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Abstract: Rapid urban expansion and the alteration of global land use/land cover (LULC) patterns
have contributed substantially to the modification of urban climate, due to variations in Land Surface
Temperature (LST). In this study, the LULC change dynamics of Kano metropolis, Nigeria, were
analysed over the last three decades, i.e., 1990–2020, using multispectral satellite data to understand
the impact of urbanization on LST in the study area. The Maximum Likelihood classification method
and the Mono-window algorithm were utilised in classifying land uses and retrieving LST data.
Spectral indices comprising the Normalized Difference Vegetation Index (NDVI) and Normalized
Difference Built-up Index (NDBI) were also computed. A linear regression analysis was employed
in order to examine the correlation between land surface temperature and the various spectral
indices. The results indicate significant LULC changes and urban expansion of 152.55 sq. km
from 1991 to 2020. During the study period, the city’s barren land and water bodies declined by
approximately 172.58 sq. km and 26.55 sq. km, respectively, while vegetation increased slightly
by 46.58 sq. km. Further analysis showed a negative correlation between NDVI and LST with a
Pearson determination coefficient (R2) of 0.6145, 0.5644, 0.5402, and 0.5184 in 1991, 2000, 2010, and
2020 respectively. NDBI correlated positively with LST, having an R2 of 0.4132 in 1991, 0.3965 in 2000,
0.3907 in 2010, and 0.3300 in 2020. The findings of this study provide critical climatic data useful to
policy- and decision-makers in optimizing land use and mitigating the impact of urban heat through
sustainable urban development.

Keywords: land-use change; urban expansion; urban climate; geospatial mapping; spectral indices;
remote sensing; GIS

1. Introduction

The rapid increase in the global rate of urbanisation and subsequent changes in
the land use/land covers (LULC) of different cities have substantially influenced the
conditions of urban environments [1–6]. The various changes in land use attributed to the
remarkable growth and expansion of urban areas have continuously attracted widespread
global concern, especially in cities of the developed and developing countries, mainly as
a result of the massive reduction in biodiversity, alteration of local climatic conditions,
and development of surface urban heat islands (UHI) [7–9]. The consequences of these
trends have led to a decrease in air quality, compromised water resources [10], increased
energy consumption [11,12], and damage to human health due to the higher heat stress
associated with increased land temperatures in urban centers [13–15]. Other environmental
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consequences of land-use changes include the breakdown of ecological cycles and an
increase in greenhouse gas emissions that contribute to climate change [16–18]. Therefore,
it is evident that urban expansion due to population growth has contributed significantly
to the transformation of urban climate.

Globally, the urban population has increased rapidly over the last few decades, from
only 30% in 1950 to over 55% in 2018 [19]. United Nations estimates indicate that in the
next 29 years, i.e., in 2050, the global urban population can be expected to rise above 68%.
The highest growth is anticipated to occur predominantly in Asia and Africa. Countries
like India, China, and Nigeria will have an estimated urban population of approximately
416 million, 255 million, and 189 million, respectively [20]. This growth could increase
land surface temperatures, leading to the development of Urban Heat Islands (UHI) in
these geographical areas [21]. The emergence of urban heat islands that influence urban
climate can be attributed to the transformation of land uses and the rapid urbanisation
of cities [22–25]. Urban Heat Islands have gradually become a common global theme,
with LST increasing faster in urban centers than in rural areas [26–30]. This phenomenon
mainly results from the transition of vegetated lands into impervious surfaces covered by
buildings, roads, and other infrastructural facilities [31]. The generation of anthropogenic
heat from industrial plants, automobile exhaust, and other urban heating and cooling
facilities has also contributed to the development of UHI effects [32–34]. The consequences
have influenced the urban environment and quality of life [35,36].

Therefore, studies on urban climatic management have become imperative, particu-
larly in rapidly growing cities seeking to mitigate climate change and achieve sustainable
urban development. Some studies have monitored the impact of land-use alterations on ur-
ban climatic conditions, employing LST data and spectral indices that include NDVI, NDBI,
and many others. In a study conducted in Noida city, India, the connection between land
cover changes and UHI was assessed using a statistical Pearson correlation of LST against
NDVI, NDBI, Albedo, and Emissivity [30]. The study’s result revealed that the change in
Nodia City’s temperature were mainly attributed to the increase in the city’s impervious
areas. Similarly, the spatio-temporal effect of LULC alterations on the surface UHI of Kandy
City, Sri Lanka, was monitored between 1996 and 2017 [37]. The result revealed a persistent
increase in impervious surfaces and a decreasing trend in the spatial extent of forest areas
that contributed to the mean LST increase of the study. In Odisha City, India, 25–50% of the
overall warming observed between 1981 and 2010 was attributed to changes in land uses,
with vegetational decrease contributing significantly to human-induced warming [38]. The
micro-climate of the Bangkok metropolitan region in Thailand was recently estimated
relative to the city’s future expansion [39]. The results showed that modification of the
vegetated areas in the city’s western region with low-rise and mid-rise buildings would
increase the future surface temperature of the region by approximately 1 to 2 ◦C. Other
studies conducted in Nigeria’s cities of Abuja [21] and Potiskum [40], China’s urban area
of Shenzhen [41], Turkey’s Sivas City [23], and five coastal cities in Pakistan [42] have
demonstrated the relationship between LULC changes and LST using various satellite data
and GIS techniques. However, comprehensive studies of cities in developing countries
such as Nigeria are still limited. Urban centres such as Kano Metropolis lack up to date
studies on the growing influence of land use/land cover changes to the local climate. Kano,
the economic, commercial, and agriculture hub of Northern Nigeria, has been growing
rapidly and experienced one of the highest urbanisation rates in Africa’s most populous
country. The metropolis has seen its population increase by about 1.98 million inhabitants
over the last three decades, leading to various land use alterations. Therefore, this study
analyses thirty years of LULC changes and their impact on urban climate using remotely
sensed data. The study aims to monitor the influence of LULC changes on the LST of
Kano metropolis between 1990 and 2020. The study will achieve this through the following
objectives: (i) analysing the changes in LULC over the last thirty years; (ii) estimating the
multi-temporal changes in NDVI, NDBI, and LST; (iii) examining LST variation as it relates
NDVI and NDBI.
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The study is structured into five sections: the first section discusses the theoretical
background; the second section explains the satellite data and methods utilised; the third
section analyses the decadal changes in LULC, and LST and the various spectral indices
comprising NDVI and NDBI; the fourth section discusses the implications of land cover
changes on the urban climate; finally, the fifth section presents the study’s conclusion.

2. Research Data and Methods
2.1. Study Area: Kano Metropolis, Nigeria

Kano Metropolis is located between latitudes 11◦ 51′ to 12◦ 08′ North and longitudes
8◦ 25′ to 8◦ 39′ East at an average altitude of approximately 472 m above sea level [43]. It is
situated centrally in Nigeria’s Northern region, about 900 kilometres from the edge of the
Sahara desert and approximately 1140 kilometres away from the Atlantic Ocean within
the Sudano-Sahelian Ecological Zone (SSEZ) of Nigeria [44]. The metropolis comprises
eight Local Government Areas, as shown in Figure 1. The city’s climatic condition is
characterised as a tropical wet and dry savannah, coded ‘Aw’ according to Koppen’s
climatic classification. The city’s seasonal changes occur between the wet and dry tropical
air masses, referred to as Inter-Tropical Discontinuity (ITD), which results in two distinctive
seasons [45]. The wet season often begins in June and ends around September annually,
while the dry season typically commences in October and ends around May. As such,
the climatic features of the city are similar to West Africa’s savannah region. The mean
annual temperature and rainfall data of the study area were obtained from the Automated
Weather Observation Station (AWOS) of the Nigerian Metrological Agency (Table A1). The
data indicated the yearly mean temperature to be between 26 ◦C to 28 ◦C for the study
period. The vegetation is categorised under the Sahel, Sudan, and Guinea savannah types
due to the natural surroundings and human activities [46]. Kano has a vast amount of
fertile agricultural land that supports numerous food and cash crops such as millet, rice,
sorghum, wheat, cowpeas, groundnut, and other vegetables. The metropolis is one of
Nigeria’s fastest-growing urban centres and has continuously attracted population due to
the city’s commercial and agricultural activities.

2.2. Satellite Data

The study was conducted using Landsat data, an archive containing satellite images
of continuous earth observation. Images from four different epochs were acquired freely
from the earth explorer portal (https://earthexplorer.usgs.gov/accessed on 5 June 2021)
of the United States Geological Survey (USGS) using a decadal interval, i.e., 1990, 2000,
2010, and 2020. However, the unavailability of the satellite image for 1990 led to the study
utilizing the subsequent year’s image, i.e., 1991. The study considered ten year intervals
due to the considerable growth and expansion of Nigeria’s urban centres over the study
period [47]. The images were obtained from Landsat 5 TM, Landsat 7 ETM+, and Landsat
8 OLI using Path 188, Row 52. Cloud-free images were downloaded, with a high spatial
resolution of 30× 30 m and a swath width of 185× 185 km. The images were georeferenced
to the Universal Transverse Mercator (UTM) projection zone 32 N based on the location
of the study area according to the World Geodetic System 1984 (WGS84). In the image
pre-processing operations, multispectral bands of the various satellite images were stacked
and clipped into the boundary of the study area. The specifications of the datasets used are
presented in Table 1. In addition, Table 2 presents the spectral bands used to retrieve the
study’s land surface temperature.

https://earthexplorer.usgs.gov/accessed
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Figure 1. The study area (Kano Metropolis, Nigeria).

Table 1. Satellite Dataset used in the study.

Acquisition Date Satellite
Name

Sensor
Type

Path/
Row

Cloud
Cover

Time
(GMT) No. of Bands Sun

Elevation
Sun

Azimuth

7 January 1991 Landsat 4 TM 188/052 0.00 09:07:30 7 41.2293 134.1903
4 March 2000 Landsat 7 ETM 188/052 0.00 09:35:35 8 55.2275 119.3095

28 February 2010 Landsat 7 ETM 188/052 0.00 09:35:00 8 53.9963 121.4230
16 February 2020 Landsat 8 OLI/TIRS 188/052 0.21 09:42:58 11 52.7192 129.2164

2.3. Methods

The methodology adopted involved three main procedures: image pre-processing (i.e.,
radiometric and atmospheric correction, layer stacking, and composite band selection,),
image classification, and accuracy assessment. The processes were carried out using ENVI
5.3 image-processing software. A change detection analysis involving deriving the decadal
LULC maps and a change analysis was also executed using ArcMap 10.7.1 software. The
NDVI, NDBI, and LST maps of the study area were further retrieved to analyse the influence
of urban expansion and LULC changes on urban climate. Finally, the implications of the
study’s results were highlighted.
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Table 2. Spectral information of satellite images.

i. Landsat 5 TM Spectral Bands

Band Number Band Name Spatial Resolution (m) Spectral Range (µm)

1 Blue 30 m 0.45–0.52
2 Green 30 m 0.52–0.60
3 Red 30 m 0.63–0.69
4 NIR 30 m 0.76–0.90
5 MIR 30 m 1.55–1.75
6 TIR (Thermal) 120 m 10.41–12.50
7 MIR 30 m 2.08–2.35

ii. Landsat 7 ETM+ Spectral Bands

Band Number Band Name Spatial Resolution (m) Spectral Range (µm)

1 Blue 30 m 0.441–0.514
2 Green 30 m 0.519–0.601
3 Red 30 m 0.631–0.692
4 NIR 30 m 0.772–0.898
5 SWIR 30 m 1.547–1.749
6 TIR (Thermal) 60 m 10.31–12.36
7 SWIR 30 m 2.064–2.345
8 Pan 15 m 0.515–0.89

iii. Landsat 8 OLI and TIRS Spectral Bands

Band Number Band Name Spatial Resolution (m) Spectral Range (µm)

1 Coastal/Aerosol 30 m 0.435–0.451
2 Blue 30 m 0.452–0.512
3 Green 30 m 0.533–0.590
4 Red 30 m 0.636–0.673
5 NIR 30 m 0.851–0.879
6 SWIR-1 30 m 1.566–1.651
7 SWIR-2 30 m 2.107–2.294
8 Pan 15 m 0.503–0.676
9 Cirrus 30 m 1.363–1.384

10 TIR-1 (Thermal) 100 m 10.60–11.19
11 TIR-2 (Thermal) 100 m 11.50–12.51

Source: Landsat Data Users Handbook (https://landsat.gsfc.nasa.gov/accessed on 11 November 2020).

2.3.1. Classification of Satellite Images

The radiometric and atmospheric corrected images were classified into four LULC
categories using a false colour band combination, i.e., bands 7, 5, and 3 for Landsat TM and
ETM+ and bands 7, 6, and 4 for Landsat OLI. These land cover classes comprise barren
land, built-up areas, vegetation, and water bodies, as described in Table 3. The changes
in LULC of an urban area can be attributed to various human activities and urbanization.
This change can be obtained by classifying satellite data through remote sensing and GIS
techniques that categorise image pixels into different LULC types. The classification of
satellite images helps in producing thematic maps at a specified period. Several classifi-
cation algorithms have been utilised previously by [48–52]. The spatial and quantitative
information in this study was retrieved using the supervised classification algorithm. The
Maximum Likelihood Classifier (MLC) was identified as the most prominent and robust
classification technique that relies on pixel spectral information for accurate and precise
land use/land classification [53,54]. Therefore, the study employed pixel-based maximum
likelihood supervised classification to analyse the study area’s land cover changes. The
available satellite image for 1991 was used as the starting point, while 2020 was the final
year, covering approximately 30 years. A minimum of 100 training samples was gener-
ated for each LULC category in order to train the Maximum Likelihood Classifier. The
algorithm was applied to the datasets, and thematic LULC maps were produced for 1991,

https://landsat.gsfc.nasa.gov/accessed
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2000, 2010, and 2020. Post-Classification Comparison (PCC) was carried out using the
procedures described in the literature for determining the quantitative changes in the
individual land-use/land cover categories [55–57].

Table 3. Description of the study’s LULC classes.

S/No LULC
Classes Description

1. Barren land Mainly comprises gravel pits, construction sites, and other degraded soils that are not fertile for
vegetation growth.

2. Built-up areas Includes areas dominated by human settlements containing residential, commercial, industrial, and
other infrastructural facilities.

3. Vegetation Includes areas comprising grasses, low vegetated lands, trees, scrublands, and agricultural land
having food and cash crops.

4. Waterbodies Comprises rivers, streams, lakes, reservoirs, and ponds

2.3.2. Accuracy Assessment of LULC Classification

The accuracy of the classified images was assessed using the confusion/error matrix
approach [58,59]. An equalised random sampling method was employed for an accurate
and unbiased assessment. Fifty stratified random points were created for each LULC class
in order to validate the study’s classified land cover distribution. Historical Google Earth
images were used for validating the actual ground truth conditions of the different land
uses in the study area. The accuracy of the land cover classification was assessed using
producer accuracy, user accuracy, overall accuracy, and the Kappa index of Agreement, i.e.,
Kappa coefficient. The producer’s accuracy is calculated as the sum of the total classified
pixels in the error/confusion matrix diagonals divided by the total classified pixels in the
column category. User’s accuracy is calculated by dividing the total sum of the correctly
classified pixels in error matrix diagonals by the total sum of classified pixels in the row
category. The overall accuracy is the ratio of the total correctly classified pixels by the total
sum of pixels in the error matrix. As discussed in previous studies, the Kappa coefficient is
the extent to which the reference data corresponds to the classified images [60]. The overall
accuracy and kappa coefficient were computed in this study using Equations (1) and (2).

Overall Accuracy (OA) =
∑r

i xii
x

(1)

where, xii are the diagonal samples of the error matrix, x is the total pixels in the error matrix

Kappa Coefficient = ∑r
i=1 xii −∑r

i=1 xi+x+1

n2 −∑r
i=1 xi+x+1

(2)

where r is the number of rows in the error matrix, xii are the observed number in row i and
column i, xi+ and x+1are the marginal sum of row i and column i, respectively, while n is
the total sum of pixels in the error matrix.

2.3.3. Normalised Difference Vegetation Index (NDVI)

The study employed the Normalised Difference Vegetation Index (NDVI) as an indica-
tor to evaluate the vegetation cover or amount of greenness in satellite images using the red
and near-infrared bands [61]. The NDVI usually varies between −1 and 1. Negative values
of NDVI signify non-vegetated, while positive values of NDVI represent areas having
vegetation cover [62]. The standard formula for retrieving NDVI was utilised in estimating
the study area’s vegetational cover, and was computed using Equation (3) [63].

NDVI =
(NIR − RED)

(NIR + RED)
(3)
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where NIR is the Near-Infrared Band (i.e., 0.76–0.90 µm for Landsat TM, 0.772–0.898 µm for
Landsat ETM+ and 0.851–0.879 µm for Landsat OLI) and RED is the Red Band (i.e., 0.63–0.69 µm
for Landsat TM, 0.631–0.692 µm for Landsat ETM+ and 0.636–0.673 µm for Landsat OLI).
The NDVI value usually ranges from −1 to 1. Low NDVI values signify non-vegetated
areas, while high NDVI values represent dense vegetation.

2.3.4. Normalized Difference Built-Up Index (NDBI)

The Normalized Difference Built-up Index (NDBI) extracted the study’s built-up areas,
as employed in previous literature [64–66]. The NDBI was calculated using Equation (4).

NDBI =
(MIR − NIR)
(MIR + NIR)

(4)

where MIR is the Mid-Infrared Band (i.e., 1.55–1.75 µm for Landsat TM, 1.547–1.749 µm
for Landsat ETM+ and 1.566–1.651µm for Landsat OLI) and NIR is the Near-Infrared
Band of Landsat TM (0.76–0.90 µm), Landsat ETM+ (0.772–0.898 µm) and Landsat OLI
(0.851–0.879 µm). The NDBI values range between −1 and 1, where negative values signify
waterbodies and positive values represent built-up/developed urban areas. Low NDBI
values usually denote vegetation cover.

2.3.5. Land Surface Temperature (LST)

The study employed the thermal infrared bands of the different satellite images as
established by Qin, et al. [67] to derive LST. The earth’s surface radiation was observed
using spectral reflectance ranging between 10.4 to 12.5 µm. The LST retrieval procedures
involved four major steps [68,69].

• Conversion of Digital Number values to Spectral Radiance

The digital numbers, i.e., the satellite images’ pixel values, were converted using the
scaling method into spectral radiance as presented in Equation (5) for Landsat TM and
ETM+ and Equation (6) for Landsat OLI.

Lλ =

(
LMax.λ − LMin.λ

QCal.Max −QCal.Min

)
× (QCal −QCal.Min) + LMin.λ (5)

Lλ = ML ×QCal + ∆L (6)

where Lλ = Spectral radiance (w·sr−1·m−3), LMax.λ = Spectral radiance scaled to QCal.Max i.e.,
DN value 255, LMin. λ =Spectral radiance scaled to QCal.Min i.e., DN value 1, QCal = Pixel
values of satellite images (Digital Number), QCal.Max = Quantitized and calibrated max-
imum pixel value that corresponds to LMax.λ, QCal.Min = Quantitized and calibrated
minimum pixel value that corresponds to LMin. λ, ML = Multiplicative scaling factor for
the radiance of the specific spectral band (x) obtained from the metadata of the dataset (i.e.,
RADIANCE_MULT_BAND_x), and ∆L = additive scaling factor for the radiance of the
spectral band (x) retrieved from the image’s dataset (i.e., RADIANCE_ADD_BAND_x).

• Conversion of Spectral Radiance to Temperature (in Kelvin)

This step involves the conversion of spectral radiance into brightness temperature (TB) i.e.,
the top of the atmosphere (TOA), using Planck’s Radiance Function. The brightness tempera-
ture (TB) also corresponds to the apparent surface temperature reaching the satellite sensor,
and is calculated using the standard formula presented in Equation (7) [69]:

TB =
K2

Log
(

K1
Lλ

+ 1
) (7)

where K1 and K2 = Calibration constants of thermal bands obtained from the image’s metadata
(Table 4), Lλ = Spectral radiance (w·sr−1·m−3), and TB = Brightness Temperature (in Kelvin).
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Table 4. Landsat Thermal Band Calibration Constant.

S/No. Satellite Thermal Band K1 (W·m−2·sr−1·µm−1) K2 (Kelvin)

1. Landsat 4 TM Band 6 671.62 1284.30
2. Landsat 7 ETM+ Band 6 666.09 1282.71
3. Landsat 8 OLI Band 10 774.89 1321.08
4. Landsat 8 OLI Band 11 480.89 1201.14

• Conversion of Temperature (in Kelvin) to Degrees Celsius

This step involves converting surface temperature from degrees Kelvin (◦K) to degrees
Celsius (◦C) using Equation (8).

TB ( ◦C) = TB(in Kelvin) − 273.15 (8)

• Estimation of Land Surface Temperature (LST)

The study’s LST was computed from the at-sensor brightness temperature using Equation (9):

LST( ◦C) =
TB

1 +
(

λ× TB
ρ

)
× Ln (ε)

(9)

where, TB = at sensor brightness Temperature, λ = emitted radiance wavelength (11.5 µm),
ρ = h× (c/σ) = 1.438× 10 2 mk (h = Planck’s constant (6.626× 10 34 JS), c = velocity of
light

(
2.998× 108m/s

)
and σ = Boltzmann constant (1.38× 10 23J/k) and ε is the surface

emissivity calculated using Equation (10).

Surface emissivity (ε) = 0.004 (Pv) + 0.986 (10)

where Pv is the proportion of vegetation retrieved using Equation (11).

Pv =

[
(NDVI−NDVImin)

(NDVImax −NDVImin)

]2
(11)

where NDVI = Normalised Difference Vegetation Index, NDVImin is the minimum value of
NDVI, and NDVImax is the maximum value of NDVI.

2.3.6. Correlation and Regression Analyses

A linear correlation (Pearson) analysis [70] was then performed in order to evaluate
the correlation between the LST component of urban climate and spectral indices that
include NDVI and NDBI. The LST values for the four time epochs under consideration
were extracted from each year’s image pixel at the individual points of the various spectral
indices. These points were then used as input data for the study’s model, and the relation-
ship between LST and land cover change dynamics was analysed. The methodological
procedures adopted for achieving the study’s objectives are summarised in Figure 2, which
shows the flowchart of the study.
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Figure 2. Methodological flowchart of the study.

3. Results and Discussion
3.1. Spatial Distribution of LULC Classes, Decadal Changes and Transitions

The distribution of land uses extracted using the supervised classification algorithm
indicates the land features during the different periods under the study to include barren
lands, built-up areas, vegetation, and water bodies, as illustrated in Figure 3. The results
presented in Table 5 and Figure 4 show the LULC classes and their statistical distribution.
In 1991, barren land occupied the most extensive area, having approximately 413.47 sq. km
(71.88%), followed by built-up areas with an area of 66.16 sq. km (11.50%) and closely
vegetated lands having an area of 63.68 sq. km (11.07%), respectively. Water bodies covered
31.93 sq. km, representing 5.55% of the city’s landmass. In 2000, barren land covered
approximately 71.32% of the study area’s landmass, followed by built-up areas, vegetation,
and water bodies having 16.78%, 9.77%, and 2.33%, respectively. This trend of LULC
pattern continued from 2010 to 2020 with a significant increase in built-up areas, from
139.26 sq. km (24.21%) to 218.71 sq. km (38.02%) and a decrease in barren land, from
355.78 sq. km (61.85%) to 240.89 sq. km (41.88%). Vegetation showed an inverse trend
during this period, increasing from 74.78 sq. km (13.00%) in 2010 to 110.25 sq. km (19.17%)
in 2020. This increase can be associated with the enormous investment in agricultural
activities over the last ten years, which contributed significantly to the alteration of land use.
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Figure 3. LULC Map for the years (a) 1991, (b) 2000, (c) 2010, and (d) 2020.

Table 5. Statistical Data of the LULC classes.

LULC Classes
1991 Area 2000 Area 2010 Area 2020 Area

Sq.km Percent Sq.km Percent Sq.km Percent Sq.km Percent

Barren Land 413.47 71.88 410.26 71.32 355.78 61.85 240.89 41.88
Built-up Areas 66.16 11.50 96.51 16.78 139.26 24.21 218.71 38.02
Vegetation 63.68 11.07 56.23 9.77 74.78 13.00 110.25 19.17
Water Bodies 31.93 5.55 12.24 2.13 5.42 0.94 5.38 0.93

Total 575.24 100.00 575.24 100.00 575.24 100.00 575.24 100.00

Figure 4. Graphical distribution of land uses for the years 1991, 2000, 2010 and 2020.
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The results of the decadal changes in land uses are shown in Table 6. In addition,
the losses and gains of the four LULC classes, alongside their net contributions to the
expansion of built-up areas, are illustrated in Figure 5.

Table 6. Decadal Net Changes of LULC classes.

LULC
Classes

1991–2000 2000–2010 2010–2020 1991–2020

Area
(km2) % Change Area

(km2) % Change Area
(km2) % Change Area

(km2) % Change

Barren Land −3.20 −0.78 −54.49 −15.31 −114.89 −47.69 −172.58 −71.64
Built-up Areas 30.34 31.44 42.76 30.70 79.45 36.33 152.55 69.75
Vegetation −7.45 −13.24 18.55 24.81 35.47 32.17 46.58 42.25
Water Bodies −19.69 −160.89 −6.82 −126.05 −0.04 −0.67 −26.55 −493.67

Figure 5. Net changes of the various LULC classes and their contributions to built-up areas (in sq.km) during the different
study periods.

The study results reveal that during period one, between 1991–2000, the city’s water
bodies saw the most significant net change, −19.69 sq. km (−160.89%), which comprises
an area loss of −25.38 sq. km (−79.49%) and a gain of 5.69 sq. km (46.48%). Vegetated land
saw a net change of −7.45 sq. km (−13.24%), which comprises an area loss of −28.4 sq. km
(−44.67%) and a gain of 21.00 sq. km (37.34%). Built-up areas saw a net change of 30.34
sq. km (31.44%), which comprises an area loss of −5.99 sq. km (−9.05%) and a gain of 36.33
sq. km (37.65%). Barren land witnessed a net change of −3.20 sq. km (−0.78%), which
comprises an area loss of 38.78 sq. km (9.38%) and a gain of 35.57 sq. km (8.67%). These
findings suggest the built-up areas have experienced the most significant increase among
the four land uses between 1991 and 2000, with barren land, vegetation, and water bodies
contributing 15.26 sq. km, 11.84 sq. km, and 3.24 sq. km, respectively.

During period two, between 2000 and 2010, water bodies observed a net change of
−6.82 sq. km (−126.05%), comprising of an area loss of −10.03 sq. km (−81.95%) and
a gain of 3.20 sq. km (59.19%). Vegetated land witnessed a decline of −22.48 sq. km
(−39.98%) and an increase of 41.03 sq. km (54.87%), a net increase of 18.55 sq. km (24.81%).
The city’s built-up areas witnessed a net increase of 42.76 sq. km (30.70%), comprising
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an area decrease of −13.46 sq. km (−13.95%) and an increase of 56.22 sq. km (40.37%).
Barren land experienced a net change of −54.49 sq. km (−15.31%), comprising an area loss
of −71.69 sq. km (−17.47%) and a gain of 17.21 sq. km (4.84%). The trend of the city’s
built-up areas witnessing the most substantial growth continued during this period, with
barren lands and water bodies declining. This led to the increase in built-up areas and
the transformation of 44.06 sq. km of barren land and 2.21 sq. km of water bodies into
urban areas.

In the third period, the city’s water bodies observed a slight net change of−0.04 sq. km
(−0.67%), comprising a decrease of −4.15 sq. km (−76.65%) and an increase of 4.11 sq. km
(76.49%). Vegetated land saw a loss of −28.52 sq. km (−38.14%) and a gain of 63.99 sq. km
(58.04%), resulting in a net increase of 35.47 sq. km (32.17%). The built-up areas saw a net
increase of 79.45 sq. km (36.33%), comprising an area decline of −10.02 sq. km (−7.20%)
and a gain of 89.47 sq. km (40.91%). Barren land witnessed a net change of −114.89 sq. km
(−47.69%), comprising an area loss of −120.91 sq. km (−33.98%) and a gain of 6.02 sq. km
(2.50%). Between 2010 and 2020, Barren land, vegetation, and water bodies contributed
65.14 sq. km, 12.14 sq. km, and 2.18 sq. km, respectively, to the growth and expansion of
the city’s built-up area.

The land cover distribution between 1991 and 2020 showed various losses and gains
during the study period, as illustrated in Figure 6. It indicates a −190.93 sq.km (−46.18%)
loss in barren land and a gain of 18.36 sq.km (7.62%). The city’s built-up area lost
−6.52 sq. km (−9.86%) and gained 159.07 sq. km (72.73%). Vegetation saw a loss of
−25.66 sq. km (−40.30%) and a gain of 72.24 sq.km (65.52%), while water bodies lost
−29.50 sq. km (−92.40%) and gained 2.95 sq.km (54.85%). Therefore, it is evident that built-
up areas experienced the most significant increase from 1991 to 2020, having 152.55 sq. km
urban growth. Barren land, vegetation, and water bodies contributed 126.99 sq. km,
12.83 sq. km, and 12.73 sq. km, respectively, to this expansion of built-up areas between
1991 and 2020. This development is attributed to the city’s rapid urbanization, and aligns
with previous studies which highlight the environmental challenge of urban modification,
i.e., increased land surface temperature due to LULC alterations [40,61,66,71].

These results demonstrate the various transitions of land uses from one class to an-
other, as presented in Figure 7. The most significant alteration is the transformation of
approximately 128.51 sq. km of barren land into built-up areas. This alteration could be
associated with the city’s population growth, which has contributed to massive infras-
tructural, residential, commercial, and industrial development. In addition, the enormous
investment in agricultural activities over the last 30 years in Kano Metropolis has con-
tributed substantially to the conversion of 59.97 sq. km of barren land into vegetated areas
with trees, shrubs, and agricultural land for the cultivation of various food and cash crops
such as groundnuts, rice, millet, maize, sorghum, wheat, etc. Other transitions in land uses
include the conversion of 17.69 sq. km of vegetation into built-up areas, the transformation
of 12.90 sq. km of water bodies into impervious surfaces of these built-up areas, and the
conversion of 9.17 sq. km of water bodies into barren lands.

3.2. Accuracy Assessment of Land Uses

The classified LULC maps were derived using the error/confusion matrix, as pre-
sented in Table 7. It shows the three accuracies and the Kappa coefficients for 1991, 2000,
2010, and 2020. Producer accuracy indicated the likelihood of reference image pixels being
correctly classified. User accuracy measured the probability of the classified image pixels
representing actual condition of the earth’s surface [58,72]. An overall accuracy above
85% suggests a satisfactory land cover classification. In this study, producer and user
accuracy improved for the different land uses, with the overall accuracy increasing from
88% in 1991 to 95% in 2020, indicating a good LULC classification. The artifacts observed
in the classified image of 1991 could be attributed to an image error that occurred during
the overpassing of satellite. However, the results of the overall accuracies are all above
satisfactory, implying that any such error could be neglected. The Kappa coefficients were
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also found to be 0.8137 in 1991, 0.8652 in 2000, 0.8891 in 2010, and 0.9190 in 2020, signifying
good agreement between classified maps and the actual ground conditions.

Figure 6. Losses and Gains in LULC classes from 1991–2020.

Figure 7. Land Use/Land Cover Transitions in Kano Metropolis, Nigeria (1991–2020).
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Table 7. Accuracy Assessment of classified LULC maps.

LULC
Classes

1991 2000 2010 2020

Prod Ac. User Ac. Prod Ac. User Ac. Prod Ac. User Ac. Prod Ac. User Ac.

Percent (%) Percent (%) Percent (%) Percent (%)

Barren Land 90.93 92.14 92.20 97.27 99.81 98.80 99.82 96.15
Built-up Areas 89.36 83.96 90.66 98.82 88.48 99.97 93.27 98.97
Vegetation 79.28 89.77 91.85 65.63 97.87 59.77 94.84 80.83
Water Bodies 77.91 87.58 91.85 67.81 98.04 38.61 92.25 96.75

Overall Accuracy 88.53% 91.71% 93.54% 95.24%

Kappa Coefficient 0.8137 0.8652 0.8891 0.9190

Note: Ac. = Accuracy.

3.3. Urban Expansion of Kano Metropolis

The built-up area development illustrated in Figure 8 indicates the study’s urban
expansion over the last 29 years. It shows an outward growth from the city’s central core
to the western, eastern, and southern parts of the metropolis, with the northern region
having developed the least. Generally, the urban area witnessed expansion in all directions
over the period between 1991 and 2020. The city’s built-up area covered a landmass of
approximately 66.16 sq. km in 1991, 96.51 sq. km in 2000, 139.26 sq. km in 2010, and
218.71 sq. km in 2020, respectively. Analysis of these results indicates that between 1991
and 2000, built-up area increased by approximately 30.34 sq. km, an increase of 3.37 sq. km
per annum. The city experienced a 42.76 sq. km increase in built-up areas between 2000 and
2010, resulting in 4.28 sq. km annual urban expansion. This further increased to 7.95 sq. km
per annum between 2010 and 2020. These results clearly show that the yearly increase in
built-up area from 2010–2020 is more than twice the annual urban growth from 1991–2000.
Hence, these findings imply slow urbanization within the first decade (i.e., 1991–2000)
compared to the last decade (i.e., 2010–2020). The main push and pull factors responsible
for this growth are related to the city’s commercial and agricultural activities.

3.4. Normalised Difference Vegetation Index

The NDVI maps derived using the satellite data of 1991–2020 are presented in Figure 9.
The results reveal a mean NDVI value of approximately 0.01, −0.25, −0.06, and 0.10 in
1991, 2000, 2010, and 2020, respectively. The study results indicate the NDVI values to
be between −0.30 and +0.43 in 1991. The NDVI values changed to −0.55 and +0.13 in
2000, while in 2010, the minimum and maximum NDVI values were −0.46 and +0.30.
The study further witnessed an alteration of NDVI in 2020 with minimum and maximum
values of −0.14 and +0.30, respectively. Previous studies indicate that areas with higher
NDVI values signify forest and vegetated lands having agricultural farms, while lower
NDVI values represent built-up areas and other land uses such as barren land and water
bodies [61,73]. The NDVI maps showed a substantial decrease in vegetation cover, with
lower NDVI values from 1991 to 2020. Built-up areas showed lower NDVI values than
other LULC classes during the study period. Therefore, the alteration of land uses may
have influenced the city’s vegetation cover. This aligns with a recent study that suggests a
continuous decline in NDVI with increased urban expansion [40].
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Figure 8. Urban Expansion of Kano Metropolis, Nigeria.

Figure 9. NDVI Maps of Kano Metropolis in (a) 1991, (b) 2000, (c) 2010, and (d) 2020.
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3.5. Normalized Difference Built-Up Index

The spectral index of the built-up area extraction was performed using NDBI and
presented in Figure 10, which shows the NDBI maps for 1991, 2000, 2010, and 2020. The
results indicate that NDBI values ranged from approximately −0.18 to +0.48 in 1991. In
2000, the lowest and highest NDBI values were −0.30 and +0.46, respectively. The varying
trend of NDBI continued in 2010 with minimum and maximum values of −0.48 and +0.52,
respectively. In 2020, the study area witnessed an NDBI value ranging between −0.25 and
+0.35. Furthermore, the results revealed a mean NDBI of 0.32 in 1991, 0.33 in 2000, 0.14
in 2010, and 0.06 in 2020. Therefore, the increase in the spatial coverage of built-up areas
observed around the city’s central core could be attributed to the outward growth and
development of settlements.

3.6. Land Surface Temperature

The results of the study’s LST, retrieved using the mono-window algorithm, is illus-
trated in Figure 11. It shows the variation of LST across Kano metropolis to be between
11.84 ◦C and 33.30 ◦C in 1991. In 2000, the LST values varied between 8.74 ◦C and 41.79 ◦C,
while in 2010, they ranged from 2.18 ◦C to 43.98◦ and, finally, were between 16.77 ◦C and
38.27 ◦C in 2020. These results indicate an increase in the city’s minimum and maximum
LST over the last three decades by approximately 4.93 ◦C and 4.97 ◦C, respectively. It
further reveals the mean LST of the study area to be about 30.32 ◦C, 33.96 ◦C, 37.30 ◦C, and
31.24 ◦C in 1991, 2000, 2010, and 2020, respectively.

Figure 10. NDBI Maps of Kano Metropolis in (a) 1991, (b) 2000, (c) 2010, and (d) 2020.
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Figure 11. LST Maps of Kano Metropolis in (a) 1991, (b) 2000, (c) 2010, and (d) 2020.

4. Implications of Land-Use Changes for Urban Climate

To examine the influence of urbanization and LULC changes on the LST component
of urban climate, thermal signatures of land use/land cover using spectral indices are
essential [74]. Therefore, this study employed various sampling points to compare the
relationship between LST and land spectral indices that include NDVI and NDBI. The
correlation and regression coefficients were determined by considering the study area’s
land surface temperature as the dependent variable and the two spectral indices as the
independent variable, i.e., vegetation cover index and built-up area index. The results of
the linear correlation between LST and the land spectral indices, i.e., NDVI and NDBI, for
the different years under consideration are presented in Figures 12 and 13. The Pearson’s
correlation clearly shows that LST is inversely related to NDVI and positively related to
NDBI. These results indicate a negative relationship between the city’s surface temperature
(LST) and its vegetation index (NDVI), having a determination coefficient (R2) of 0.6145 in
1991, 0.5644 in 2000, 0.5402 in 2010, and 0.5184 in 2020. The analysis of the linear regression
line suggests that higher land surface temperatures were associated with areas of low
vegetation cover, while lower land surface temperatures were observed in vegetated areas
with high NDVI. The result further revealed a positive correlation between LST and NDBI,
presenting a determination coefficient (R2) of 0.4132, 0.3965, 0.3907, and 0.3300 in 1991,
2000, 2010, and 2020.
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Figure 12. Correlation between LST and NDVI for the years (a) 1991, (b) 2000, (c) 2010, and (d) 2020.

Figure 13. Correlation between LST and NDBI for the years (a) 1991, (b) 2000, (c) 2010, and (d) 2020.

These findings align with previous studies in some geographical regions that presented
higher land surface temperatures in urban areas with impervious surfaces and lower
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temperatures in water bodies and agricultural lands [40,66,75]. The results of these studies
revealed that urban expansion has led to the continuous loss of vegetated lands and the
development of impervious surfaces. This has contributed to the higher LST experienced
in some urban centers and cities due to the increased absorption of solar radiation and
its conversion into heat [74,76]. The consequence of this development is the creation of
urban heat islands that negatively affect urban dwellers. Therefore, the findings of this
study, alongside the result of Figures 9–11, could help mitigate the effect of urban heat
islands in Kano metropolis by identifying areas having a higher LST. A statistical test for
significance level (alpha) was also conducted, which generally involved the setting of the
null hypothesis (H0) and an alternative hypothesis (H1). In this study, the null hypothesis
was the hypothesis of no correlation between the study’s variables. It signifies the non-
linear relationship between land surface temperature values and spectral indices, i.e., NDVI
and NDBI. The alternative hypothesis indicates the linear relationship between LST values
and spectral indices. The null hypothesis is rejected when the p-value is less than or equal
to 0.001 (p ≤ 0.001) [77]. The regression result indicates the p-values during the different
study periods to be less than 0.001 (Tables A2–A9), suggesting a linear relationship between
the study’s variables and strong evidence against the null hypothesis. Therefore, NDVI and
NDBI are statistically significant variables that influenced the LST of the Kano metropolis
over the last three decades. The areas around the city’s central core with built-up areas
and urban facilities have higher LST due to the impervious surfaces that expose such areas
to greater solar radiation. The findings align with recent studies which have opined that
the modification of land use due to various socio-economic factors has influenced local
climatic condition in urban areas [6,73,78]. Additional studies are therefore needed in order
to forecast and mitigate the environmental consequences of such changes.

5. Conclusions

This study analysed the influence of rapid urbanization and the decadal changes
in land uses on the urban climate of Kano Metropolis using satellite images from 1991,
2000, 2010, and 2020. The expansion of urban areas and the alteration of land uses were
monitored from 1991 to 2020. The relationship between LULC classes and land surface
temperature was evaluated using spectral indices such as NDVI and NDBI. The study
area witnessed substantial changes in the city’s barren lands, built-up areas, vegetation,
and water bodies due to the different push and pull factors that contributed to the urban
expansion and socio-development of the city. The LULC change detection results for the
last three decades revealed the city’s built-up areas and vegetation to have increased by
18.59% and 5.67%, respectively, while barren land and water bodies declined by 21.03%
and 3.23%, respectively. The spectral indices indicated higher NDVI in vegetated areas and
lower NDVI in built-up areas and barren lands. The results also indicated an increase in
the study area’s land surface temperature, which could be attributed to the changes in land
uses. Higher surface temperature values were witnessed in built-up areas and barren land,
mainly due to the city’s urban expansion and socio-economic development, which altered
the study area’s surface radiative properties. This phenomenon could also be attributed to
the growing influence of climate change. However, further research is necessary to confirm
this. The relationship between the LST component of urban climate and the thermal
signature of land uses revealed a negative correlation between LST and NDVI values and
a positive relationship between LST and NDBI values. High land surface temperatures
were observed in areas with low vegetation cover and high urban development. Therefore,
land surface temperature as an essential factor in urban climate are greatly influenced
by the change dynamics of LULC. The study’s findings would be of great use to urban
planners and decision-makers in undertaking comprehensive measures aimed at planning
urban growth in a rapidly growing metropolis. It will also assist in managing land uses by
adopting sustainable and heat-resilient strategies that seek to mitigate the environmental
challenges associated with urban climate.
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Appendix A

Table A1. Annual Mean Temperature (◦C) and Rainfall (mm) Data for the study periods.

S/
No

Study
Year

Temperature
(min.)

Temperature
(max.)

Average
Temperature

Rainfall
(mm)

1. 1991 19.88 33.20 26.54 1087.40
2. 2000 19.63 33.41 26.52 1109.00
3. 2010 20.84 34.37 27.61 1080.50
4. 2020 22.99 34.08 28.54 1050.90

Note: min. = minimum and max. = maximum. Source: Nigerian Meteorological Agency (NIMET).

Table A2. Regression Statistics between LST and NDVI for 1991.

(i) Regression Statistics

Multiple R 0.783869
R Square 0.61445
Adjusted R
Square 0.606069

Standard
Error 1.22293

Observations 48

(ii) ANOVA

df SS MS F Significance
F

Regression 1 109.6396 109.6396 73.31015 4.45 × 10−11

Residual 46 68.79567 1.495558
Total 47 178.4353

Coefficients Standard
Error t Stat p-value Lower

95%
Upper
95%

Lower
95.0%

Upper
95.0%

Intercept 30.56512 0.296372 103.1308 4.5 × 10−56 29.96855 31.16168 29.96855 31.16168
0.011494 −24.0009 2.803144 −8.56213 4.45 × 10−11 −29.6433 −18.3585 −29.6433 −18.3585
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Table A3. Regression Statistics between LST and NDVI for 2000.

(i) Regression Statistics

Multiple R 0.75125
R Square 0.564377
Adjusted R
Square 0.552913

Standard
Error 1.532181

Observations 40

(ii) ANOVA

df SS MS F Significance
F

Regression 1 115.5745 115.5745 49.23135 2.34 × 10−8

Residual 38 89.20803 2.34758
Total 39 204.7826

Coefficients Standard
Error t Stat p-value Lower

95%
Upper
95%

Lower
95.0%

Upper
95.0%

Intercept 25.31217 1.033444 24.49302 7.04 × 10−25 23.22007 27.40426 23.22007 27.40426
−0.251852 −28.4807 4.059099 −7.01651 2.34 × 10−8 −36.6979 −20.2635 −36.6979 −20.2635

Table A4. Regression Statistics between LST and NDVI for 2010.

(i) Regression Statistics

Multiple R 0.734998
R Square 0.540223
Adjusted R
Square 0.527796

Standard
Error 1.504349

Observations 39

(ii) ANOVA

df SS MS F Significance
F

Regression 1 98.38396 98.38396 43.47373 9.92 × 10−8

Residual 37 83.73347 2.263067
Total 38 182.1174

Coefficients Standard
Error t Stat p-value Lower

95%
Upper
95%

Lower
95.0%

Upper
95.0%

Intercept 31.68284 0.597515 53.02434 1.65 × 10−36 30.47216 32.89352 30.47216 32.89352
−0.09278 −34.1102 5.173338 −6.59346 9.92 × 10−8 −44.5924 −23.628 −44.5924 −23.628
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Table A5. Regression Statistics between LST and NDVI for 2020.

(i) Regression Statistics

Multiple R 0.720013
R Square 0.518419
Adjusted R
Square 0.508173

Standard
Error 1.211811

Observations 49

(ii) ANOVA

df SS MS F Significance
F

Regression 1 74.29841 74.29841 50.59529 5.51 × 10−9

Residual 47 69.01878 1.468485
Total 48 143.3172

Coefficients Standard
Error t Stat p-value Lower

95% Upper 95% Lower
95.0%

Upper
95.0%

Intercept 35.33758 0.533072 66.29044 4.4 × 10−48 34.26517 36.40998 34.26517 36.40998
0.124093 −36.9493 5.194582 −7.11304 5.51 × 10−9 −47.3994 −26.4991 −47.3994 −26.4991

Table A6. Regression Statistics between LST and NDBI for 1991.

(i) Regression Statistics

Multiple R 0.642842
R Square 0.413246
Adjusted R
Square 0.409334

Standard
Error 1.127524

Observations 152

(ii) ANOVA

df SS MS F Significance
F

Regression 1 134.3058 134.3058 105.6437 4.32 × 10−19

Residual 150 190.6965 1.27131
Total 151 325.0023

Coefficients Standard
Error t Stat p-value Lower

95%
Upper
95%

Lower
95.0%

Upper
95.0%

Intercept 23.731 0.620979 38.21546 3.32 × 10−79 22.50401 24.958 22.50401 24.958
0.305439 20.47092 1.991662 10.27831 4.32 × 10−19 16.53558 24.40626 16.53558 24.40626
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Table A7. Regression Statistics between LST and NDBI for 2000.

(i) Regression Statistics

Multiple R 0.629694
R Square 0.396514
Adjusted R
Square 0.392789

Standard
Error 1.5119

Observations 164

(ii) ANOVA

df SS MS F Significance
F

Regression 1 243.3059 243.3059 106.4404 1.69 × 10−19

Residual 162 370.3064 2.285842
Total 163 613.6122

Coefficients Standard
Error t Stat p-value Lower

95%
Upper
95%

Lower
95.0%

Upper
95.0%

Intercept 24.89345 0.865602 28.75855 1.56 × 10−65 23.18413 26.60277 23.18413 26.60277
0.309524 27.50474 2.665964 10.31699 1.69 × 10−19 22.24022 32.76926 22.24022 32.76926

Table A8. Regression Statistics between LST and NDBI for 2010.

(i) Regression Statistics

Multiple R 0.625042
R Square 0.390677
Adjusted R
Square 0.383246

Standard
Error 1.168795

Observations 84

(ii) ANOVA

df SS MS F Significance
F

Regression 1 71.8226 71.8226 52.57559 2.08 ×
10−10

Residual 82 112.0188 1.366083
Total 83 183.8414

Coefficients Standard
Error t Stat p-value Lower

95% Upper 95% Lower
95.0%

Upper
95.0%

Intercept 33.28701 0.671995 49.53458 7.07 ×
10−63 31.9502 34.62382 31.9502 34.62382

0.142857 33.24926 4.585534 7.250902 2.08 ×
10−10 24.12717 42.37134 24.12717 42.37134
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Table A9. Regression Statistics between LST and NDBI for 2020.

(i) Regression Statistics

Multiple R 0.574441
R Square 0.329983
Adjusted R
Square 0.324536

Standard
Error 1.295586

Observations 125

(ii) ANOVA

df SS MS F Significance
F

Regression 1 101.6817 101.6817 60.5774 2.48 × 10−12

Residual 123 206.4607 1.678542
Total 124 308.1424

Coefficients Standard
Error t Stat p-value Lower

95%
Upper
95%

Lower
95.0%

Upper
95.0%

Intercept 28.6737 0.368658 77.77867 1.9 × 10−106 27.94397 29.40344 27.94397 29.40344
0.006878 37.93102 4.87348 7.783149 2.48 × 10−12 28.28426 47.57777 28.28426 47.57777
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