to roads is similar. It is noteworthy that LS
is closer to the area with convenient facilities, and the preference level of LS and ES for
facility indicators is very different. We guessed that by considering the elevation and relief
intensity index results of ES, there is a bigger cost for building interchanges and roads in
ecological areas. It also contributed to the distance from ES to the infrastructure elements.

3.3. Cumulative Relationship of PLES and Endowment Factors Level

There was a significant adaptation relationship between PLES and the levels of various
endowment factors. In order to explore such preferences, the PLES landscape and the
endowment factors level of BTH in 2018 are overlapped, and the cumulative curves from
low to high of the overall type and each type are plotted in Figures 5–8.
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3.3.1. Cumulative Relationship of PLES and Natural Factors Level

Figure 5a–c represents the cumulative curve of the elevation, relief intensity and
distance to water in the overall and PLES types, respectively. Among the dispersion of
curves, the difference among the four curves in Figure 5a is the largest. In particular, there
is almost no difference in the distance to water in Figure 5c. In Figure 5a, the LS curve was
higher than the other three. The tangent point of the curve with slope one was defined
as the segmentation point. Before the segmentation point, the rate of area accumulation
was faster than 1%, and after, it was the opposite. When the accumulation level reached
95%, the critical point was defined, based on the thought that 95% of the space of each type
could represent most of the characteristics of that type. When the elevation level reaches
only 6%, the LS curve reaches the segmentation point, and the accumulation is completed
at 85.81%. The segmentation point of PS appears when the elevation index is 6%, but only
67.75% is accumulated. For the same elevation suitability, the accumulation ratio of PS was
lower than that of LS, because the living function was in a leading position in rural areas,
which caused a higher priority in functional selection. Due to the effect of PS and LS, the
segmentation point of the study region appears at the level of an 8% elevation, and the total
accumulation is less than 48%. In sharp contrast, the segmentation point of ES appeared at
the 53% elevation level, which accumulated more than 90%. The critical points of the four
curves in Figure 5a appeared at 28%, 50%, 52% and 57%, respectively. This suggests that
LS and PS are appropriately distributed below 6% of the regional elevation level. When
the elevation exceeds 28% and 50%, there is almost no LS and PS. The space between the
segmentation point and critical point is of suitable scope. The scope of the ES suitability
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was minimum, and changes in the elevation had little influence. The ES is distributed over
a space that is hard to use, so it deserved a relatively lower position. Figure 5b showed
that the accumulation performance of relief intensity was different from that of elevation.
The segmentation levels of LS, ES, study region and PS are located at 6%, 12%, 24% and
30%, respectively. LS has the greatest dependence on lower relief. The accumulation of
the four lines at the segmentation point is over 90%. The critical points were close to the
segmentation points. This was because the relief intensity was mainly distributed in the
low-level range, and the high relief area was small. The cumulative level of LS was 95.79%,
and the critical point was lower than the segmentation point. In addition, the curves of
LS and PS were closer to the Y-axis below the segmentation level, and the ES curve was
farther from the Y-axis. It can be seen that the space with low relief intensity was mainly
occupied by LS and PS, which is similar to the results of the elevation curves. Figure 5c
shows the accumulation of the distance to water. The segmentation points of the four
curves are in the horizontal range of 18–21%. The accumulation of PS was higher than that
of LS and ES before 7%. When it exceeded 22%, ES became the highest accumulation type.
Although the difference among the curves is small, there are still differences in different
horizontal stages.

3.3.2. Cumulative Relationship of PLES and Location Factors Level

Figure 6a–c shows the cumulative characteristics of the distance to subdistricts, cities
and the capital, respectively. After comparing the distance of the curves to the y axis among
the three indicators, it was found the curve of the distance to the subdistricts was closer.
The closer to subdistricts, the faster the accumulation grew. The curve of distance to the
capital was closer to the reference line. In Figure 6b,c, when the distance level is lower
than 16% and 27%, the accumulation of ES is lower than the reference level. In Figure 6c,
the PS is also lower than the reference level when the distance level is lower than 8%. It
can be considered that within this range, ES and PS are greatly compressed by LS. Rural
areas outside the high-grade urban area have taken on the characteristics of towns, and the
area is mainly dominated by living functions. By summarizing the segmentation points, it
can be found that the segmentation points and critical points of LS appear first. When the
segmentation points appear, the accumulation level is also the highest, which has the most
urgent demand for location. The index level of the ES segmentation point is the latest, the
PS segmentation point appears earlier than the segmentation point of the study area, and
the accumulation level is basically the same.

3.3.3. Cumulative Relationship of PLES and Facilities Factors Level

Figure 7a,b, respectively, plot the PLES accumulation of the distance to interchanges
and roads. In Figure 7a, the curves of LS, PS, overall study area and ES are distributed from
top to bottom. The segmentation points appear at 21%, 25%, 28% and 34%, respectively.
The demand for interchanges is most significant in LS. The accumulative levels are 91.74%,
88.19%, 83.52% and 79.22%, respectively, which also shows a decreasing trend. This is
because the configuration of interchanges not only needs to consider the coverage of LS but
also needs to bear the terrain cost of the construction of high-speed roads. Figure 7b shows
the cumulative process of road accessibility. Similar to Figure 7a, the areas with the highest
road accessibility are LS, PS and ES. It is obvious, as for the distance to road index, that
the segmentation point of LS and PS is located on the right side of the critical point. When
the accumulation level reaches 95%, the accumulation rate is still higher than 1%, and the
correlation between the living function and production function and road accessibility is
high. However, considering the sequence relationship between road element construction
and the formation of PLES, road accessibility is one of the main factors in the choice of
LS. Planning roads needed to take the minimum cost into account. The cost of occupying
agricultural production space is smaller, thus resulting in a close relationship between PS
and road accessibility.
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According to the above findings, LS has the minimum suitable range and the fastest
accumulation speed in natural characteristics, location characteristics and facility character-
istics. ES is the opposite. The accumulation process of PS is faster than that of the overall
study area. According to the overall curve, LS and PS can be defined as the type with a
clear need for endowment, while ES is in a weak position in the choice of endowment by
functional types.

3.4. Transferring Characteristics of PLES from 1980 to 2018

PLES is an important expression of the man–land relationship. As the man–land
relationship is influenced by people’s cognitive evolution, technological updates and
resource awareness, PLES shows phased characteristics in a long time series. This leads to
changes in the functional demand pattern of the territory. Thus, it changes the distribution
pattern of the PLES pattern. 1980 was defined as the base year, and the total amount of
PLES changed by 2018 was 28,458.3 km2, accounting for only 13.9% of the study area
(Figure 8). The largest transferring type scale was PS-ES. The transferring area was more
than 20,000 km2, accounting for 77.81% of all types of the transferring area (Table 3). This
is because the normal production space could not satisfy the huge demand for agricultural
products before the reform and opening up, a lot of unsuitable land was reclaimed into
arable land. After 1990, the supply and demand of agricultural products tended to be
stable, and the BTH region suffered from serious dust weather. The government issued the
policy of returning farmland to forest, which restored a large amount of agricultural space
to ES, and reconstructed the pattern of rural PLES.

Table 3. PLES transfer matrix from 1980 to 2018.

PS2018
(km2)

LS2018
(km2)

ES2018
(km2)

PS1980 98,807.90 4196.57 22,144.28
LS1980 335.50 15,203.01 81.31
ES1980 1516.29 184.34 62,196.70

The spatial distribution of PLES types in 1980 and 2018 was overlayed to obtain the
spatial pattern of the PLES shifting type. According to the naturalness of PLES types, the
transferring process can be divided into two orientations: the process of increasing nature
and the process of decreasing nature. The decreasing nature process includes the transfer of
PS to LS, ES to PS and ES to LS. The other three transfer types were included in the process
of increasing nature. The result of the standard deviation ellipse is shown in Figure 9a,b. It
was shown that the distribution of different transfer directions and types of space in the
study area is different. Significantly, in the process of decreasing nature, which used to be
ES, the patches forming PS are widely distributed and mainly located in the central area,
while the patches forming LS are mostly distributed in the periphery of Beijing and Tianjin,
extending to the south of the North China Plain. The patches from PS to LS are mainly
distributed in the North China Plain. In the process of increasing nature, the production
space patches, which were LS, are distributed on the north and south sides of Beijing and
Tianjin, while the ES patches are gathered around Beijing and Tianjin. The PS patches from
ES are distributed in the Taihang Mountain area. In the study area, the three transferring
types of decreasing nature are highly overlapped, which are centered in the urban areas
of Beijing and Tianjin and extended to the north of the North China Plain. It can be seen
that the expansion of high-level urban areas led to the transformation of territorial space
to decreasing nature in a certain range around the area. In contrast, the distribution of
increasing nature types presents a pattern of parallel movement from the northwest to
the southeast. The overlap occurs only in part of the transition zone, from the shallow
mountainous area to the North China Plain in the northwest of Beijing. With the process of
parallel movement, the difficulty of transferring gradually increased. The LS–ES ellipse
is almost distributed on the North China Plain. The huge difference in the distribution
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of transferring types shows the re-optimization of regional endowment on the choice of
spatial functions. It was necessary to analyze its internal mechanism by type.
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3.5. The Preference of Endowment Factors during PLES Transfer

In order to figure out how the functional types were selected and transferred in the
BTH region, the BRT model was used to analyze the relationship between the PLES transfer
process and endowment factors of each.

3.5.1. Decreasing Nature Process Results

The transfer of ES–PS is mainly affected by elevation. Figure 10a shows the results.
The contribution of elevation accounted for 59.53%, the contribution of the others was
relatively average, and each of them accounted for less than 10%. When the elevation
was lower than 800 m, the factors had a positive effect. In Figure 10b, after 500 m, the
influence intensity gradually decreased with the increase of the elevation index. When it
exceeded 800 m, the influence changed to negative. After 1250 m, the negative influence
intensified. The ES was transformed into PS because the expansion of agricultural planting
varieties had different demands for different climate and altitude conditions. As a result,
it was difficult for a part of the original space for food cultivation to become the planting
area for new crops due to climate reasons. In addition to this, the space of this type was
mainly in the transition zone from the mountainous area to the plain area, which was
closer to the concentrated area of LS. It could also meet the urban demand for agricultural
products better.

The process of ES–LS was mainly influenced by elevation, the distance to cities and
the distance to roads (Figure 11a). The contribution rate of elevation was higher than
30%. The other two factors were higher than 20%. It is shown in Figure 11b that positive
effects were observed in areas below 750 m, within 5 km of urban areas and 250 m of roads.
Negative effects were observed in areas 250–3080 m from roads. ES–LS patches are mainly
distributed next to the coastal line and around the mountain city. The ES area was abundant
in the coastal region, but the usage of harbor resources accelerated the transformation
process. Besides this, urbanization inspired ecological tourism demand from citizens, and
ES around the mountains was developed. It formed many resorts combining ecology and
life, which became one of the important sources of the ES–LS patches.
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factors; (b) marginal effect of factor with a contribution degree over 10%.

In Figure 12a, relief intensity and elevation are the main contributing factors for the
transformation of PS–LS, with contributions of 57.21% and 33.21%, respectively. It can
be seen that natural factors, especially topographic features, are the main reasons for the
transferring process. The visualized marginal effect shows that the two factors played a
positive role in the transformation process when the relief intensity was less than 70 m and
the elevation was less than 1050 m (Figure 12b). The effect intensity peaked when the index
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level was lower. Living functions are distributed at the flat and low-altitude area, and the
priority of LS is higher than that of PS, so the PS at the edge of the living space is invaded.
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3.5.2. Increasing Nature Transfer Results

In the process of PS–ES (Figure 13a), elevation, relief intensity, distance to capital
and distance to roads were the main influencing factors. All contributing rates were
over 10%. Elevation contributed the most, 30.16%. The marginal impact process of each
index was analyzed. When the elevation was less than 200 m, it had a positive effect
on the transferring process, and when it was more than 1750 m, it had a negative effect.
When the relief was less than 100 m, the impact was negative, and when it was more
than 100 m, the impact can be ignored. Within 72 km of capitals, the effect was positive.
As to the distance to roads, it was negative within less than 350 m and positive within
350–1350 m. The transfer of PS–ES, on the one hand, came from the ecological restoration
of agricultural space unsuitable for cultivation through the policy of returning farmland
to forest. On the other hand, it came from the demand for ES in the process of high-level
urban area expansion.

The transfer from LS to PS was affected by elevation and distance to capitals, con-
tributing 59.76% and 25.26%, respectively (Figure 14a). The positive influence process
mainly occurred within an elevation of 150 m and 70 km to capitals. When the distance to
capitals was more than 70 km, the positive influence was changed into the negative and it
disappeared when the distance was over 260 km (Figure 14b).

In addition to the above two indexes, the distance to water surface played a signifi-
cant role in the transition of LS–ES, which contributes more than 20% (Figure 15a). The
contribution rates of elevation and distance to capitals are 34.33% and 24.73%, respectively.
The marginal effect is also different, a positive effect was found in elevation below 150 m,
within 63 km of capitals and 400 m to water surface (Figure 15b).

The transfer of LS to PS and ES is caused by the adjustment of spatial layout and the
control of ES protection. The original LS is gradually hollowing out due to the migration
of residents to cities and the decline of natural fertility, which seems to show the need for
cancellation. As for inefficient LS, most of the patches will be restored to agricultural PS to
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ensure the country’s bottom-line requirement of 1.2 million km2 of farmland scale. The
other kind of LS close to ecological elements (such as rivers) was forced to withdraw due
to ecological risks caused by ecological encroachment to protect ecological integrity.
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4. Discussion
4.1. The Dual Selection between PLES and Regional Endowment

Based on the above results, it was not difficult to find that LS in the study area enjoyed
the optimal endowment level, which is concentrated in the region with flat terrain, superior
location conditions and high facility popularity, followed by PS. LS and PS were higher than
the regional endowment level. ES was in a weak position in the functional competition. The
terrain fluctuation was too large. Some ES patches cannot be used for production or living
functions, so they retained certain natural attributes and became ES. It can be considered
that the living function is the foundation of rural spatial organization, and the safety and
comfort of the living environment is the primary rule to construct the relationship between
residents and land. Production function was derived from the guaranteed LS. The study
area was the main agricultural farming space in China. The spatial configuration of the
traditional farming mode was mainly concentric, which was formed by rural settlements
and cultivated land within the farming radius. It explained the endowment advantage of
production space.

From the perspective of endowment types, the endowment of natural elements limited
the space in the choice of functions, especially in the natural endowment of sensitive LS
and the PS. This sensitivity limited the infinite expansion of production and living demand
and kept some ES as an important role for the sustainable development of regional balance.
Location factors demonstrated the attraction in moving from an urban area to a rural
area, especially with the rural living demand for high-grade town nodes. It constituted
the dual flow pattern and regional spatial connection. In the urban–rural system, urban
areas can be regarded as higher-level LS. More advanced urban areas can provide better
living services and greater ecological demand, which explains why the distance to capital
had a great impact on the naturally rising transformation types. Facility was an artificial
element type in regional endowment and was also a new element constantly updated
during the man–land relationship evolution. Facility elements were double-sided. On
the one hand, they were dependent on rural development and beneficial to living and
production functions. However, on the other hand, new facilities occupy land, which was
easy to have a negative impact of cutting patches while reducing the mitigation effect of ES
and increasing the risk of ES decreasing.
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4.2. Mechanism in the PLES Transferring Process

In the interaction between regional endowment and PLES pattern, firstly, there was
no doubt that regional endowment determines the type of PLES. In particular, natural
features such as elevation and topographic relief determine the cost of space utilization.
At the earliest, people preferred to develop areas with lower development costs. When
people obtained enough LS and PS to support basic life, other spaces in the region retained
their natural properties and formed ES. At that time, the basic pattern of PLES was formed,
which was adapted to the population size, productivity level and science and technology.
Then, with social development, including cognitive progress in politics and the scientific
and cultural level, changes in the population scale, tools and techniques, agricultural
product demand and other aspects were reflected in the demand for the scale of PLES.
This led to the deviation of the segment level of regional endowment factors among PLES
types. This deviation did not touch on the decisive fundamental role of endowment on
PLES but only resulted in a small-scale shift of functional space type. It also formed a
new appropriate relationship between regional endowment and PLES. The evolution of
this suitable relationship was the dynamic performance of the human–land relationship
system, and the continuous modification in shifting made the coordination between human
cognition, resources and environment and PLES landscape. Then, it reached the goal
of sustainable development. So far, it can be considered that the relationship between
PLES and regional endowment is a dynamic combination of natural dominance and
non-natural change.

4.3. Implications for Territory Spatial Planning

PLES is an important concept of sustainable development in territory spatial layout.
China put the concept that provided a template planning of sustainability to the world. It
represented the evolution from the attention of economic development to the coordination
of social, economic and ecological functions. In the BTH region, the endowment priority
of LS and PS showed that the development of past decades has ignored the importance
of ecology. Preferential spatial resources were allocated to the expansion of settlements
and agricultural production. Although there had been a positive ecological trend around
high-grade urban areas, there was no significant improvement in other rural areas, which
indicated that the protection and optimization of ES still need to be extended to a broader
region and the importance of ecological protection needs to be further emphasized. Ex-
tending this framework to other regions and countries, the cumulative curve can be used
to evaluate the suitability of functional landscape, and the BRT model could identify the
importance among regional endowments. In general, this study can be used as a means
to evaluate the performance of territorial spatial planning and the optimization results of
PLES periodically in the future. It could help realize the real-time adjustment of territorial
spatial planning schemes and the periodic review of local government actions.

4.4. Research Deficiency and Limitation

By analyzing the relationship between rural PLES and the level of regional endowment
factors, this study analyzed the characteristics and mechanisms of rural PLES patterns.
However, there are still some deficiencies in the research. Firstly, there are several classifi-
cation methods of PLES in past studies. This study chose the basic method by reclassifying
the land use types for further analysis. This is a common method, but it ignored some fea-
tures of land versatility and needs to be improved in the follow-up research. Secondly, the
suitability level of PLES for regional endowment selection overlaps in the research results,
so it is necessary to refine the overlapped part and accurately locate the type threshold.
Although the cumulative curve and the BRT model can meet the technical needs of this
research, the results obtained are too simple to show the analysis process. Therefore, it is
difficult to present deeper rules. In the future, more appropriate methods and accurate
results should be the goal of the next step.
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5. Conclusions

In this study, the preference of PLES for regional endowments in BTH was identified.
Firstly, LS enjoyed the priority of endowment selection, occupying the space with the best
regional characteristics in the study area. PS was next and higher than the overall level of
the research area. ES had the lowest priority. Secondly, PLES transfer occurred in a small
area, mainly from PS to ES. Elevation is the main influencing factor in all shifting processes.
After dividing transferring types into a decreasing nature set and increasing nature set, we
found that natural decreasing transfer was influenced mainly by terrain features and that
the distance to capitals was involved in all processes of increasing nature transfer. For the
BTH region, the importance of ecology needs to be emphasized, especially in the vast rural
areas far from the provincial capital. The preference law of PLES for regional endowment
characteristics should be reasonably used in sustainable development planning in the
future so as to accomplish the coordination of production, living and ecology.
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