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Abstract: Groundwater chemistry data are normally scarce in remote inland areas. Effective
statistical approaches are highly desired to extract important information about hydrochemical
processes from the limited data. This study applied a clustering approach based on the Gaussian
Mixture Model (GMM) to a hydrochemical dataset of groundwater collected in the middle Heihe
River Basin (HRB) of northwestern China. Independent hydrological data were introduced to
examine whether the clustering results led to an appropriate interpretation on the hydrochemical
processes. The main findings include the following. First, in the middle HRB, although groundwater
chemistry reflects primarily a natural salinization process, there are evidence for significant
anthropogenic influence such as irrigation and fertilization. Second, the regional hydrological cycle,
particularly surface water-groundwater interaction, has a profound and spatially variable impact on
groundwater chemistry. Third, the interaction between the regional agricultural development and
the groundwater quality is complicated. Overall, this study demonstrates that the GMM clustering
can effectively analyze hydrochemical datasets and that these clustering results can provide insights
into hydrochemical processes, even with a limited number of observations. The clustering approach
introduced in this study represents a cost-effective way to investigate groundwater chemistry in
remote inland areas where groundwater monitoring is difficult and costly.

Keywords: Gaussian mixture model; fuzzy clustering; hydrochemical processes; groundwater;
Heihe River Basin; regionalization

1. Introduction

Multivariate statistics have been widely used to analyze complex and high-dimensional datasets
in hydrological research [1–4]. Clustering, a robust classification scheme for partitioning a dataset
into homogeneous groups [5], is a typical multivariate statistics technique that has been used for
numerous hydrological applications, such as rainfall intensity estimation [6], drought frequency
analysis [7], stream turbidity predictions [8] and watershed regionalization [9]. Hydrochemical
datasets of groundwater samples usually include multiple attributes (e.g., concentrations of various
ions, isotopes or other chemicals) and therefore contain valuable information about a variety of
regional hydrochemical processes, including rock-water interactions [10], surface water-groundwater
interactions [11], evaporation [12], saltwater intrusion [13] and agricultural fertilization [14].
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Each groundwater sample is an observation of the system and can be treated as a realization of
the system’s random attributes.

Different clustering methods have been used to analyze multivariate hydrochemical groundwater
data [1,5,14–17]. These clustering methods fall into two main categories: heuristic data mining methods
and probability model-based methods [6]. Clustering methods can also be classified as “crisp” or
“hard” methods (i.e., an observation belongs exclusively to a single cluster) and “fuzzy” or “soft”
methods (i.e., an observation belongs to all clusters with different degrees of membership) [16]. In the
field of hydrology, heuristic methods are commonly used. Some heuristic methods, such as hierarchical
clustering methods [1,17] and k-means clustering [18], are “crisp”, whereas others, including the fuzzy
c-mean method [15,16], are categorized as “fuzzy”. In general, the fuzzy c-mean method is more
reliable for dealing with hydrochemical data than the “crisp” methods because the physical and
chemical properties of a hydrological system usually vary continuously (in both space and time) rather
than abruptly [16]. Because fuzzy clustering provides degrees of membership, rather than clear-cut
distinctions, it can better reflect the spatial continuity of a hydrological system.

Unfortunately, all heuristic methods have several major weaknesses. First, because “similarity”
is defined in heuristic methods in terms of measured distances, such as Euclidean distance [19],
observations belonging to similar correlations may be incorrectly grouped if they record long distances.
Second, the process of selecting an appropriate clustering method and determining its parameters
is usually subjective. There are no quantitative criteria to determine the distance metrics and key
clustering parameters, such as the number of clusters and the initial cluster centers. In contrast to
heuristic methods, model-based methods do not use distance measures. Instead, these models assume
that a given dataset contains several sub-populations that should be modeled separately and that
the overall population represents a mixture of these subpopulations [20]. Observations belonging
to the same sub-population should enter the same cluster. Each sub-population can be represented
by a parametric distribution (e.g., a Gaussian distribution), and the entire dataset can be modeled as
a mixture of multiple distributions [21]. Because model-based methods are not restricted to distance
measures and adopt a rigorous probability framework [22], they provide more reliable and meaningful
clustering results in certain situations. Figure 1 shows such an example. Additionally, model-based
methods can use quantitative criteria, such as the Bayesian Information Criterion (BIC), as objective
metrics to determine the best models and number of clusters [23,24]. It has been demonstrated
in other fields that model-based methods can overcome the limitations of heuristic methods [20].
However, model-based methods have rarely been applied to hydrological studies [14,25].Water 2017, 9, 723  3 of 19 

 

 
Figure 1. An example of the weakness of heuristic clustering methods. (a) Model-based methods such 
as Gaussian Mixture Model (GMM) can separate the two distinctive relationships of the two 
attributes, but (b) heuristic methods such as k-means clustering cannot. 

This study used GMM clustering on a hydrochemical dataset of groundwater samples collected 
from a semi-arid agricultural area in northwestern China. Its main objectives were to (1) investigate 
whether and how GMM clustering can be effectively used to address hydrochemical datasets in areas 
where both natural and anthropogenic factors exert significant effects on groundwater chemistry and 
(2) demonstrate how GMM clustering can produce an integrated understanding of basin-scale 
hydrochemical processes with a limited number of observations.  

2. Study Area 

The Heihe River is the second largest inland river in China, with a total length of approximately 
900 km. It originates within the Qilian Mountains, flows north and terminates at East Juyan Lake. 
The entire Heihe River Basin (HRB) (Figure 2a) consists of three distinctive parts: the mountainous 
upstream area, which is mainly located in Qinghai Province, the semi-arid midstream area with 
intensive oasis agriculture, which is mainly located in Gansu Province, and the downstream area, 
which mainly comprises the vast Gobi Desert in Inner Mongolia. On the main river, Yingluoxia and 
Zhengyixia (Figure 2b) are the separating points of upstream-midstream and midstream-
downstream, respectively. With a total area of approximately 130,000 km2, the HRB has an arid 
continental climate; its annual precipitation ranges from 50 to 300 mm. The Heihe River has more 
than thirteen tributaries, but some have lost their surface water connections with the main river. The 
interactions between surface water and groundwater are substantial and complex in the HRB [28]. 
The HRB has been affected by significant human-nature water conflicts (i.e., midstream vs. 
downstream, and agriculture vs. ecological services), as discussed in previous studies [28–30].  

This study focuses on the midstream area of HRB (Figure 2), which is a major part of the Hexi 
Corridor, a region that was once crossed by the famous ancient “Silk Road”. Its annual precipitation 
is only 100–150 mm, but it receives a significant amount of surface runoff from the Qilian Mountains, 
where the annual precipitation exceeds 350 mm [31]. The middle HRB has a long history of irrigated 
agriculture in its oases. Based on the water resource reports of the local government, farmlands have 
rapidly expanded over the past several decades, with agriculture now consuming more than 90% of 
this region’s water supply. Thus, industrial and domestic water uses have very limited impacts on 
the hydrological and hydrochemical processes in the middle HRB. To secure the environmental flow 
towards the lower HRB and restore the diminishing terminal lake, the central government enforced 
a tight restriction on surface water diversion for irrigation in 2000. However, as an immediate 
response to the flow regulation, groundwater pumping in the middle HRB has increased rapidly 
since 2000, causing groundwater drawdown and wetlands degradation in some areas. 

Figure 1. An example of the weakness of heuristic clustering methods. (a) Model-based methods such
as Gaussian Mixture Model (GMM) can separate the two distinctive relationships of the two attributes,
but (b) heuristic methods such as k-means clustering cannot.
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Selecting an appropriate probability model is essential for model-based clustering. The Gaussian
Mixture Model (GMM) has been widely applied to studies involving pattern recognition and
machine learning, information processing, data mining, and clustering [26]. This model has two
major advantages: first, it can adequately approximate a broad class of distribution functions,
and second, the mathematical form of the GMM simplifies the derivation of the subsequent parameter
estimation method [27].

However, the GMM has rarely been adopted in model-based clustering to explore hydrochemical
groundwater data. To the authors’ best knowledge, [14] represents the first attempt, but this
pioneering application left some important issues to be further investigated. In the case study of [14],
the groundwater chemistry was dominated by anthropogenic impacts, and only two ions were
considered to be attributes in the final model. Therefore, it remains unclear whether GMM clustering
can be used to understand more complicated hydrochemical processes (i.e., processes with both natural
and anthropogenic impacts). Additionally, the clusters of groundwater samples studied by [14] did not
record clear spatial patterns. Therefore, further work is needed to determine whether GMM clustering
can produce an integrated understanding of groundwater chemistry at a large scale.

This study used GMM clustering on a hydrochemical dataset of groundwater samples collected
from a semi-arid agricultural area in northwestern China. Its main objectives were to (1) investigate
whether and how GMM clustering can be effectively used to address hydrochemical datasets in areas
where both natural and anthropogenic factors exert significant effects on groundwater chemistry
and (2) demonstrate how GMM clustering can produce an integrated understanding of basin-scale
hydrochemical processes with a limited number of observations.

2. Study Area

The Heihe River is the second largest inland river in China, with a total length of approximately
900 km. It originates within the Qilian Mountains, flows north and terminates at East Juyan Lake.
The entire Heihe River Basin (HRB) (Figure 2a) consists of three distinctive parts: the mountainous
upstream area, which is mainly located in Qinghai Province, the semi-arid midstream area with
intensive oasis agriculture, which is mainly located in Gansu Province, and the downstream area,
which mainly comprises the vast Gobi Desert in Inner Mongolia. On the main river, Yingluoxia and
Zhengyixia (Figure 2b) are the separating points of upstream-midstream and midstream-downstream,
respectively. With a total area of approximately 130,000 km2, the HRB has an arid continental climate;
its annual precipitation ranges from 50 to 300 mm. The Heihe River has more than thirteen tributaries,
but some have lost their surface water connections with the main river. The interactions between
surface water and groundwater are substantial and complex in the HRB [28]. The HRB has been
affected by significant human-nature water conflicts (i.e., midstream vs. downstream, and agriculture
vs. ecological services), as discussed in previous studies [28–30].

This study focuses on the midstream area of HRB (Figure 2), which is a major part of the Hexi
Corridor, a region that was once crossed by the famous ancient “Silk Road”. Its annual precipitation is
only 100–150 mm, but it receives a significant amount of surface runoff from the Qilian Mountains,
where the annual precipitation exceeds 350 mm [31]. The middle HRB has a long history of irrigated
agriculture in its oases. Based on the water resource reports of the local government, farmlands have
rapidly expanded over the past several decades, with agriculture now consuming more than 90% of
this region’s water supply. Thus, industrial and domestic water uses have very limited impacts on
the hydrological and hydrochemical processes in the middle HRB. To secure the environmental flow
towards the lower HRB and restore the diminishing terminal lake, the central government enforced
a tight restriction on surface water diversion for irrigation in 2000. However, as an immediate response
to the flow regulation, groundwater pumping in the middle HRB has increased rapidly since 2000,
causing groundwater drawdown and wetlands degradation in some areas.
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Figure 2. The study area. (a) Its location in the Heihe River Basin; (b) the groundwater sampling sites; 
and (c) the groundwater table and flow. 

In the study area, from south to north, the sediments gradually change from coarse-grained 
gravel to medium and fine-grained sand and then to silt [32,33]. A fault along the foot of the Qilian 
Mountains largely prevents groundwater from flowing from the mountains into the basin laterally. 
Thus, streams from the mountain area are the main recharge source for the aquifers. In the south part 
of Minle County, the aquifer is formed from highly permeable cobble and gravel deposits with a 
thickness more than 200 m. The depths to the water table range from 50 to 200 m in Ganzhou district 
and 0.5–5 m in the north part of the floodplain (Linze and Gaotai Counties). Groundwater discharges 
to river or as springs at the middle part of the study area. In our previous study, we performed 

Figure 2. The study area. (a) Its location in the Heihe River Basin; (b) the groundwater sampling sites;
and (c) the groundwater table and flow.

In the study area, from south to north, the sediments gradually change from coarse-grained gravel
to medium and fine-grained sand and then to silt [32,33]. A fault along the foot of the Qilian Mountains
largely prevents groundwater from flowing from the mountains into the basin laterally. Thus, streams
from the mountain area are the main recharge source for the aquifers. In the south part of Minle County,
the aquifer is formed from highly permeable cobble and gravel deposits with a thickness more than
200 m. The depths to the water table range from 50 to 200 m in Ganzhou district and 0.5–5 m in the north
part of the floodplain (Linze and Gaotai Counties). Groundwater discharges to river or as springs at the
middle part of the study area. In our previous study, we performed integrated surface water-groundwater
modeling using GSFLOW [34] to study the complex water cycle of the HRB and its response to human
activities [29,31,35]. It has been found that this area has significant surface water-groundwater interaction,
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and the interaction is complicated by intensive pumping and irrigation [30,31,35]. Figure 2c plots the
groundwater table and flow directions based on Tian et al.’s model [28].

The surface water salinity increases from upstream to downstream, and the water type shifted
gradually from HCO3

−, SO4
2− to Cl−, mostly due to water-rock interactions [10,36–38], which is

typical of arid to semi-arid areas. Nonetheless, little attention has been paid to the groundwater
chemistry of this region. Some studies [10,32,33,39] provided basic descriptions of the hydrochemical
features of the entire basin, but none have performed in-depth investigations of the agricultural
area in the middle HRB. Additionally, the previous studies mostly discussed natural chemical
evolution processes while overlooking anthropogenic impacts. How the agricultural activities, such as
diversion, pumping, irrigation and fertilization, would impact the groundwater chemistry deserves
further investigation.

3. Materials and Methods

3.1. Sample Collection and Treatment

This study focuses on groundwater used for agricultural irrigation. In a field campaign in
August 2014, 73 groundwater samples were collected from irrigation wells (see Figure 2b) in Zhangye,
Jiuquan and Jinta Counties, which contain the majority of the population and agriculture in the
middle HRB. These wells were created for irrigation and mainly draw water from the uppermost
aquifer, which can provide sufficient groundwater for irrigation. Most of these irrigation wells
pump groundwater from unconfined shallow aquifers (in which the groundwater depth varies from
0.7 to 170 m) that interact with surface water. Therefore, these samples record important information
about anthropogenic impacts on the groundwater system. A few irrigation wells in Minle County
(Figure 2) draw groundwater at depths of 200–300 m.

At each sampling site, groundwater was pumped out for more than 15 min before any samples
were taken to clean the well tube. In the field, HCO3

− and CO3
2− contents were determined

using titration; and electrical conductivity, temperature and pH were measured using portable
equipment. When collecting samples for laboratory analysis, water was first filtered using a 45-µm
cellulose membrane and stored in an acid-cleaned 30-mL high-density polyethylene (HDPE) bottle.
Samples were stored in a cooler and then transferred to a refrigerator on the same day. All samples
were measured for Na+, Mg2+, Ca2+, K+, Cl−, and NO3

− in the laboratory. These measurements
were conducted at the Geochemistry Laboratory of the Cold and Arid Region Environmental and
Engineering Institute, Chinese Academy of Sciences (Lanzhou, Gansu Province, China), following the
standard methods developed by the American Public Health Association [40]. Dissolved cations
were measured using chromatography (DX-600 of Dionex) by an inductively coupled plasma optical
emission spectrometer, and anions were measured using the ICS-2500 chromatograph of Dionex.
All analyses followed the same standard methods and were carefully calibrated by an appropriately
diluted standard. The accuracy and precision of these measurements were checked by analyses of
reference materials. All relative errors are within ±5%.

3.2. GMM Clustering

The GMM considers an entire dataset to be a mixture of K clusters of Gaussian distributions,
in which each cluster is associated with a weight ωk. This dataset can be in the form of an observation
matrix, X (n × p), where n is the sample size (i.e., the number of observations) and p is the number of
attributes. The ith observation is denoted as xi, which represents an independent realization from one
of the K clusters. However, it is unknown to which cluster xi belongs [23]. If µk (p × 1) and Dk (p × p)
denote the expectation vector and the covariance matrix of the kth cluster (k = 1, 2, . . . , K), respectively,
then we can further define θk = {µk, Dk}. In this case, all observations are independent identically
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distributed (IID) vectors, and a mixture probability density function (pdf) (i.e., the probability model),
with specific K and p values, can be written as

G(x) =
K

∑
k=1

ωkgk(x|µk, Dk) (1)

where gk represents the kth Gaussian distribution and can be further written as [23]:

gk(x|µk, Dk) =
1

(2π)p/2|Dk|1/2
exp

[
−1

2
(x− µk)

TDk
−1(x− µk)

]
(2)

The entire parameter set, Θ = {θ1, · · · θk,ω1, · · ·ωk}, can be estimated using a maximum
likelihood estimation (MLE) approach. We first define a label vector zik. If the ith observation comes
from the kth cluster, then zik = 1; otherwise, zik = 0. Because the observations are IID, the likelihood
function can be defined as

Max
Θ

L(Θ, X) =
n

∑
i=1

ln

[
K

∑
k=1

zikωikgk(xi|µi, Dk)

]
(3)

In Equation (3), direct MLE is not feasible because the cluster label zik is unobserved. In such
cases, the Expectation-Maximization (EM) algorithm [41] can be applied to obtain the optimal Θ,
as introduced in Section 3.4.

After the MLE is completed, the membership probability of each observation belonging to the
kth cluster, denoted as mik, can be calculated as [21]:

mik =
ωkgk(xi|µi, Dk)
K
∑

t=1
ωtgt(xi|µi, Dt)

(4)

It holds that
K
∑

k=1
mik = 1. The ith observation can then be assigned to the cluster with the highest

membership probability. The label zik can then be determined as

zik =

 1, mik = argmax
s∈{1,··· ,k}

(mis)

0, otherwise
(5)

Additionally, for each observation, the clustering uncertainty can be calculated as [6]:

UCi = 1−Max
k

mik (6)

In order to demonstrate the advantage of GMM clustering, k-means clustering, an approach
widely used in various fields including hydrology [18], was also performed and compared with GMM
clustering. The technical details of K-means clustering can be found elsewhere [42,43].

3.3. Model Selection

Selecting the appropriate K and p attributes is critical to the performance of the GMM clustering.
Once the values of the K and p attributes are determined, the structure of the probability model
(i.e., Equation (1)) is fixed, and MLE can be performed to further estimate the parameter set
Θ = {θ1, · · · θk,ω1, · · ·ωk}. In this study, the Bayesian Information Criterion (BIC) was used to
determine the K value and p attributes and is formulated as [24]:

BIC = −2L + λln(n) (7)
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where L is the log-likelihood estimated by MLE (Equation (3)), λ is the number of parameters to be
estimated, and n is the sample size (n = 73). Each cluster model with p selected attributes and a specific
value of K achieves a BIC score; the model with the lowest BIC score can be interpreted as the best
model [44].

In the GMM, λ can be calculated as [23]:

λ = Kp +
p(p + 1)k

2
+ K− 1 (8)

The first item in this equation represents the total number of elements in the K expectation vectors
(µk), and the second item represents the total number of covariance coefficients contained in all the
Dk’s. Obviously, λ increases rapidly with both K and p, which can lead to an increase of the BIC score,
unless there is a significant improvement in L.

As a model-based clustering method, GMM clustering also suffers from the “curse of
dimensionality” because it is likely to cause over-parametrization in high-dimensional spaces [23,45].
Data preprocessing for dimension reduction is one solution to overcome this obstacle [46], and a classic
technique is principal component analysis (PCA) [47]. In some applications, primal variables are
more suitable for clustering than principle components [14]. In this study, to find a suitable set of
p attributes for clustering, both the primal concentration variables and their principle components
(PCs) were considered candidate attributes. Hydrochemical data often follow non-normal distributions,
and therefore appropriate data processing is necessary before any parametric analyses [48]. In this
study, PCA was conducted for the standardized logarithms of the concentrations, as is commonly done
in hydrochemical studies [16].

3.4. Expectation-Maximization Algorithm

The well-known EM algorithm can solve MLE problems using unobserved variables, and it
has previously been applied to GMM clustering [48,49]. In this case, Θ = {θ1, · · · θk,ω1, · · ·ωk} is
the parameter set to be estimated via MLE, where θk = {µk, Dk} represents the parameters of the
kth Gaussian distribution. Referring to Equation (5), zik is an unobserved variable depending on the
dataset Xn×p and the parameter set Θ. If t denotes the iteration number and the initial t = 0, then the
key steps of the EM algorithm can be summarized as follows.

Step 1: Randomly initialize Θ̂(0)
=
{
θ
(0)
1 , · · · θ(0)k ,ω(0)

1 , · · ·ω(0)
k

}
.

Step 2: (E-step): Based on θ̂(t), estimate the expectation (denoted as ẑ(t)ik ) of zik as

ẑ(t)ik = E[zik|Θ̂
(t), x] = Prob(zik|Θ̂

(t), x) =
ω̂

(t)
k g
(

xi|θ̂
(t)
k

)
K
∑

j=1
ω̂

(t)
j g
(

xi|θ̂
(t)
j

) (9)

Step 3: (M-step): Update the parameter set as follows.

ω̂
(t+1)
k =

n
∑

i=1
ẑ(t)ik

n
(10)

µ̂
(t+1)
k =

n
∑

i=1
ẑ(t)ik xi

n
∑

i=1
ẑ(t)ik

(11)
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D̂(t+1)
k =

n
∑

i=1
ẑ(t)ik

(
xi − µ̂

(t+1)
k

)(
xi − µ̂

(t+1)
k

)T

n
∑

i=1
ẑ(t)ik

(12)

Step 4: Calculate the likelihood L using Equation (3). Set t = t + 1, and repeat Step 2 and
Step 3 until the convergence condition is satisfied. A general convergence requirement is to reach
|L(t+1) − L(t)| < ε. ε is a threshold that was set to 0.01 in our study.

More details of the EM algorithm can be found elsewhere [41,49]. This algorithm is sensitive to

the initial parameter values (i.e., Θ̂(0)) and usually requires a large number of initial points to achieve
adequate MLE results. In this study, for each candidate GMM, the EM calculation was repeated
10,000 times with randomly generated initial points. The estimated Θ value yielding the lowest BIC
score was then considered the optimal parameter value for the model.

All the above analyses were conducted using MATLAB. The MATLAB code of GMM-EM is
provided by https://github.com/HammerZhang/GMM. The kmeans function in MATLAB was used
to perform k-means clustering.

4. Results and Discussion

4.1. Descriptive Statistics

For our samples, the concentration of total dissolved solids (TDS) ranges from 307.6 to 4164.6 mg/L,
with an average value of 1245.6 mg/L. According to [50], 15 samples can be categorized as non-saline
drinking and irrigation water (TDS ≤ 500 mg/L), 40 samples as slightly saline irrigation water
(500 mg/L < TDS ≤ 1500 mg/L), and 18 samples as moderately saline, primary drainage water
(1500 mg/L < TDS ≤ 7000 mg/L). The concentrations of TDS and individual ions were first
log-transformed, and then standardized to have zero mean and unit variance. Kolmogorov–Smirnov
tests performed with MATLAB validated that the transformed concentration data follow a standard
normal distribution. For Na+, K+, Mg2+, Ca2+, Cl−, SO4

2−, NO3
− and HCO3

−, the p-values of
Kolmogorov–Smirnov test are 0.0994, 0.433, 0.501, 0.581, 0.054, 0.399, 0.068 and 0.223, respectively.
Thus, the hypothesis that the transformed concentrations follow a standard normal distribution
cannot be denied at the confidence level of α = 0.95, and parametric statistics are applicable to the
transformed data.

Table 1 presents the Pearson correlation coefficient matrix of the log-transformed concentrations.
NO3

− does not show any significant correlation with other variables, with all p-values higher than
0.05. All other pairs record significant correlations, with p-values less than 0.01. In particular, the pairs
of Na+-Cl−, Mg2+-Ca2+, Na2+-SO4

2−, Cl2+-SO4
2− and Mg2+-SO4

2− have correlation coefficients
greater than 0.85. In fact, we also calculated Spearman’s rank correlation coefficients [51,52].
The nonparametric results are very similar to the parametric ones, except that weak correlation
between NO3

− and several cations is identified.

Table 1. Correlation coefficient matrix of eight ions and TDS (log-transformed concentrations).

Na+ K+ Mg2+ Ca2+ Cl− SO4
2− NO3

− HCO3
− TDS

Na+ 1.000 0.252 0.720 0.611 0.953 0.890 −0.109 0.489 0.913
K+ 1.000 0.558 0.505 0.235 0.454 −0.012 0.435 0.440

Mg2+ 1.000 0.891 0.698 0.887 0.123 0.657 0.905
Ca2+ 1.000 0.581 0.786 0.041 0.571 0.815
Cl− 1.000 0.884 −0.074 0.413 0.870
SO4

2− 1.000 −0.002 0.595 0.959
NO3

− 1.000 0.019 0.015
HCO3

− 1.000 0.718
TDS 1.000

Note: Coefficient values over 0.9 are in bold. The underlined numbers indicate insignificant correlations (p-value > 0.05).

https://github.com/HammerZhang/GMM
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In a typical arid and semi-arid river basin, most ions would have a tendency to increase
from upstream to downstream because of the rock weathering and lixiviation processes. Our data
also reflect this tendency. The correlation between TDS and the ions are all positive, and the
correlation coefficients are very high, mostly above 0.8, except those for K+, NO3

− and HCO3
−.

K+ has similar properties as Na+, but its abundance in natural waters is much lower [52], and it is
intensively absorbed by plants [53]. NO3

− in groundwater is not significantly influenced by rock-water
interactions. Instead, it reflects the influences of anthropogenic activities, such as fertilization
in irrigated farmlands, where excessive nitrate may leach into groundwater [14,54]. Among the
73 samples, 8 samples have NO3

− concentrations greater than 44.3 mg/L, which exceed the drinking
water standards defined by the WHO. For HCO3

−, the dominating impact of rock-water interactions
may be reduced by the infiltration, which can transport surface water with relatively abundant
dissolved CO2 (generated by plant respiration and organic matter decay) to the groundwater [55].
As these results indicate, the hydrochemical features of the groundwater are likely influenced by many
processes, including rock weathering and lixiviation processes, fertilization, plant uptake, and surface
water-groundwater interactions.

4.2. PCA Results

As Table 2 shows, the top four PCs individually explain 61.5%, 14.4%, 11.5% and 7.5% of the
total variance and collectively explain 94.8% of the variance. Thus, PCA has successfully reduced
the data dimension from 8 to 4. As shown by Table 2, PC1 has high positive loadings in Na+, K+,
Mg2+, Ca2+, Cl− and SO4

2− but very low loadings in HCO3
− and NO3

−. Additionally, PC1 has
a strong linear relationship with TDS (R2 = 0.956). Therefore, PC1 is likely an indicator of salinity
and can be used to represent rock-groundwater interactions. PC2 has very high positive loadings in
NO3

− and HCO3
− and negative loadings in SO4

2−, Na+ and Cl−. As previously mentioned, NO3
−

and HCO3
− in groundwater reflect the influence of surface water. In addition, previous studies [56]

have found that the SO4
2− and Cl− contents in surface water were significantly lower than those in

the nearby groundwater. Thus, PC2 can indicate the influence of surface water and represent the
surface water and groundwater interaction. PC3 features a high positive loading in HCO3

− and a high
negative loading in NO3

−. It may thus reflect the relative importance of natural and anthropogenic
impacts on groundwater chemistry. In an agricultural area such as the middle HRB, fertilization can
contribute a significant amount of NO3

− to shallow groundwater through surface water infiltration
and groundwater recharge [14]. Therefore, a high PC3 score indicates that the groundwater has not
been significantly impacted by fertilization. PC4 has a high positive loading in Na+ and high negative
loadings in other three cations: Ca2+, K+ and Mg2+. Therefore, it may represent the cation exchange
process of clay particles, which is common in arid and semi-arid environments [53,54,57].

Table 2. PCA loadings in different ions and variances explained by different PCs.

Ions PC1 PC2 PC3 PC4

Na+ 0.402 −0.203 0.160 0.411
K+ 0.391 0.118 −0.064 −0.327

Mg2+ 0.424 0.155 −0.090 −0.254
Ca2+ 0.384 0.180 0.031 −0.478
Cl− 0.395 −0.202 0.158 0.480

SO4
2− 0.437 −0.049 0.062 0.093

NO3
− 0.060 0.768 −0.453 0.138

HCO3
− −0.088 0.505 0.853 0.026

Variance explained 61.5% 14.4% 11.5% 7.5%
Cumulative variance explained 61.5% 75.8% 87.3% 94.8%
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4.3. Clustering Results

Candidate models with different K values and attribute sets were examined, and Table 3 shows
the likelihood and BIC values associated with the twelve models. Models 1 to 9 record different
combinations of K values and PCs, and Models 10 and 11 consider Cl−, NO3

− and HCO3
− as its

three attributes. These three ions are selected because their correlations are relatively weak (Table 1)
and may represent distinctive aspects of hydrochemical processes. Model 12 considers all ions except
SO4

2− and Na+ and the pH as its attributes. SO4
2− is excluded because its concentration is linearly

related to those of Cl−, Na+ and Mg2+ (Table 1). Similarly, Na+ concentration is linearly related to
that of Cl−. Among all of the candidate models, Model 7 has the lowest BIC value (195.00) and is
therefore considered to be the best model. In this model, PC1, PC2 and PC3 form the best set of
attributes, and the appropriate number of cluster is 6. It is clear that the PCA effectively reduces the
data dimensions from eight to three and significantly improves the overall clustering performance.
These three PCs can explain over 90% of the total variance. In [14], the first four PCs explained no more
than 80% of the total variance, which may be why primal variables outperformed PCs. In addition,
the result of Model 12 proves the necessity of dimension reduction before clustering.

Table 3. Twelve candidate models and their associated likelihoods and BIC values.

Model ID K p Attributes L BIC

1 3 2 PC1, PC2 −177.74 367.27
2 3 3 PC1, PC2, PC3 −187.02 405.90
3 4 2 PC1, PC2 −169.92 355.78
4 4 3 PC1, PC2, PC3 −119.71 282.26
5 4 4 PC1, PC2, PC3, PC4 −143.77 369.33
6 5 3 PC1, PC2, PC3 −87.12 228.07
7 6 3 PC1, PC2, PC3 −65.09 195.00
8 7 3 PC1, PC2, PC3 −78.33 232.47
9 6 4 PC1, PC2, PC3, PC4 −146.6 416.58
10 4 3 Cl−, NO3

−, HCO3
− −111.787 266.42

11 3 3 Cl−, NO3
−, HCO3

− −158.52 346.88
12 3 7 K+, Mg2+, Ca2+, Cl−, NO3

−, HCO3
−, pH −535.41 1279

Figure 3a–c illustrate the PC scores of the first five clusters based on Model 7 of GMM clustering.
Compared to Model 6 which identifies fiver clusters, Model 7 separates two samples from the second
cluster to form the sixth cluster, leading to a lower (i.e., better) BIC. All the first five clusters show
significant correlations between the PC scores. With only two samples, the sixth cluster demonstrates no
pattern, and is therefore excluded from our discussion and not presented in Figure 3. For comparison,
the results of k-means clustering are presented in Figure 3d–f. This classic approach is based on distance,
usually Euclidean distance, and requires the number of clusters be pre-defined. Interestingly, when we
set the number of clusters to six, the same two points forms a separate cluster. Thus, Figure 3d–f also
plot five clusters. It is evident that the clusters based on k-means clustering show no clear patterns in
the PC spaces. Thus, the comparison in Figure 3 clearly reflects the advantage of GMM clustering in
pattern recognition (refer to Figure 1). This advantage would enable a sophisticated interpretation of
the hydrochemical processes.

As was discussed before, PC1, PC2 and PC3 indicate salinity (positive relationship), the influence
of surface water (positive relationship) and the impact of fertilization (negative relationship),
respectively. In the PC1-PC2 space (Figure 3a), a positive (negative) relationship between PC1 and PC2
may indicate that surface water recharge enhances (reduces) groundwater salinity. In the PC2-PC3
space (Figure 3b), a negative relationship between PC2 and PC3 may suggest that groundwater is
receiving fertilization-impacted surface water, which is only evidence for CLUSTER 4. In the PC1-PC3
space (Figure 3c), a negative relationship between PC1 and PC3 (most evident in CLUSTER 4) may
indicate that fertilization enhances groundwater salinity. In contrast, the positive relationship between
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PC1 and PC3 (most evident in CLUSTER 2) probably reflects a common situation in arid areas that
high salinity of irrigation water can limit agricultural development [58,59]. According to our field
investigation and existing studies [60], the agricultural productivity of the farmlands along the river
within Gaotai County, where the samples in CLUSTER 2 are located, is indeed influenced by salinity.Water 2017, 9, 723  11 of 19 
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Table 4 summarizes the main features of the five clusters demonstrated in Figure 3a–c.
The groundwater in CLUSTER 1 has a moderate level of salinity (indicated by PC1), which can be
enhanced by surface water recharge (indicated by PC2 and the PC1-PC2 relationship). Although salinity
is influenced by fertilization (indicated by PC3), its effect is not through the recharge from surface water
(indicated by PC2-PC3 relationship) but is probably through lateral groundwater flow. In CLUSTER 1,
groundwater salinity may limit agricultural development (as indicated by the PC1-PC3 relationship).
Compared to CLUSTER 1, CLUSTER 2 has a much wider range in salinity (as indicated by
PC1), but the variation in salinity is not due to the recharge (indicated by PC1-PC2 relationship).
The impact of fertilization is weaker in CLUSTER 2 than it is in CLUSTER 1 (as indicated by PC3).
CLUSTER 3 has the lowest salinity (as indicated by PC1). Although surface water does influence
groundwater chemistry (as indicated by PC2), it does not significantly change groundwater salinity
(as indicated by the PC1-PC2 relationship). There is also no evident connection between groundwater
quality and agricultural development in this case (as indicated by the PC1-PC3 relationship). As in
CLUSTER 1, although the salinity in CLUSTER 3 is influenced by fertilization (as indicated by
PC3), this effect is likely due to horizontal groundwater flow instead of surface water recharge.
For CLUSTER 4, a distinctive characteristic is the fertilization-impact recharge (as indicated by PC3),
which enhances groundwater salinity (as indicated by PC1 and the PC1-PC2 relationship) and degrades



Water 2017, 9, 723 12 of 20

the quality of the groundwater (as indicated by the PC1-PC3 relationship). CLUSTER 5 has the highest
salinity level of all five clusters (as indicated by PC1), which can be reduced by recharge (as indicated
by the PC1-PC2 relationship), probably because the recharge water has a much lower salinity than the
groundwater. The chemistry of the groundwater is also influenced by fertilization (as indicated by PC3),
which has a (indicated by PC2 and PC2-PC3 relationship) but instead from horizontal groundwater
flow degrading effect (as indicated by the PC1-PC3 relationship). However, this influence may be not
from recharge that brings nitrogen from further upstream in the groundwater flow field.

Table 4. Main characteristics of the five clusters with regard to salinity level and impacts of irrigation
and fertilization.

Cluster Salinity Level
(PC1 Score)

Impact of
Surface Water

(PC2 Score)

Impact of
Fertilization
(PC3 Score)

Salinity
Change Due
to Recharge
(PC1-PC2)

Fertilization-
Impacted
Recharge
(PC2-PC3)

Groundwater Quality
vs. Agricultural
Development
(PC1-PC3) *

CLUSTER 1 Low to medium Medium Medium Enhanced No Limiting

CLUSTER 2 Low to high Low to medium Low to medium Insignificant No Limiting

CLUSTER 3 Low Medium Medium Insignificant No Insignificant

CLUSTER 4 Medium to high Medium to high Medium to high Enhanced Yes Degrading

CLUSTER 5 Medium to high Low Medium to high Reduced No Degrading

Note: * “Limiting” refers to the effect that groundwater salinity limits the agricultural development. “Degrading”
indicates the effect that fertilization enhances groundwater salinity.

A Piper diagram was also created for all groundwater samples (Figure 4). The fact that the
five clusters are much better separated in the anion space implies that anions, rather than cations,
determine the spatial variation of groundwater chemistry in this area. Both CLUSTER 3 and
CLUSTER 1 have low salinities and relatively high HCO3

− contents. In contrast, CLUSTER 5 has
very high salinity dominated by SO4

2− and Cl−. CLUSTER 2 and CLUSTER 4 are between the
extremes and are not well partitioned in the anion space because NO3

− was not included in the
Piper diagram. The transition of CLUSTER 3→ CLUSTER 1→ CLUSTER 2→ CLUSTER 5 reflects
a common natural salinization process that occurs from upstream to downstream in semi-arid
basins [33,39], whereas CLUSTER 4 mainly reflects the impact of agriculture.
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Figure 5 illustrates the spatial and probabilistic details of the clustering results. In Figure 5a–e,
the size of each circle indicates the probability that a sample belongs to a given cluster, whereas in
Figure 5f, the size of the circle indicates its clustering uncertainty (Equation (6)). Figure 6 illustrates the
regional groundwater flow field simulated by an integrated surface water-groundwater model [35].
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According to Figure 5, the five clusters have different high-probability locations (HPLs). The HPLs of
CLUSTER 1 (Figure 5a) and CLUSTER 4 (Figure 5d) are mixed in Ganzhou District and Linze County,
which have intensive agriculture (refer to Figure 2). However, the hydrochemical processes differ
significantly between the clusters (see Table 4), as discussed above. The HPLs of CLUSTER 2 (Figure 5b)
are mainly located in Gaotai County (Figure 2), which is downstream of the HPLs of CLUSTER 1
and CLUSTER 4, in which farmlands are confined to a narrow strip along the river. The HPLs of
CLUSTER 3 (Figure 5c) are distributed in the areas upstream of the regional groundwater flow field
(Figure 7). The HPLs of CLUSTER 5 (Figure 5e) are mainly located in Jinta Basin, which is in the most
downstream part of the groundwater flow field (Figure 7). These spatial patterns reinforce our previous
argument that the transition of CLUSTER 3→ CLUSTER 1→ CLUSTER 2→ CLUSTER 5 reflects
the common natural salinization process of groundwater moving from upstream to downstream in
semi-arid basins, whereas the data of CLUSTER 4 mainly reflect the impact of agriculture.
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4.4. Regionalization of Groundwater Chemistry

Clustering has been widely applied in regionalization studies [6,9,61]. Conversely, reasonable
regionalization results can also validate the clustering results [25]. Figure 6 demonstrates that, in this
study, GMM clustering has resulted in a much more interpretable spatial pattern than k-means
clustering. For example, in Figure 6a, the samples in CLUSTER 4 are concentrated in the productive
farmlands, and the samples in CLUSTER 5 are mainly located in the Jinta and Jiuquan Basins.
In contrast, based on k-means clustering (Figure 6b), all the five clusters have scattered samples.
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Five sub-regions were further identified, as illustrated in Figure 7. In Sub-region I, CLUSTER 1
and CLUSTER 4 are the major groundwater types. Within these areas, the clustering uncertainty is
relatively high (Figure 5f), which implies that this sub-region features a series of highly complicated
hydrochemical processes. Sub-region I has very productive farmlands with intensive fertilization,
and the surface water-groundwater exchanges in this sub-region are strong in both directions
and have been significantly influenced by human activities such as diversion, pumping and
irrigation [35]. Additionally, both the surface and subsurface water-rock interactions in Sub-region
I are active [10,32,33]. Sub-region II is downstream of Sub-region I. The dominance of CLUSTER 2
in this sub-region (Figure 7) implies that the mixing of surface water and groundwater does not
significantly affect groundwater salinity in this area. In fact, the strong water-rock interaction in this
area causes salinity to gradually increase from upstream to downstream [56]. In contrast to Sub-region I,
this sub-region features a relatively small area of farmland, which is mainly distributed in a narrow
strip along the river (Figure 5b); therefore, the anthropogenic effect is not significant.

Sub-region III is mainly located in the Jinta Basin, and is dominated by CLUSTER 2 to CLUSTER 5,
the two downstream groundwater types. Both clusters are not significantly impacted by surface
water, as is indicated by Table 4, which is consistent with the fact that this sub-region has low
precipitation, high evapotranspiration, and a relatively weak hydraulic connection with the main
Heihe River (Figure 7). Sub-region IV represents the upstream part of the groundwater flow field,
where groundwater salinity is low. The groundwater depth in this region is very deep (200–300 m);
therefore, agricultural activities can only weakly influence the groundwater quality. Sub-region V
occupies the northwest region of the study area, and mainly includes Jiuquan Basin. It has a mixture
of five clusters and is a relatively isolated area with a weak hydraulic connection with the main
Heihe River.

Figure 7 shows that GMM clustering produces satisfactory regionalization results, which in turn
validate the clustering analysis. Although many regionalization methods, such as the approaches based
on the Tyson triangle and Kriging interpolation, rely on the geographical locations of observations,
the GMM clustering approach requires no location information. Clearly, GMM clustering can
effectively identify connections between observations based on underlying physical processes,
rather than geographical distance. Compared to the work [14], the clusters of samples in our study
are more spatially assembled, which helps develop an integrated understanding of the regional
hydrochemical processes.

4.5. Impact of Regional Water Cycle

To further validate these clustering results, the Spearman’s rank correlation [51] is examined
between the membership probabilities calculated by Equation (4) and a series of key hydrological
variables representing climatic, topographical and agricultural factors. Here, we further define
mk = [m1k, m2k, · · ·mnk]

T as the membership vector of the kth cluster. Hydrological variables
have either been observed (e.g., rainfall, surface water diversion for irrigation) or modeled
(e.g., evapotranspiration and infiltration rates) by [35]. This statistical analysis considers the annual
average values (from 2000 to 2012) of these variables within the 9-km2 domain in which each sampling
site lies (i.e., a 3× 3 modeling grid with the site in the central square). The rationale behind considering
temporally averaged values is that groundwater chemistry undergoes change relatively slowly and
thus largely reflects the long-term impacts of hydrological processes [61]. The rationale to perform
spatial averaging is that groundwater chemistry may reflect not only the hydrological processes at
a specific site but also those in adjacent areas.

Table 5 presents the calculated correlation coefficients of this analysis. These results are
consistent with previously discussed findings. First, precipitation is positively correlated with
m1, m3 and m4 but has no significant correlation with m2 and m5. Given that Table 4 shows,
CLUSTERs 1, 3 and 4 have a common feature that the influence of surface water is at least at a medium
level, this correlation with precipitation likely reflects the influence of surface water on groundwater
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chemistry. Second, in addition to recording a positive correlation with precipitation, m3 demonstrates
a negative correlation with potential ET and irrigation and a positive correlation with groundwater
depth. As discussed previously, CLUSTER 3 is generally distributed within the upstream area of the
groundwater flow field, where elevation and groundwater depth are relatively high and temperature
is relatively low. This explains the positive correlation with groundwater depth and the negative
correlation with potential ET. Additionally, CLUSTER 3 mainly reflects the upstream stage of the
common natural salinization process in semi-arid basins and has little agricultural impact (Table 4),
which explains the observed negative correlation with irrigation. Third, in addition to the observed
positive correlation with precipitation, m4 positively correlates with infiltration, which is consistent
with the finding that CLUSTER 4 is characterized by fertilization-impact recharge (Table 4). Fourth, m5

records a positive correlation with the two ET variables and a negative correlation with unsaturated
zone (UZ) recharge. In the HPLs of CLUSTER 5, where the climate is dry and hot, the ET process draws
water from the shallow aquifer and soil; the downward percolation of water is limited, which leads to
increasing concentrations of chemicals in groundwater. Finally, m2 shows no significant correlation
with any of the selected variables, which is consistent with the results in Table 4 and reflects the
transitional role of CLUSTER 2 in the natural salinization process of groundwater moving from
upstream to downstream in semi-arid basins.

Table 5. Spearman’s rank correlation coefficients between hydrological variables and membership
probabilities *.

Hydrological Variables m1 m2 m3 m4 m5

Potential ET −0.128 −0.089 −0.270 0.092 0.307
Groundwater ET −0.152 −0.076 −0.186 −0.191 0.282

Precipitation 0.316 0.006 0.257 0.268 −0.184
Infiltration 0.095 0.010 −0.106 0.235 3 × 10−4

Irrigation −0.028 0.044 −0.284 0.157 −0.140
Groundwater depth 0.178 −0.031 0.455 0.027 0.214

UZ recharge −0.084 0.004 −0.182 0.064 −0.244

Note: * Coefficients with absolute values over 0.23 indicate significant correlation at the 95% confidence level and
are bolded and underlined in the table.

It is evident that by introducing independent hydrological data, the correlation analysis further
validated the clustering results. An important implication of this conclusion is that with the GMM
clustering analysis conducted in this study, a single sampling campaign can provide ample information
about the hydrochemical processes of groundwater.

5. Conclusions

This study applies GMM clustering to a hydrochemical dataset of groundwater collected in
the middle Heihe River Basin (HRB) in northwestern China. To validate these clustering results,
a regionalization of groundwater chemistry was attempted, and independent hydrological data were
introduced to perform correlation analyses. The GMM clustering results and the regionalization results
based on this clustering provide ample information about the hydrochemical processes in the study
area. The main findings include the following. First, in the middle HRB, groundwater chemistry
demonstrates a typical natural salinization process moving from upstream to downstream, in which
this natural process is further complicated by anthropogenic factors. Second, regional hydrological
processes, especially surface water-groundwater interactions, can exert a profound and spatially varied
impact on groundwater chemistry. Third, the interaction between human activity (which, in this
study area, is mainly defined as agricultural development) and groundwater quality is complicated.
In some farmlands, groundwater quality may be significantly degraded by agricultural development,
whereas in others, groundwater quality may constrain this agricultural development.
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Overall, this study demonstrates that the GMM can be effectively used in clustering to address
hydrochemical groundwater datasets. Additionally, GMM clustering can provide insights into
hydrochemical processes, even with a limited number of observations (e.g., the data collected in
a single sampling campaign, as in this study). In many remote inland areas, it is technically and
financially difficult to implement long-term high-frequency groundwater monitoring, and even a single
sampling campaign can be very costly. Therefore, using the clustering approach developed in this
study is a cost-effective way to investigate the groundwater chemistry in such areas. Future studies
may address the following important issues: (1) dealing with multiple periods of data in the GMM
clustering; (2) fusing hydrochemical and hydrological data in the GMM clustering; and (3) automating
the selection of the optimal model.
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