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Grzegorz Kłys

Received: 14 October 2021

Accepted: 2 November 2021

Published: 5 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Département des Sciences Fondamentales, Université du Québec à Chicoutimi,
Saguenay, QC G7H 2B1, Canada; Pascal_Sirois@uqac.ca (P.S.); Jean-Francois_Boucher@uqac.ca (J.-F.B.)

2 Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue,
Rouyn-Noranda, QC J9X 5E4, Canada; nicole.fenton@uqat.ca

* Correspondence: alyson.gagnon1@uqac.ca

Abstract: Mining activities generate residues during the ore concentration process. These wastes are
placed into large tailing storage facilities, and upon mine closure, these tailings must be reclaimed.
This study aimed to determine how different reclamation methods, involving combinations of
planted boreal woody species and organic amendments application (paper mill sludge biosolids,
chicken manure, and topsoil) affected plant community diversity at two tailing storage facilities in
Québec, Canada. We recorded the composition of the plant communities using the percent cover
of plant species within 1 m × 1 m quadrats. At the Niobec mine site, paper mill sludge mixed
with topsoil enhanced total plant cover was compared with the use of topsoil only; the former
amendment, however, reduced evenness (J′) and diversity (1−D) due to the increased growth of
grasses and invasive forbs. At the Mont-Wright site, plots having received paper mill sludge mixed
with a “Norco” treatment (a mixture of chicken manure, hay, and grass seeds) produced the highest
total plant cover. The Norco treatment mixed with topsoil and the single application of topsoil
and biosolids produced the highest evenness (J′) and diversity (1−D). Overall, organic amendment
applications promoted vegetation cover on tailings and contributed to the colonization of diverse
plant communities.

Keywords: biodiversity; vegetation; reclamation; mine; tailings; organic amendment; plantation;
paper mill sludges; chicken manure; topsoil

1. Introduction

Mining activities produce mining rock wastes (tailings) that can cover vast areas.
In Québec (Canada), these tailing storage facilities cover over 13,000 ha [1]. Tailing im-
poundments are among the most damaging and longest-lasting environmental liabilities
of the mining industry [2]. Their creation converts productive ecosystems into degraded
landscapes, representing a loss of ecological services, such as wildlife habitat, nutrient
cycling, and carbon sequestration [3–6].

Reclamation efforts by the mining industry aim to mitigate some of these environmen-
tal impacts by accelerating plant colonization on tailing storage facilities. Re-establishing
ecological functions is challenging because multiple factors limit colonization, including
soil compaction, low soil organic matter content, soil erosion as well as the poor nutrient
availability and low water-holding capacity of the wastes [7–10]. Standard reclamation
methods include the use of amendments and the seeding of herbaceous plants to favor
colonization [11–16]. This method allows the establishment of a rapid protective vegetation
cover that helps limit erosion, as requested by the guidelines for preparing mine closure
plans in Québec [17]. Although this business-as-usual (BAU) minimal requirement can
initiate the reclamation process, the planting of trees combined with the application of
organic amendments and the seeding of herbaceous plants could benefit even more the
reclamation of tailings.
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Plantations on mining sites may initiate natural succession, help integrate former
mining sites into natural forested landscapes, and increase carbon sequestration [18,19].
Plantations also modify the microclimate in the understorey, which influences the colonis-
ing plant community [20–23]. For instance, a tree canopy decreases light availability. This
shading reduces the growth of grasses, which compete with tree seedlings [8,24]. Few stud-
ies have examined the role of plantations in enhancing understorey biodiversity on mine
sites; however, the limited available data suggest that planting native trees on degraded
landscapes fosters more diverse plant communities [23,25].

Organic amendments can enhance soil fertility and increase plant success on reclaimed
sites [5,11,26]. Their application on tailing storage facilities can increase tree survival [2],
biomass, and coverage of understorey vegetation [26–30]. When applied at high rates,
however, amendments can negatively influence plant communities by, for example, de-
creasing richness and diversity [31–33]. In Québec, Canada, various organic amendments
are used to reclaim mining sites. Topsoil, as an amendment, is often available on site, as it
is collected when the tailing storage facility is created or enlarged. Topsoil can enhance
soil conditions on tailings in the short term by increasing C and N concentrations and
enhancing microbial activity [34]. However, this amendment is not always available in
sufficient quantities and is often stockpiled before being applied, which can lead to its
compaction and decreased seed viability [29,35–37]. As an alternative to topsoil, paper
mill sludge biosolid (PMS), a by-product of the pulp and paper industry, represents a
potential source of organic amendments for tailing reclamation, in particular because PMSs
are presently landfilled and, therefore, lost to other uses [38,39]. Animal manure is another
amendment used to increase crop productivity in agriculture; it could also benefit plant
growth on reclaimed tailing storage facilities [27,29].

The major goal of mine site reclamation is to enhance site conditions and establish
an ecosystem to a near-predisturbance state [37]. Evaluating progress towards this goal
requires comparing the reclaimed plant community to a “natural” state at a similar suc-
cessional stage. In the boreal forest, the greatest plant diversity is found in the forest
understorey, a layer dominated by vascular plants, mosses, and lichens [40–42]. Nonethe-
less, cyclical and frequent natural disturbances, such as wildfires and insect outbreaks,
continually modify the composition of these communities [43]. These frequent distur-
bances allow reclaimed mine site communities to be compared with naturally disturbed
understorey communities; for example, Errington and Pinno [44] used post-fire forests as
natural references to capture the first years of plant community succession following the
removal of the forest canopy and understorey vegetation. Post-fire reference plots located
close to tailing storage facilities can serve as valid points of comparison for recovering
plant communities.

Although organic amendments and plantations are expected to benefit multiple as-
pects of tailing storage facility reclamation in the boreal region, little is known about their
effect on plant community diversity in these settings. We hypothesised that (1) reclamation
of mine tailing storage facilities through the planting of woody species, the seeding of herba-
ceous plants, and the use of soil organic amendments produces a greater plant diversity
relative to the business-as-usual minimal requirements, which rely on seeding herbaceous
plants and applying amendments; (2) reclamation methods using tree planting, herbaceous
plants, and amendments establish plant communities more similar to those found on re-
cently naturally disturbed reference sites (i.e., 11 years post-fire) than the business-as-usual
method. We compared the effect of various organic amendment applications (topsoil, PMS,
and chicken manure) on the response of the understorey plant community (total percent
cover, richness, evenness, diversity, and functional-group abundance) at two mine tailing
storage facilities in Québec, Canada, and compare these reclaimed plant communities with
natural reference sites.
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2. Materials and Methods
2.1. Site Description

We collected field data in 2018 at two tailings storage facilities in Québec, Canada.
The first site is located at a niobium mine (Niobec, Inc., Saint-Honoré, QC, Canada) in
St-Honoré, Saguenay (48◦32′ N, 71◦08′ W). This site lies within the balsam fir–yellow birch
bioclimatic domain of the boreal zone [45]. The region receives 934.5 mm of precipitation
annually (of which 223 mm is snow) and has a mean annual temperature of 2.8 ◦C [46]. The
second site is situated at an iron mine tailings facility operated by ArcelorMittal Mining
Canada at Mont-Wright, Fermont (52◦46′ N, 67◦20′ W). This mine lies within the spruce–
lichen bioclimatic domain [45]. The region receives 839.5 mm of precipitation annually
(of which 428.7 mm falls as snow) and has a mean daily temperature of −3.1 ◦C [47]. At
both sites, the tailings are non-acidic (pH 7–8) with a relatively coarse texture (150–180 µm).
Our experimental plots were established on slopes of 15% at the Niobec mine and 10% at
Mont-Wright.

We compared our reclaimed sites with recent post-fire natural reference sites, which
were previously forested stands. We selected the reference sites, one per mining site,
according to their proximity to the respective mine sites and the time since the last fire
disturbance. Given the very limited number of reference sites fitting our criteria, our
selected natural reference sites did not burn in the same years as the reclamation (2012 at
Niobec and 2015 at Mont-Wright) within our experimental sites. Near the Niobec mine, our
reference site was a mixed forest stand that burned in 2007 (48◦29′30.4′′ N, 71◦00′53.3′′ W),
and the Mont-Wright reference stand was a young black spruce forest that burned in 2007
(52◦15′11.0′′ N, 67◦41′27.5′′ W).

2.2. Experimental Design

At the Niobec tailing storage facilities site, we established, in 2012, a complete ran-
domized block and factorial design (split-split-plot) with four replicates. We tested ten
reclamation treatments involving combinations of organic amendments (topsoil or topsoil
paper mill sludges (PMS) mixture) and revegetation with trees (larch (Larix laricina (Du
Roi) K. Koch), paper birch (Betula papyrifera Marshall), red pine (Pinus resinosa Aiton), a
treatment with the three mixed tree species (larch, paper birch, and red pine), and a control
without trees).

At the Niobec site, a 10 cm layer of topsoil was spread onto the tailings from an
all-terrain vehicle (Caterpillar D10) and evened out over the ground. The vehicle operator
also removed any large rocks found within the topsoil. The topsoil had been excavated
from another area of the tailing facility and stockpiled for two years prior to its use. We
split each block (25 m × 600 m) into two main plots. Each plot was randomly attributed
to one of two organic amendment treatments: (1) no application of amendment or (2) the
application (and rototilling) of PMS (obtained from Resolute Forest Products, Jonquière,
Québec; see Table 1 for its chemical characteristics) at a rate of 35 Mg(dry)·ha−1. The PMS
used contained a very low concentration of heavy metals (analyses not shown), according
to Canadian standards [48]. We, then, divided each main plot into five equal subplots
(25 m × 60 m) in which we planted 40 to 60 cm-tall trees at a density of 2250 trees·ha−1

(2 × 2 m spacing). We selected the tree species based on 11 criteria, including tolerance to
drought, nutrient requirements, and cost (unpublished data), which had been developed
by Niobec, Inc. We randomly attributed one of five selected tree covers to each subplot.
The tree cover was either (1) no trees planted; (2) Larix laricina; (3) Pinus resinosa (specimens
of both Larix laricina and Pinus resinosa were obtained from the Normandin nursery of
the Québec Ministry of Forests, Wildlife and Parks); (4) Betula papyrifera (obtained from
the Boucher nursery, St-Ambroise, Québec); (5) a mixture of all three tree species. We,
then, seeded all plantation plots with clovers (Trifolium spp.) at a rate of 50 kg·ha−1. A
clover treatment (without tree) represents the business-as-usual reclamation scenario at the
Niobec site.
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Table 1. Chemical characteristics of amendments used to reclaim tailing facilities at the Niobec and
Mont-Wright tailing storage facilities.

Site Niobec Mont-Wright
Amendments PMS PMS Norco (Chicken Manure)

pH 7.64 7.47 -
C:N ratio 23.3 29 8.4

Total C (g·kg−1) 350.0 464 295.65
Total N (g·kg−1) 15.0 16.00 36.5
Total P (g·kg−1) 2.182 2.200 10.77
Total K (g·kg−1) 0.830 0.880 18.98

For the Mont-Wright site, reclamation began on the tailing storage facility in 2013.
About half of the reclaimed block received a “Norco” treatment representing a mixture of
chicken manure (5 Mg·ha−1), hay, and herbaceous seeds (grass and forb seeds spread at a
rate of 220 kg·ha−1; see Juge and Cossette [49] for the composition of the seed mix). We
established our experimental plots on the Mont-Wright tailing facilities in 2015 and applied
a randomized block design with six amendment treatments, repeated in three blocks
(156 m × 25 m; see Table 1 for the chemical characteristics of the applied amendments).
Each plot measured 26 m × 25 m. The amendments included topsoil, PMS, and the
Norco treatment (chicken manure). The topsoil was collected in 2015 from another area
of the tailing facility, and we applied the topsoil to the appropriate plots to a depth of
approximately 10 cm using an all-terrain vehicle, as done for the Niobec site. PMS had been
landfilled with ash before its recovery and application (the PMS was obtained from Resolute
Forest Products, Baie-Comeau, Québec; see Table 1 for PMS chemical characteristics). We
removed the woody debris (stumps and branches) from all plots.

The six treatments were randomly assigned to six main plots. These treatments
consisted of (1) a five-year Norco mixture (N5; plots reclaimed with Norco in 2013), (2)
PMS applied at a rate of 50 Mg(dry)·ha−1, (3) PMS applied at a rate of 50 Mg(dry)·ha−1

on top of the N5 treatment (PMS50+N5), (4) topsoil, (5) topsoil on top of the N5 treatment
(topsoil+N5), and (6) a three-year Norco mixture (N3; plots amended with Norco in 2015).
The application of the Norco treatment alone is the business-as-usual approach used at the
Mont-Wright site.

We selected a combination of local tree and shrubs species (jack pine (Pinus banksiana
Lambert), green alder (Alnus alnobetula subsp. crispa (Aiton) Raus), and a hybrid poplar
(Populus sp. Clone 915318)) on the basis of a preliminary greenhouse-based study in-
vestigating tree survival and growth (results not shown)49. We planted this mixture of
species on all experimental units. Jack pine and hybrid poplar were obtained from the
MFFP (Normandin nursery). We obtained green alder from the Girardville nursery (Gi-
rardville, Québec), and these alders were inoculated with Frankia (an N-fixing bacteria) at
the Université du Sherbrooke, Québec.

2.3. Vegetation Survey

We conducted test replicates to determine the appropriate quadrat size for vegetation
samplings. We confirmed that a 1 m2 quadrat makes accurate estimates for our sites. A
quadrat was set in the center of each experimental unit on the tailing sites. At the reference
sites, we established three quadrats aligned along cardinal directions (north, south, and
west) at 3 m from the site center. Within each quadrat, we assessed plant communities
between June and August 2018 by visually determining the cover (%) of these species six
years (Niobec) and three years (Mont-Wright) post-reclamation. We assessed the combined
cover; therefore, the percent cover for a quadrat can exceed 100%. Species were identified
to the lowest possible taxonomic level. The inventory included vascular plants, mosses,
and lichens. For both sites, the same person conducted all surveys. We collected a sample
of each species to confirm its identification in the laboratory (at the vegetation and animal
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ecology lab at the Université du Québec à Chicoutimi, the bryology lab at Université du
Québec en Abitibi-Témiscamingue, and the Louis-Marie Herbarium at Université Laval).

2.4. Statistical Analysis

Statistical analyses were conducted using R software, version 3.6.1 [50]. Total percent
cover, species richness (S), Pielou’s evenness (J′), and Simpson’s diversity (1−D) were
calculated using the “vegan” package [51]. We assessed the data for homogeneity of
variance and transformed data when necessary (only richness at Mont-Wright was log-
transformed). Sources of variation for the Niobec site were: (1) number of blocks (n = 4;
random), (2) amendment application (PMS35+topsoil and topsoil; n = 2; fixed), and (3) the
type of woody species used in plantations (L. laricina; P. resinosa; B. papyrifera; a mixture
of these tree species; the no plantation control; n = 5; fixed). Sources of variation at the
Mont-Wright site were: (1) number of blocks (n = 3; random) and (2) treatments applied
(PMS50, PMS+N5, topsoil, topsoil+N5, N3, N5; n = 6; fixed).

We used ANOVA to test for differences between plant community responses in terms
of total percent cover, S, J′, 1−D, and functional groups (grasses, forbs, and mosses). We
ran post hoc tests (estimated marginal means (least-squares means)) when the effects
were significant (p < 0.05). We analyzed community structures via multivariate analyses
based on Bray–Curtis dissimilarity distances and matrices. Species assemblage data were
transformed through square-root transformation, as suggested by Clarke and Warwick [52].
To reduce noise in the dataset, we removed single-occurrence taxa before performing
our analyses. We tested for differences in community structure among treatments using
permutational multivariate analysis of variance (PERMANOVA). We then used non-metric
multidimensional scaling (NMDS) to display dissimilarities between samples on a two-
dimensional ordination. Finally, we ran SIMPER to identify the discriminant species that
could explain differences in diversity between treatments at the Niobec site. We did not
perform any statistical analyses on the reference sites because these sites were not part
of the experimental design. The results measured at the references sites were used as
indicators to make comparisons between natural disturbed sites and reclaimed mine sites.

3. Results

We identified 60 taxa at the Niobec site, including both native and non-native species
(see Appendix A for the species list). Forbs belonged to 12 families, the most abundant
family being Asteraceae. We also identified ten grasses, nine moss, and three woody
species that differed from those normally used in the plantations. At the Mont-Wright site,
we identified 38 species, a site characterized by a high richness of grass (8) and moss (11)
species. The identified forbs belonged to eight families (mostly native Ericaceae), and we
found two lichen genera (see Appendix A for the species list).

3.1. Influence of Amendments and Tree Plantations on Plant Community Response at the
Niobec Site

Tree plantations and the interaction between tree plantations and amendment appli-
cation had no influence on plant community response at the Niobec site. However, the
amendment application alone influenced total percent cover, evenness (J’), and diversity
(1−D) (Table 2). Plots reclaimed with both topsoil and PMS contained significantly higher
plant cover than plots treated only with topsoil (70.5% vs. 41.9%, respectively, p < 0.001)
(Figure 1). Amendment application did not influence richness; however, evenness and
diversity decreased with both topsoil and PMS application compared with topsoil appli-
cation alone (Table 2; Figure 1). This pattern suggests that diversity declined because of
the decrease in evenness related to the dominance of some species rather than a change in
species number.
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Table 2. Summary of two-way ANOVA of the effect of amendments (topsoil+PMS35 and topsoil) and tree plantations (L.
laricina, P. resinosa, and B. papyrifera, a mixture of these tree species, and the no plantation control) on total percent cover,
richness (S), Pielou’s evenness (J′), and Simpson’s diversity index (1−D) at Niobec.

Source df F-Ratio p-Value Source df F-Ratio p-Value

Total percent cover Richness (S)
Amendment 1 22.240 <0.001 Amendment 1 1.1287 0.2975

Tree 4 1.4354 0.2493 Tree 4 0.4907 0.7425
Amend. × Tree 4 1.0716 0.3898 Amend. × Tree 4 0.5975 0.6676

Total 39 Total 39
Evenness (J′) Simpson’s diversity (1−D)

Amendment 1 22.2440 <0.001 Amendment 1 6.4453 0.0166
Tree 4 1.4354 0.2493 Tree 4 0.5226 0.7198

Amend. × Tree 4 1.0716 0.3898 Amend. × Tree 4 0.4317 0.7846
Total 39 Total 39
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statistical differences between treatments following post hoc tests, and brackets on each bar correspond to the standard
error (the reference site was not included in the statistical analysis).

Total plant cover in plots amended with combined topsoil and PMS was most similar
to that on the reference site (Figure 1). However, evenness and diversity on plots amended
with topsoil only were more similar to those for the reference plots than for plots amended
with a combination of topsoil and PMS (Figure 1).
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PERMANOVA revealed community structure based on Bray–Curtis dissimilarities dif-
fered between plots that received a mixture of PMS and topsoil and those that received topsoil
only (p < 0.001, Table 3). The interaction between tree plantation and amendment applica-
tion did not significantly influence community structure. The NMDS representation of the
community structure (Figure 2) shows a visually acceptable representation (stress = 0.222) of
differences between community structures on the basis of amendment treatments. SIMPER
found 13 species that explained 72.2% of the dissimilarity between treatments (topsoil+PMS35
and topsoil) (Table 4). These species included the invasive species Tussilago farfara, Sonchus
arvensis, Vicia cracca, and Cirsium arvensis as well as taxa of the Poaceae family (grasses) and the
moss species Brachythecium campestre (Table 4; Figure 3).

Table 3. PERMANOVA testing of community structure in relation to the effect of amendment
application (PMS35+topsoil and topsoil) and tree plantation (L. laricina, B. papyrifera, P. resinosa, a mix
of the three species, and the no-tree control) at the Niobec site.

Source of Variation df Pseudo F-Value p (Perm) Permutations (n)

Amendment 1 3.9162 <0.001 9999
Tree 4 0.7734 0.8203

Amendment × Tree 4 0.6824 0.9238
Residual 30

Total 39
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Table 4. Dissimilarity (%) of the species assemblages between amendment treatments (topsoil+PMS35 and topsoil) at the
Niobec site using SIMPER analysis of square-root transformed data.

Functional Group Taxa Contribution to Average Between-Group
Dissimilarity (%) Cumulative Contribution (%)

Topsoil+PMS35 vs. Topsoil

Forb Tussilago farfara 10.54 10.54
Grass Poaceae 8.70 19.24

Moss Brachythecium
campestre 8.21 27.45

Forb Sonchus arvensis 7.00 34.45
Forb Vicia cracca 6.52 40.97
Forb Cirsium arvense 5.11 46.08
Forb Melilotus spp. 5.09 51.17
Forb Oenothera spp. 4.73 55.90
Grass Agrostis spp. 4.18 60.08

Forb Euthamia
graminifolia 3.76 63.84

Forb Rubus idaeus 2.98 66.82
Forb Equisetum arvense 2.84 69.66
Moss Bryum spp. 2.58 72.24
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3.2. Influence of Amendment on Plant Community Response at Mont-Wright

Amendment application at Mont-Wright significantly influenced the total percent
cover, J′, and 1−D (Table 5). The application of PMS only, topsoil only, and the N3 treatment
produced similar percent covers (Figure 4). The treatments that included the five-year
Norco treatment (N5, PMS50+N5, and Topsoil+N5) produced the highest total percent
cover (Figure 4). However, these treatments produced a lower evenness and diversity
compared with treatments that did not include the use of Norco. PMS50+N5 produced
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the most distinct plant community response (total percent cover, evenness, and diversity)
relative to the reference site (Figure 4).

Table 5. Summary of one-way ANOVA of the effect of amendment application (PMS50, PMS50+N5, topsoil, topsoil+N5,
N3, N5) on total percent cover, richness (S), Pielou’s evenness (J′), and Simpson’s index (1−D) at the Mont-Wright site.

Source df F-Ratio p-Value Source df F-Ratio p-Value

Total percent cover Richness (S)
Treatment 5 7.7602 0.0032 Treatment 5 1.6147 0.2543

Total 15 a Total 15 a

Evenness (J′) Simpson’s diversity (1−D)
Treatment 5 28.462 <0.001 Treatment 5 18.96 <0.001

Total 15 a Total 15 a

a n = 15. We excluded two plots that were buried under tailing deposits because of wind erosion and had no plant cover.
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Figure 4. Mean (a) total percent cover, (b) richness (S), (c) Pielou’s evenness (J′), and (d) Simpson’s
diversity (1−D) in relation to reclamation treatments (PMS50, PMS50+N5, topsoil, topsoil+N5, N3,
and N5) (±SE; n = 3) at the Mont-Wright site. Letters represent statistical differences between
treatments following post hoc tests, and brackets on each bar correspond to the standard error. The
reference site was not included in the statistical model.

PERMANOVA revealed that community structure differed significantly among treat-
ments (p < 0.001, Table 6), and NMDS illustrated that community structure in treatments
having a topsoil amendment differed most from the other treatments (Figure 5). Although
we could not calculate the 95% confidence interval ellipses because of too few data points,
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the stress index value of 0.145 confirmed the NMDS as a good visual representation of
community dissimilarity.

Table 6. Summary of PERMANOVA of the effect of amendment application (N3, N5, PMS50,
PMS50+N5, topsoil, and topsoil+N5) on species assemblages at the Mont-Wright site.

Source df R2 F-Value p-Value Permutations (n)

Treatment 5 0.62862 3.3853 <0.001 9999
Residual 10 0.37138

Total 16 1.00000
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Figure 5. Non-metric multidimensional scaling (NMDS) representation of community structure on
the according to amendment application (N3, N5, PMS50, PMS50+N5, topsoil, topsoil+N5) at the
Mont-Wright site.

3.3. Influence of Amendment on Functional Groups

At the Niobec site, grasses (p = 0.050) and mosses (p = 0.698) shared similar percent
covers for both reclamation treatments. However, the abundance of forbs was significantly
higher in plots amended with both PMS and topsoil than in plots amended with topsoil
only (p = 0.008; Figure 6). At the Mont-Wright site, forbs percent cover was similar for
all treatment plots (p = 0.3469). The PMS50+N5 mixture produced a higher abundance of
grasses (p < 0.001) relative to the other treatments, whereas plots having topsoil mixed with
5-year-old Norco (Topsoil+N5) showed a higher abundance of mosses (p = 0.008; Figure 6).

Plant communities at both reference sites were dominated by forbs with limited to
quasi-absence of mosses and grasses (Figure 6). Although forbs were the most abundant
functional group at the Niobec site, the Mont-Wright mining site contained few forbs.
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Figure 6. Total percent cover of functional groups (grasses, forbs, and mosses) in relation to reclamation treatments at the
Niobec (treatments: topsoil+PMS35, topsoil, reference sites) (n = 4) and Mont-Wright (treatments: PMS50, PMS50+N5,
topsoil, topsoil+N5, N3, N5, and reference sites) (n = 3) sites.

4. Discussion
4.1. Total Percent Cover

At the Niobec site, adding PMS to topsoil increased total percent plant cover relative to
only topsoil as an amendment. This response could be attributed to the high mineralizable
organic N content in PMS (C:N ratio of 23.3), as N-addition can increase plant productivity
in terrestrial ecosystems [32,53,54]. Young et al. [2] showed a high utilization of organic
N by plants following a 5.3 Mg·ha−1 PMS application (their PMS having a similar C:N
ratio as ours) mixed with a low fertilizer rate on gold tailings in Manitoba, Canada. They
also measured a positive response of total plant cover to the PMS treatment, which they
attributed to increased aggregate stability and microbial activity related to the organic
C provided by the PMS. Microbial activity is often used as an indicator of soil fertility
because it induces biogeochemical processes, such as N mineralization, that favour plant
growth [8,54,55]. In addition, Shipitalo and Bonta [55] measured an increase in plant
growth at a higher PMS application rate (136 dry Mg·ha−1) on coal tailings in Ohio, United
States. The authors noted that PMS significantly reduced runoff and soil erosion, and they
observed no nutrient loss.

At the Mont-Wright sites, plots amended with the five-year Norco treatment had a
higher total percent cover of plants than other treatment plots that were amended three
years before measurements. This response could be attributed to the longer elapsed
time after the N5 treatment application because organic amendments require biological
processes to make nutrients available for plant uptake [56]. The slow nutrient release
associated with organic amendments, especially at this more northern site, could also
explain why the use of topsoil only, PMS only, and the three-year Norco treatment had
similar total plant coverage [29]. Cold temperatures limit nutrient release, as microbial
metabolism and the subsequent decomposition rate of organic matter are reduced in cooler
conditions [57,58]. The presence of seeds within the Norco treatment did not influence the
success of plant establishment after 3 years, as plots with the three-year Norco treatment
had a similar total percent cover as the other treatments.

4.2. Richness, Evenness, and Diversity

At both sites, plots in which amendments produced the highest total percent cover
also had the lowest evenness and diversity values. Although amendment application
influenced some plant community responses, it did not influence richness. Other studies
reported no change in richness on mining sites or degraded grasslands following nutrient
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addition [33,59,60]. This response does not coincide with the generally accepted “hump-
backed model” (HBM), which states that increasing net primary production eventually
leads to a decrease in richness [32,54,61]. Adler et al. [62], who also did not observe the
humpback pattern of richness within their multiple sites, suggested that there might be bet-
ter drivers for richness than productivity, such as resources supply rate, disturbance, habitat
heterogeneity, biogeographic, and assembly history. Species that colonize nutrient-poor
sites also react differently to nutrient addition than species that colonize richer sites [63].
Species that establish in nutrient-poor conditions are equivalent competitors for nutrients;
therefore, an increase in primary production allows their coexistence and delays competi-
tive exclusion [64]. Species richness tends to decrease more slowly with nutrient addition
in such nutrient-poor sites because the effect of this added resource is initially expressed
by a change in species abundance, which leads to an initial decrease in evenness and
diversity [31,64].

At the Niobec site, the application of PMS on topsoil increased the abundance of
invasive forbs, grasses, and the moss Brachythecium campestre. These species appear well
adapted to colonize tailings, as reported at many reclaimed mine sites [24,37]. Similarly,
at Mont-Wright, mosses known to colonize perturbed sites, such as Ceratodon purpureus,
Polytrichum juniperinum, and Polytrichum piliferum, grew well [37,65].

4.3. Functional Groups

At the Niobec site, forbs grew better on plots amended with topsoil and PMS than on
plots amended with topsoil only. This response related to the enhanced presence of invasive
species, mostly forbs, according to the SIMPER analysis. At Mont-Wright, the 5-year Norco
and PMS (PMS50+N5) enhanced grass abundance. This enhanced grass response related to
the highest soil nutrient content (results not shown), stemming from this amendment and
the applied seed mix being composed mostly of grasses. Nutrients enhance the growth of
C3 grasses and reduce the growth of forbs and legumes [66]. Topsoil mixed with the Norco
mixture enhanced moss abundance. The heterogeneous microtopography created by the
topsoil could have contributed to the increase in performance of this functional group.
The microtopography may have created microclimates that retained humidity, producing
conditions that are more favorable for mosses [37,67]. It should also be noted that wind
erosion was particularly high at the Mont-Wright site, as evidenced by the two excluded
plots being buried by off-experiment tailings because of wind.

Both sites differed in their functional-group abundance relative to their respective
reference sites. The relatively older communities of the reference sites and the poorer
environmental conditions on tailings probably contributed to the differences in plant
diversity between the experimental and reference sites. Results also show that topsoil use
on tailings increases moss abundance. Although mosses are associated with a healthy
ecosystem under natural succession within the boreal forest, and they have been frequently
reported, less is known about their presence on tailings [37,43]. Errington and Pinno [44]
also found distinct communities on mining sites reclaimed with either a forest floor–mineral
mix or peat–mineral mix. Dhar et al. [37] found that the differences between sites could
be attributed to the biological legacies of fires (surviving trees, snags, logs, patches of
intact vegetation, seed banks in tree crowns, or the soil), which lead to the development of
competitive and structured communities that are more resistant to species invasion than
tailing communities lacking this predisturbance memory.

4.4. Tree Plantations

Very little empirical evidence has shown that plantations contribute to reclaiming
biodiversity on mine sites, and plant community responses vary among studies. Nonethe-
less, reviews by Barbier et al. [25] and Bremer and Farley [23] present a more positive
effect on the biodiversity of native tree plantations on degraded lands compared with other
plantation types in other ecosystems. Our results at the Niobec site do not support this
positive influence, however, as our plantations did not affect any of the measured plant
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community responses (total percent cover, S, J′, and 1−D). Felton et al. [68] identified that
factors such as plantation characteristics, proximity to native vegetation, and previous land
use influence biodiversity establishment in plantations, which could explain the lack of
a general pattern among studies. For instance, tree spacing can play an important role
in mediating plant facilitation by changing microclimatic conditions in the understorey,
such as temperature, moisture, and light availability, which influence plant community
composition [20,22,25,43,65].

We also observed no short-term differences in plant diversity between mixed and
pure plantations. There is little evidence that mixed plantations favor a higher diversity
than monocultures on mine sites [69]. Further research is required, however, to assess
the longer-term influence of different plantation types on plant diversity and evaluate
the potential of this reclamation method on tailings. It should be noted that six years
post-planting at the Niobec site, we did not observe any canopy closure and the associated
light interception (results not shown).

Finally, although plantations may not increase plant diversity, it should be noted
that their use could provide other benefits, such as facilitating the establishment of other
native tree species, integrating tailings into the surrounding forested landscapes, providing
wildlife habitat, and increasing carbon sequestration [18,24,70].

5. Conclusions

Our study showed that the application of an organic amendment had a significant in-
fluence on plant community response (total percent cover, J′, and 1−D) at both mine tailing
sites (Niobec and Mont-Wright mines, Québec), whereas plantations did not produce any
community response at the Niobec site. The application of PMS on topsoil produced less
diverse communities than the use of the business-as-usual topsoil-only minimal method,
six years after the reclamation. At the Mont-Wright site, the early response of vegetation
(three years post-reclamation) showed that the combination of the Norco treatment (chicken
manure, hay, and herbaceous seeds) with topsoil and the application of topsoil only or
biosolids only resulted in the highest values of evenness (J′) and diversity (1−D).

Plant communities on tailings were distinct from those found on post-fire forest
reference stands. We measured a higher proportion of mosses and grasses at the Niobec
site than its reference site. At Mont-Wright, topsoil enhanced the abundance of mosses,
and plots that received the Norco treatment mixed with PMS contained a high abundance
of grasses. Natural sites contained mostly forbs. Our results provide valuable insight
regarding the influence of different reclamation methods on the plant communities of
reclaimed mine sites. Further research should explore the longer-term influences of these
amendments in other climate zones and applied at different rates, including cost–benefit
analyses on the selection of different organic amendments for tailing reclamation.
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Appendix A

Table A1. List of the species found at Niobec and Mont-Wright.

Niobec Mont-Wright

Taxon Functional Type Taxon Functional Type

Tussilago farfara Linnaeus Forb Vicia cracca Linnaeus Forb
Cirsium arvense (L.) Scopoli Forb Rumex acetosella Linnaeus Forb

Euthamia graminifolia (L.) Nuttall Forb Vaccinium oxycoccos Linnaeus Forb
Sonchus arvensis Linnaeus Forb Vaccinium angustifolium Aiton Forb

Oenothera Linnaeus Forb Chamaenerion angustifolium (L.)
Scopoli Forb

Taraxacum officinale F.H. Wiggers Forb Gaultheria hispidula (L.) Muhl. ex Big. Forb
Vicia cracca Linnaeus Forb Equisetum pratense Ehrhart Forb
Solidago rugosa Miller Forb Rhododendron canadense (L.) Torrey Forb

Solidago canadensis Linnaeus Forb Kalmia polifolia Wangenheim Forb
Leucanthemum vulgare Lamarck Forb Ranunculus acris Linnaeus Forb
Erigeron philadelphicus Linnaeus Forb Taraxacum officinale F.H. Wiggers Forb

Prunella vulgaris Linnaeus Forb Trifolium repens Linnaeus Forb
Equisetum arvense Linnaeus Forb Stellaria graminea Linnaeus Forb

Melilotus spp. Miller Forb Unknown plant 1 Forb
Fragaria spp. Linnaeus Forb Unknown plant 2 Forb

Plantago lanceolata Linnaeus Forb Unknown plant 3 Forb
Pilosella aurantiaca (L.) F.W. Schultz and

Schultz Bip. Forb Unknown plant 4 Grass

Trifolium spp. Linnaeus Forb Poaceae Barnhart Grass
Medicago lupulina Linnaeus Forb Phleum pratense Linnaeus Grass

Urtica dioica Linnaeus Forb Agrostis spp. Linnaeus Grass
Rubus idaeus Linnaeus Forb Festuca spp. Linnaeus Grass

Rubus pubescens Rafinesque Forb Poa spp. Linnaeus Grass
Geum spp. Linnaeus Forb Bromus spp. Linnaeus Grass

Verbascum thapsus Linnaeus Forb Elymus repens (L.) Gould Grass
Achillea millefolium Linnaeus Forb Avenella flexuosa (L.) Drejer Grass

Ranunculus acris Linnaeus Forb Anthoxanthum odoratum L. Grass
Vaccinium angustifolium Aiton Forb Ceratodon purpureus (Hedw.) Brid. Moss

Fallopia convolvulus (L.) Á. Löve Forb Polytrichum juniperinum Hedw. Moss
Thalictrum spp. Linnaeus Forb Polytrichum piliferum Hedw. Moss

Unknown plant 1 Forb Dicranum condensatum Hedw. Moss

Unknown plant 2 Forb Pleurozium schreberi (Willd ex Brid.)
Mitt Moss

Unknown plant 3 Forb Pohlia nutans (Hedw.) Lindb. Moss

Unknown plant 4 Forb Pohlia camptotrachela (Renauld and
Cardot) Broth. Moss

Unknown plant 5 Forb Pogonatum urnigerum (Hedw.)
P.Beauv. Moss

Unknown plant 6 Forb Pogonatum dentatum (Menzies ex
Brid.) Brid. Moss

Unknown plant 7 Forb Racomitrium canescens (Hedw.) Brid. Moss
Unknown plant 8 Forb Sphagnum spp. Linnaeus Moss
Unknown plant 9 Forb Cladoniae spp. Lichen
Poaceae Barnhart Grass Peltigera spp. Lichen

Phleum pratense Linnaeus Grass
Agrostis spp. Linnaeus Grass
Festuca spp. Linnaeus Grass

Calamagrostis canadensis (Michaux) Palisot de
Beau. Grass

Elymus repens (Linnaeus) Gould Grass
Hordeum jubatum Linnaeus Grass

Phalaris arundinacea Linnaeus Grass
Poa spp. Linnaeus Grass
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Table A1. Cont.

Niobec Mont-Wright

Taxon Functional Type Taxon Functional Type

Carex bebbii (L.H. Bailey) Olney ex Fernald Grass
Carex spp. Linnaeus Grass

Abies balsamea (Linnaeus) Miller Tree
Picea mariana (Miller) Britton, Sterns and

Poggenburgh Tree

Thuja occidentalis Linnaeus Tree
Brachythecium campestre (Müll.Hal.)

Schimp. Moss

Pohlia nutans (Hedw.) Lindb. Moss
Barbula convoluta Hedw. Moss

Hypnum cupressiforme Hedw. Moss
Ceratodon purpureus (Hedw.) Brid. Moss
Thuidium recognitum (Hedw.) Lind. Moss

Aneura pinguis (L.) Dumort. Moss
Unknown plant 10 Moss
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