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Abstract: The degradation of water quality in lakes and its negative effects on freshwater ecosystems
have become a serious problem worldwide. Exploring the dynamics in the associated factors is
essential for water pollution management and control. GIS interpolation, principal component
analysis (PCA) and multivariate statistical techniques were used to identify the main pollution
sources in different areas of Honghu Lake. The results indicate that the spatial distribution of
the concentrations of total nitrogen (TN), total phosphate (TP), ammonia nitrogen (NH4

+–N), and
permanganate index (CODMn) have similar characteristics and that their values gradually increased
from south to north during the three seasons in Honghu Lake. The major influencing factors of water
quality varied across the different areas and seasons. The relatively high concentrations of TN and TP,
which might limit the growth of submerged aquatic plants, were mainly caused by anthropogenic
factors. Our work suggests that spatial analyses combined with PCA are useful for investigating the
factors that influence water quality and submerged aquatic plant biomass in different areas of a lake.
These findings provide sound information for the future water quality management of the lake or
even the entire lake basin.

Keywords: lake water quality; spatial and seasonal variations; influencing factors; biomass of
submerged aquatic plant; different areas of Honghu Lake

1. Introduction

Water quality deterioration in lakes has recently been a matter of great concern due to its negative
impacts on social, economic, and health aspects [1] and has been recognized as a serious problem
at local, regional and global levels [2]. Numerous lakes have become heavily polluted over the
past 50 years in response to the human population growth and development of local industries [3].
The pollution of shallow lakes has had serious influences on the security of drinking water and the
function of ecosystems, causing, for example, wetland degradation, eutrophication and salinization [4].
These adverse impacts could result in the rapid production of phytoplankton and other microorganisms
and lead to frequent outbreaks of algal blooms and declines in submerged aquatic vegetation [5]. Lakes
in China have been experiencing severe deterioration due to anthropogenic and natural influences in
recent decades [6]. The percentage of eutrophic lakes has significantly increased from 41.2% to 84.5%
since 1978, with most of these lakes located in the middle and lower reaches of the Yangtze River [7,8].
Therefore, solving or alleviating the problem of water quality pollution is urgent for lakes around
the world.
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The deterioration of lake water quality is mainly caused by a combination of natural and
anthropogenic factors, including domestic sewage, industrial wastewater, agricultural runoff and
atmospheric depositions [9]. These factors generally undergo seasonal and spatial dynamics and
fluctuations depending on local conditions, human activities, hydrodynamic circulation, and chemical
and biological processes [1]. Similarly, in both large and small lakes, indicators such as water
quality parameters, submerged aquatic plants and microorganisms exhibit seasonal variation and
high heterogeneities at different spatial scales [5,10,11]. Water quality characteristics could influence
the distribution, abundance, and growth of submerged aquatic plants, which play vital roles in
regulating the structure and function of freshwater ecosystems [12]. Submerged aquatic plants release
chemical substances that can inhibit algal production, absorb nitrogen and phosphorus directly from
the water, limit the resuspension of sediment in lakes, and hence improve water quality [5]. Indeed,
the biomass and production of submerged aquatic plants are generally influenced by high nutrient
concentrations [13]. Therefore, the analysis of seasonal and spatial variations in water quality, as well
as their associated natural and anthropogenic driving forces, is crucial for water management [14].
Many studies have been conducted at global, continental and regional scales [15,16], such as in
Lake Romanian in Europe [17], Lake Baikal in Siberia [18], Lake Ontario and Lake Superior in the
USA and Canada [19], Lake Biwa in Japan [20], and, more recently, Dongting Lake in China [21].
Most of these case studies used multi-index and correlation analysis methods [22]. Semivariogram
analyses have been used to investigate the spatial-temporal characteristics of lake water quality, but
these investigations have mainly focused on specific parts of a watershed and have not predicted
corresponding values in unsampled areas [14]. Moreover, because they use few monitoring stations
over short periods of time they only partially identify the factors affecting water quality [6,23]. Spatial
analysis techniques, such as spatial interpolation in GIS, are recommended for use when sufficient data
are available that reflect the variation, relationships, and interdependence of the spatial characteristics
of water quality parameters in large lakes [14].

The seasonal and spatial dynamics of water quality are related to the regional characteristics and
development surrounding a lake. Many studies have suggested that the water quality in different parts
of a lake differ due to different driving forces [24,25]. In the Lake of the Woods in Canada, the water
quality has deteriorated to a higher degree in northern regions than in other areas [26]. A study in
Rawal Lake in Pakistan indicated that the surface water quality was better at sites where disturbances
from human activities were the lowest [27]. The total phosphorus (TP) loads was obviously higher in
the central and southwest zones in Taihu Lake, China, due to different human activities [28]. However,
detailed discussions concerning the dynamics of water quality and submerged aquatic plants in
different areas of lake water bodies are still limited. While the interactions are complex, understanding
the factors associated with water pollution and could help in management of lake [29]. Moreover,
relatively few studies have explored the correlations of nutrient content and geographic location with
submerged aquatic plant biomass in lakes [7].

Honghu Lake, the seventh largest freshwater lake in China, is typical of lakes in the middle
reaches of the Yangtze River in that it is shallow. This lake has rich biological resources, particularly the
aquatic vegetation, which is a key component of lake ecosystems. However, economic development
and population increases in the Honghu Lake Basin have resulted in serious ecological problems.
These include a drastically deterioration in water quality since the 1990s [30] and reductions in the
water surface area, lakeside wetlands, aquatic organism biomass, and rare species [31]. In this study,
the forces driving water quality deterioration and the growth of submerged aquatic plants, including
anthropogenic and geographic factors, are examined in detail. A relatively high-density water quality
data collection effort was conducted in Honghu Lake in dry, wet and normal seasons from 2012 to
2013. The purpose of this study was to: (1) address the spatial and seasonal similarities or differences
in water quality and submerged aquatic plants in Honghu Lake; (2) examine the influencing factors
for their seasonal and spatial variations across Honghu Lake using GIS interpolation and principal
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component analysis (PCA) methods; and (3) investigate the dynamic correlations between water
quality parameters and the biomass of submerged aquatic plants across the lake and seasons.

2. Materials and Methods

2.1. Study Area

Honghu Lake, located in central Hubei Province in China (112◦34′–114◦08′ E, 29◦33′–30◦17′ N),
has a surface area of approximately 344 km2. It has an average water inflow of 19.6 × 108 m3 and
a water depth of 1.35 m. The total area of the Honghu Lake Basin is approximately 11,152 km2. The
lake experiences a subtropical monsoon climate, with an annual mean temperature of 16.3 ◦C and
rainfall ranging from 1100 mm to 1300 mm. The dry, wet and normal seasons generally occur from
January to April, May to August, and September to December, respectively. Honghu Lake occurs in
Honghu City and Jianli City in Hubei Province, and the lake has been separated from the Yangtze
River by several controlling sluices since the 1950s. At present, Honghu Lake is a closed lake with
a flat bottom, and surface runoff from the watershed flows into the lake through several inflowing
rivers and sluices, including Sihu channel, Xiaxinhe channel and Xindi channel (Figure 1).
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Figure 1. Location, sample sites and different areas of Honghu Lake: A: river inflow areas; B: enclosure
culture areas; C: open water area; D: lake protection area; and E: area connecting to the Yangtze River.

Honghu Lake serves critical functions in flood regulation, fishery production and water supply
provisioning for local industry and agriculture development. However, artificial hydrological
regulation and intensified fish farming have resulted in a significant decrease in the water level
and a serious deterioration in water quality and aquatic vegetation, which have had critical influences
on the aquatic environment and ecosystem [31]. Following Wang et al. [32], Honghu Lake was divided
into five area types: river inflow areas, enclosure culture areas, an open water area, a lake-protection
area, and an area connecting to the Yangtze River (Figure 1). The southeastern part of Honghu Lake
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is connected to the Yangtze River, and a large proportion of the enclosure culture areas is devoted to
aquaculture development. The aim of the lake protection area is to protect the ecosystems and aquatic
vegetation where minimal human disturbance occurs. The majority of the residential, industrial and
tourism developments surround the river inflow areas, where much rice and cotton is planted.

2.2. Data and Methods

2.2.1. Data Collection

Considering the different lake areas shown in Figure 1, 43 sampling sites evenly scattered within
our study area were selected, including 41 sites in Honghu Lake and 2 sites in the inflowing river
and channel. Water quality data were collected on 20–21 August and 12–13 December 2012 and
14–15 April 2013. Aquatic plants were collected three times from each sampling site within an area
of 0.1 m2. Socio-economic data, including population, agricultural development and land use/land
cover, were derived from the statistical yearbooks (2008–2013) published by the Municipal Bureau of
Statistics of Jingzhou City. Yearly water quality data for 2000–2011 were provided by the Environmental
Protection Bureau and Environment Science Institute of Jingzhou City.

2.2.2. Data Preprocessing

Sampling, preservation, transportation, and analysis of the water samples were performed
following the standard methods published by the State Environmental Protection Administration of
China in 2002 (SEPA, China, 2002). Given that physico-chemical properties and nutrient constituents
are the most important factors influencing lake water quality, seven parameters, including total
nitrogen (TN), permanganate index (CODMn), ammonia nitrogen (NH4

+–N), dissolved oxygen (DO),
total phosphate (TP), pH and transparency were measured. The parameters of DO, temperature (T)
and transparency were measured in the field using a multi-parameter water quality monitoring
instrument (i.e., Hach DS5, Loveland, CO, USA); pH was measured via the glass electrode method;
TN was measured using the double-wavelength method (220 and 275 nm) of persulfate digestion
and oxidation using a spectrophotometer (Hach DR6000, Loveland, CO, USA); TP was analyzed
through digestion and a colorimetric method; NH4

+–N was determined through Nessler’s reagent
photometry; and CODMn was measured through permanganate oxidation. Plant litter and submerged
aquatic plants were washed and separated, and the plant samples were weighed. The biomass of
submerged aquatic plants was determined using the average fresh weight of three samples, and the
species composition was recorded at the same time.

2.2.3. Methods

Since variation in water quality is continuous within the lake and water quality is easily influenced
by closer pollution sources, the interpolation method using the weighted average of inverse distances
was applied in this study. Spatial estimation and the spatial correlation between variables and auxiliary
variables are considered in [33] using inverse distance weighting (IDW), whereby more weight was
given to closer samples than to more distant ones [34]. Using this method, we obtained the spatial
distribution of TN, TP, CODMn, submerged aquatic plant biomass and composite water quality (CWQ)
across all of Honghu Lake. The formula for the IDW method is as follows [35]:

Z(P0) =
N

∑
i=1

WiZ(Pi) (1)

where Z(P0) represents the interpolated value of interest point, Z(Pi) is the value of sampling point i,
N is the number of sampling points, and Wi is the weight. The value and distance between each sample
point were used in the interpolation model to generate a continuous surface of values displayed as
a raster layer using ArcGIS 10.0.
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PCA was performed to identify the main sources of pollution. All water quality data were
normalized (with a mean and variance of zero and one, respectively) in three seasons, and
Kaiser–Meyer–Olkin (KMO) and Bartlett’s sphericity tests were conducted for the PCA [36]. Moreover,
the correlations among different water quality parameters and submerged aquatic plant biomass were
assessed using Pearson’s correlation coefficients. The indicators TN, TP, NH4

+–N and CODMn were
used to evaluate the CWQ using a single-factor water quality assessment method according to the
National Surface Water Environment Quality Standards of China (GB3838-2002).

3. Results

3.1. Seasonal Variation in Water Quality and Submerged Aquatic Plant Biomass

The collected data regarding the seven water quality parameters and submerged aquatic plant
biomass are summarized in Table 1. According to the environmental guidelines of surface water quality
in China (GB3838-2002), surface water quality can be classified into five groups: clean water Class I
(excellent); Class II (good); Class III (ordinary); Class IV (poor); and Class V (bad) (see Table A1 in
Appendix A). According to the environmental function zoning of water bodies in Hubei Province,
China, the target for surface water quality in Honghu Lake is Class III. During the examined years, the
average concentrations of TN, TP and CODMn exceeded this target (Table 1). As shown in Figure 2, 61%,
46.3%, 85.4% and 4.9% of the 41 samples in Honghu Lake exceeded the Class III water quality target in
terms of TN, TP, CODMn, and NH4

+–N, respectively. For the CWQ, 7.3%, 70.7%, 17.1% and 4.9% of the
41 monitoring sites could be classified as Class III, Class IV, Class V and inferior Class V, respectively.
The coefficient of variation (CV) for transparency, NH4

+-N, TN, TP and biomass indicated that these
parameters changed significantly across sampling sites over the three seasons, as shown in Table 1.

Table 1. Summary statistics of measured variables and water quality class categories for Honghu Lake.

Parameters
Annual Mean

Min. Max. Mean CV (%)

pH 7.39 8.69 7.92 4.7
Transparency (m) 0.30 1.55 0.73 33.7

DO (mg/L) 8.28 (I) 13.51 (I) 11.02 (I) 10.7
NH4

+–N (mg/L) 0.319 (II) 1.228 (IV) 0.530 (III) 37.6
TN (mg/L) 0.625 (III) 2.153 (Inferior Class V) 1.150 (IV) 32.3
TP (mg/L) 0.011 (II) 0.132 (V) 0.053 (IV) 61.3

CODMn (mg/L) 5.11 (IV) 7.78 (IV) 6.54 (IV) 8.9
Biomass (g) 0 1369.33 399.37 106.8

Note: CV, coefficient of variation.

The seasonal variation in water quality parameters and submerged aquatic plant biomass was
further examined for different seasons, as shown in Figure 3 and Tables S1–S4. The mean concentrations
of DO, NH4

+-N, TN, TP and CODMn were all highest during the normal season (Figure 3). The degree
of pollution was in the following order: CODMn > TP > TN > NH4

+–N > DO in the dry season, TN >
TP > CODMn > NH4

+–N > DO in the wet season and CODMn > TN > TP > NH4
+–N > DO in the normal

season. The highest mean value of CODMn observed in the normal season was 9.24 mg·L−1. The
highest mean biomass value observed in the wet season was 852.5 g, which was approximately 3 and
10 times higher than those in the dry and normal seasons, respectively. Seven kinds of submerged
aquatic plants, including Stuckenia pectinata (L.) Börner sago pondweed, Myriophyllum verticillatum,
Ceratophyllum demersum L., Potamogeton malaianus, Potamogeton maackianus, Vallisneria natans, and
Hydrilla verticillata, were collected in Honghu Lake during dry and wet seasons. However, Vallisneria
natans were not collected in normal season. In all, Myriophyllum verticillatum, Ceratophyllum demersum L.
and Stuckenia pectinata (L.) Börner sago pondweed were the three dominant species, and accounted for
96%, 95% and 76% of total biomass of submerged aquatic plants in dry, wet and normal seasons,
respectively (see Supplementary Materials Table S5). The mean pH values for the all samples collected
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during the three seasons were within the permissible standard range of between 7.39 and 8.69, which
indicated that the water in Honghu Lake was alkaline. Altogether, approximately 56%, 68% and 100%
of all sampling sites exceeded the water quality target (i.e., Class III) during the dry, wet and normal
seasons, respectively. The water quality was the worst in the normal season.
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3.2. Spatial Dynamics of Water Quality Parameters and Submerged Aquatic Plant Biomass

The water quality parameter and submerged aquatic plant biomass values at the 41 sampling sites
in Honghu Lake were used to obtain their spatial variation in the entire lake using the interpolation
method in ArcGIS 10.0. As shown in Figure 4, the values of TN, TP, NH4

+–N and CWQ presented
similar spatial heterogeneities. The concentrations of TN and TP generally increased from east to west
and from south to north over the three seasons. Their values in the river inflow areas were higher than
those in other areas. The highest CODMn values were observed in the enclosure culture areas located
in the northeastern and southwestern parts of the lake. The value of NH4

+–N was consistently low,
but it was relatively high in the northern area. Approximately 95.1% of the water samples reached
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the water quality target, as shown in Figure 4. The transparency was low in the river inflow areas
and the area connecting to the Yangtze River in the wet season. Based on the CWQ, the water quality
could only be graded as Class V and even inferior Class V in the river inflow areas in the northern area,
and it gradually reached the target of Class III in the eastern area of Honghu Lake. Overall, different
areas of Honghu Lake were polluted to varying degrees in the following order: river inflow areas >
enclosure culture areas > open water area > lake protection area > area connecting to the Yangtze River.
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However, the submerged aquatic plant biomass presented an opposite trend of TN and TP
concentrations, with higher values in the enclosure culture areas and lower values in the river inflow
areas (Figure 4). The spatial distributions of three dominant species were similar to the distribution
of total biomass of submerged aquatic plants (Figure 5). Stuckenia pectinata (L.) Börner sago pondweed
mainly concentrated in the enclosure culture areas and open water area in dry season. Myriophyllum
verticillatum, Stuckenia pectinata (L.) Börner sago pondweed and Ceratophyllum demersum L. were mainly
collected in the southern part and open water area in dry and wet seasons. Four other species,
Potamogeton malaianus, Potamogeton maackianus, Vallisneria natans and Hydrilla verticillata, were mostly
scattered in lake protection area and open water area in dry and wet seasons. In normal season,
six kinds of submerged aquatic plants were collected, and most of them were scattered across the
entire lake.
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Using PCA
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of the PCA are shown in Table 2 based on the correlation matrix of the variables. The values of the
KMO and Bartlett’s sphericity test were 0.694, 0.650 and 0.545 in the dry, wet and normal seasons,
respectively (p < 0.001). Three, four and three factors had eigenvalues greater than 1 in the dry, wet
and normal seasons, explaining 74.16%, 80.71%, and 78.60% of the total variance, respectively.

Table 2. Factor loadings of eight variables based on PCA in three seasons.

Dry Season
Factor

Wet Season
Factor Normal

Season

Factor

1 2 3 1 2 3 4 1 2 3

pH −0.32 0.55 0.46 pH 0.10 0.87 0.19 0.02 pH 0.10 0.28 0.15
Transparency −0.81 0.09 −0.24 Transparency −0.71 0.44 −0.30 −0.01 Transparency −0.61 0.56 0.06

DO −0.06 0.64 0.53 DO −0.26 0.39 0.77 −0.004 DO −0.51 0.35 0.46
NH4

+–N 0.86 0.04 0.21 NH4
+–N 0.56 0.35 −0.45 0.36 NH4

+–N 0.89 −0.02 0.13
TN 0.75 0.40 −0.34 TN 0.80 0.21 0.13 −0.11 TN 0.90 0.25 0.25
TP 0.82 −0.15 0.23 TP 0.87 0.13 −0.16 0.16 TP 0.90 0.32 0.11

CODMn 0.61 0.55 −0.41 CODMn −0.12 −0.22 0.34 0.89 CODMn 0.03 −0.84 0.08
Biomass −0.41 0.65 −0.28 Biomass −0.70 0.24 −0.43 0.23 Biomass −0.21 −0.26 0.86

Variance (%) 40.95 20.53 12.68 Variance (%) 34.99 17.39 15.76 12.57 Variance (%) 44.14 19.60 14.86
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F1 had strong positive correlations with NH4
+–N, TN, and TP and a negative correlation with

transparency, as shown in Table 2. This factor could explain approximately 40.95%, 34.99%, and 44.14%
of the total variance in the dry, wet and normal seasons, respectively. These factors might be interpreted
as the influences from point source pollution (e.g., discharge from wastewater and industrial effluents)
and non-point source pollution (e.g., agricultural production) [1,37].

Although anthropogenic impacts are generally considered the main determinants of lake pollution,
some climatic and geographical factors that reflect the capacity of the lake to buffer nutrient inputs
could also play significant roles in explaining variation in water quality. For Honghu Lake, the results
of the PCA indicated that F3 (12.68%) in the dry season, F2 (17.39%) and F3 (15.76%) in the wet
season, and F2 (19.60%) in the normal season were all correlated with pH, DO and transparency
(Table 2), which might be mainly influenced by climatic and geographical factors [38]. Transparency
was lowest (between 0.5 m and 1 m) in the area connecting to the Yangtze River, which might be
caused by the sediment being stirred up by waves during the frequent water exchange in the lake.
The DO concentration ranged from 8.1 mg·L−1 to 11.3 mg·L−1 in the open water area, which might
be caused by climatic factors, such as the northeast monsoon in winter and the southeast monsoon
in summer [39]. The concentrations of TN and TP were lower than 1 mg·L−1 in the southern area
during the three seasons, as the lake received large amounts of water with few pollutants from the
Yangtze River. These results appeared to support the notion that climatic and geographical factors,
such as water exchange and monsoons, were the main influencing factors in areas of Honghu Lake
experiencing lower levels of human activities.

3.4. Correlations between Water Quality Parameters and Submerged Aquatic Plant Biomass

The correlation analyses shown in Table 3 suggest that the biomass of submerged aquatic plants
was negatively related to the concentrations of TP and TN and positively associated with transparency
in the wet season. These correlations were much stronger in the wet season than in the dry season.
Moreover, transparency was negatively correlated to the concentrations of TN and TP. In the dry season,
the biomass of submerged aquatic plants was negatively correlated with the concentrations of TP and
NH4

+–N but was not significantly related to the concentration of TN. However, no obvious correlation
between water quality parameters and submerged aquatic plant biomass was observed in the normal
season, and the mean biomass was lowest, at 80.2 g, in this season. The spatial distributions of the
correlations between TN and TP with biomass in the wet and dry seasons are presented in Figures 6
and 7. The concentrations of TN and TP were obviously higher in the northern area than in other areas,
whereas the submerged aquatic plant biomass showed the opposite pattern. Indeed, other water bodies
with relatively low concentrations of TN and TP generally have relatively high submerged aquatic
plant biomass.

Further investigations were conduct to explore the effects of water quality variables on the growth
of different submerged aquatic plants by stepwise multiple linear regression (MLR) method. Results
suggested significant interactions between biomass of different submerged aquatic plants and water
quality parameters during dry and wet seasons (Table 4). In dry season, biomass of submerged aquatic
plants was significantly influenced by the concentrations of NH4

+–N. The growth of Myriophyllum
verticillatum and Ceratophyllum demersum L. was mainly affected by NH4

+–N concentration, and
Stuckenia pectinata (L.) Börner sago pondweed was significantly influenced by pH. In wet season,
the biomass of Myriophyllum verticillatum, and Ceratophyllum demersum L. was closely associated
with TN concentration, and Stuckenia pectinata (L.) Börner sago pondweed was closely related to the
water transparency. In addition, the correlation between water quality parameters and biomass
of Potamogeton malaianus, Potamogeton maackianus, Vallisneria natans and Hydrilla verticillata are not
observed in the three seasons. Overall, it might be concluded that the concentrations of NH4

+–N
and TN had negative impacts on the growth of submerged aquatic plants, especially Myriophyllum
verticillatum and Ceratophyllum demersum L. in dry and wet seasons, respectively, in Honghu Lake.
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Table 3. Correlation coefficients between biomass and water quality parameters.

Dry Season pH Transparency DO NH4
+–N TN TP CODMn Biomass

pH 1 - - - - - - -
Transparency 0.202 1 - - - - - -

DO 0.305 00.017 1 - - - - -
NH4

+–N −0.091 −0.645 ** 0.000 1 - - - -
TN −0.184 −0.456 ** 0.087 0.566 ** 1 - - -
TP −0.289 −0.680 ** −0.016 0.690 ** 0.411 ** 1 - -

CODMn 0.032 −0.312 * 0.042 0.447 ** 0.743 ** 0.294 1 -
Biomass 0.244 0.331 * 0.278 −0.369 * −0.044 −0.331 * 0.104 1

Wet Season pH Transparency DO NH4
+-N TN TP CODMn Biomass

pH 1 - - - - - - -
Transparency 0.204 1 - - - - - -

DO 0.287 0.105 1 - - - - -
NH4

+–N 0.177 −0.164 −0.218 1 - - - -
TN 0.188 −0.448 ** −0.032 0.351 * 1 - - -
TP 0.162 −0.465 ** −0.285 0.567 ** 0.628 ** 1 - -

CODMn −0.077 −0.068 0.128 −0.045 −0.149 −0.043 1 -

Biomass 0.011 0.615 ** 0.007 −0.065 −0.459 ** −0.468
** 0.058 1

Normal
Season pH Transparency DO NH4

+-N TN TP CODMn Biomass

pH 1 - - - - - - -
Transparency 0.154 1 - - - - - -

DO 0.222 0.382 * 1 - - - - -
NH4

+–N 0.132 −0.414 ** −0.479 ** 1 - - - -
TN 0.165 −0.378 * −0.225 0.760 ** 1 - - -
TP 0.129 −0.382 * −0.182 0.742 ** 0.945 ** 1 - -

CODMn −0.022 −0.350 * −0.074 0.05 −0.095 −0.13 1 -
Biomass 0.015 0.055 0.164 −0.035 −0.076 −0.247 0.105 1

Notes: * Correlation is significant at the 0.05 level (2-tailed); ** Correlation is significant at the 0.01 level (2-tailed).Water 2017, 9, 707  11 of 17 
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Table 4. Responses of biomass of different submerged aquatic plants to various water quality
parameters by multiple linear regression (MLR) method.

Seasons Biomass of Species Regression Equations R2 Significance

Dry season

7 species y = −283.539 − 1536.863 NH4
+–N 0.227 0.002

Myriophyllum verticillatum y = 307.792 − 555.584 NH4
+–N 0.141 0.015

Stuckenia pectinata (L.) Börner sago pondweed y = −3913.209 + 500.465 pH 0.105 0.038
Ceratophyllum demersum L. y = 199.575 − 383.492 NH4

+–N 0.207 0.003

Wet season

7 species y = 2240.620 − 1230.157 TN 0.267 0.001
Myriophyllum verticillatum y = 332.717 − 201.019 TN 0.120 0.026

Stuckenia pectinata (L.) Börner sago pondweed y = 11.220 + 206.353 Transparency 0.355 0.000
Ceratophyllum demersum L. y = 1350.020 − 675.030 TN 0.124 0.024

4. Discussion

4.1. The Close Relationship between Lake Water Quality and Land Use/Economic Development in
Surrounding Areas

The water quality of lakes or rivers is affected by the combination of natural and anthropogenic
factors, and many anthropogenic factors influence the broad processes of watershed land use or
land cover change [40]. Investigations of the relationship between land cover and water quality are
particularly useful when considering diffuse source pollution [1]. However, the anthropogenic forces
driving the various land–water linkages in different areas of a lake are less studied [41]. Our results
suggest that different human activities, such as land use/land cover around the lake, have significant
influences on the spatial and seasonal variations in water quality and submerged aquatic plant growth
in our study area.

4.1.1. Influences of Agricultural and Social Development on Water Quality

Lakes play a major role in assimilating and transporting industrial and domestic wastewater and
surface runoff from agricultural fields. Pollution from agricultural activities is regarded as the major
cause of surface water quality degradation, and has attracted growing public concern [42]. Heavy
fertilizer application is generally used to increase crop yields, and the subsequent nutrient losses to
streams and lakes have serious effects on freshwater ecosystems around the world [40]. In Honghu
Lake, the concentrations of TN and TP were highest in river inflow areas (the northern area), where
a large number of villages and much agricultural land is located. The annual discharge of TN, TP
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and NH4
+–N in rural domestic wastewater was 905.5 t, 64.9 t and 779.4 t in 2012, respectively [43].

According to a field investigation, there are still no sewage collection or treatment facilities in the rural
areas surrounding Honghu Lake, which could result in the direct discharge of untreated industrial
and domestic sewage into the lake [30].

In 2012, the rice cultivation area was 46,667 ha and 73,133 ha in Honghu City and Jianli City,
respectively, which accounted for 51.8% and 42.5% of the total area of food production. Large quantities
of P and N fertilizers were applied to paddy fields and dry land during seeding (in April) and the
growing season (in August), and the fertilizer utilization rate was merely 30% (Jingzhou statistical
yearbook, 2013). As a result, the concentrations of TN and TP at the entrance to the lake in the northern
area increased to 2.692 mg·L−1 and 0.182 mg·L−1, respectively, during the wet season. In addition, the
Pearson’s correlation coefficients between TN and TP were 0.411, 0.628 and 0.945 during the dry, wet,
and normal seasons, respectively (Table 3), which suggested that the TN and TP might be affected by
the same pollution sources. Overall, the dynamics of nutrient levels across regions and seasons in this
study might depend on various social and agricultural factors [31,44,45]. In addition, the excessive
nutrients from inflowing rivers and surface runoff degraded the water quality in the lake, which is
similar to other eutrophic lakes, such as Norrviken Lake in Sweden, Washington Lake in the USA, and
Chaohu Lake and Taihu Lake in China [11,46,47].

4.1.2. Influences of Aquaculture Development on Water Quality

The impacts of aquaculture development on the water environment in large shallow lakes have
been well documented [31]. One of the most significant effects is the enrichment of the water with
phosphorous, organic matter and other nutrients, as well as a decrease in dissolved oxygen. Intensified
fish farming has been reported to be a major source of pollution in Honghu Lake [45]. Even though
many purse nets have been dismantled in Honghu Lake since 2000, the remaining enclosure culture
areas was approximately 9333 ha in 2012, which still exceeded the suggested limit by approximately
6000 ha [43]. In the enclosure culture areas, as the water had little interaction with the inflowing rivers,
the concentrations of TN and TP were mainly influenced by the enclosure aquaculture. Similarly,
organic nutrients from aquaculture development might increase the concentrations of CODMn, which
could be further supported by the results of the PCA, as shown in Table 2. The influencing factors
F2 (20.53%) in the dry season, F4 (12.57%) in the wet season and F3 (14.86%) in the normal season
were all correlated with CODMn and biomass. However, CODMn was only positively correlated with
TN and NH4

+–N during the dry season and showed no obvious correlation with TP in any of the
three seasons (Table 3). This is different from the results of other studies concerning 103 Chinese lakes,
which indicated that CODMn was positively correlated with TN and TP [7]. This discrepancy might
have been caused by the large number of baits that contained abundant organic matter in this area,
as the numerous purse nets and dense mesh hindered the diffusion of the pollutants. Overall, in the
enclosure culture areas, aquaculture was the principal contributor to the pollution of the water.

4.2. Influencing Factors of the Growth of Submerged Aquatic Plants in Different Seasons

Submerged aquatic plants are important components of freshwater ecosystems. The composition
of submerged aquatic plants integrates the chemical, biological and spatiotemporal characteristics of
their surrounding environments, which could reflect the nutrient supplies of freshwater ecosystems
affected by anthropogenic impacts [12,48]. Previous studies demonstrated that nitrogen and
phosphorus had significantly adverse effects on the growth of submerged aquatic plants, and the
effects of N were even more significant when TP concentration was not high [49,50]. Our results
suggested that the submerged aquatic plant biomass was negatively influenced by the concentrations
of NH4

+–N and TN in dry and wet seasons. Generally, the response of different submerged aquatic
plant species to the water quality parameters is not the same in a lake [51,52]. In Honghu Lake,
NH4

+–N and TN concentrations were dominant water quality variables that limited the growth of
Ceratophyllum demersum L. and Myriophyllum verticillatum in dry and wet seasons, respectively. The
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pH and water transparency were significant factors positively influencing the growth of Stuckenia
pectinata (L.) Börner sago pondweed in dry and wet seasons, respectively. It has been demonstrated
in many systems that submerged aquatic plant growth can be seasonally inhibited by periphyton
growing on their leaves [53], and water transparency can be negatively affected by algal growth in
the water column, again affecting the ability of submerged aquatic plants to grow [54,55]. Therefore,
in shallow lakes, increased N and P concentrations could raise the productivity of phytoplankton
and periphyton [49], and then influence the growth of submerged aquatic plants in different seasons.
As far as Honghu Lake is concerned, the reduction in both N and P loads is essential for the growth of
submerged aquatic plants and long-term management of eutrophication in water system [56].

In our study area, the submerged aquatic plant biomass was also influenced by the change in
temperature, light and water level. The biomass of submerged aquatic plants in summer is directly
related to the peak in solar radiation peak and the enrichment of nutrients [57]. The florescence
and fruiting periods of Stuckenia pectinata (L.) Börner sago pondweed, as well as the fruiting period of
Ceratophyllum demersum L. and Myriophyllum verticillatum, generally occur during the wet season [58,59].
Similarly, these plants could assimilate a large amount of pollutants in the water during this season.
In agreement with this, the average concentrations of TN, TP and CODMn declined from 1.25 mg·L−1,
0.057 mg·L−1 and 4.63 mg·L−1 in 2011 to 1.15 mg·L−1, 0.052 mg·L−1 and 4.45 mg·L−1, respectively,
during the wet season in 2012. During the cold season, reduced water temperatures, water level and
light intensity are unfavorable for the growth of aquatic plants [60], and the biomass decreased to the
lowest level in Honghu Lake.

4.3. Implications for Future Water Quality Management in Honghu Lake

The spatial and seasonal variations in water quality and submerged aquatic plant biomass were
related to the regional characteristics and development of the Honghu Lake Basin, and their spatial
characteristics were consistent with the functional zoning suggested by a previous study [32]. Our
analyses provide insight regarding how nutrient concentrations have changed over time in the lake and
how natural features and human activities have contributed to this variation. With increasing demand
from urbanization and industrialization, the growing inputs of pollutants, mainly arising from sewage
discharges and fertilizer runoff or aquaculture, have resulted in the significant degradation of water
quality in freshwater ecosystems [61]. To alleviate the water pollution in Honghu Lake, the discharge
of industrial and domestic sewage near the northern area should be controlled, and the development
of aquaculture and the application of fertilizers or pesticides should be reduced. In addition, further
studies are needed to investigate the correlation between long-term changes in land use and water
quality at multiple scales in this watershed. Remote sensing techniques are useful for mapping and
monitoring the variation in water quality and aquatic vegetation over long periods and at large scales.

5. Conclusions

Here, Honghu Lake in China was used as a case study to illustrate the spatial and seasonal
variations in water quality and the growth of aquatic plants, as well as their influencing factors using
a combination of GIS interpolation and PCA methods. The results indicate that water quality and
submerged aquatic plant biomass showed significant spatial and seasonal variations, especially in
areas near the outlets of inflowing rivers and those surrounded by human settlements and agricultural
activities. The influencing factors of water quality changed over space and time. The point and
non-point sources of pollution caused by human activities were the main factors influencing the
water quality in the river inflow areas. The water quality in the enclosure culture areas was mainly
influenced by organic pollution from nearby aquaculture development. The relatively clean water in
the open water area, lake protection area and area connecting to the Yangtze River was mainly caused
by climatic and geographical factors (e.g., monsoons and water exchange). In addition, the growth and
distribution of submerged aquatic plants were closely correlated with climatic factors and nutrient
concentrations in different areas, and high concentration of N caused by anthropogenic activities might
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limit the growth of submerged aquatic plants. These findings provide important information for the
future management of water quality in this lake or even the entire lake basin.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/9/9/707/s1,
Table S1: The mean values of raw date for water quality parameters at all sampling sites in 14–15 April 2013
(dry season), Table S2: The mean values of raw date for water quality parameters at all sampling sites in
20–21 August 2012 (wet season), Table S3: The mean values of raw date for water quality parameters at all
sampling sites in 12–13 December 2012 (normal season), Table S4: Summary statistics of measured variables for
Honghu Lake during dry, wet and normal seasons, Table S5: Summary statistics of submerged aquatic plants
biomass (g) for Honghu Lake during dry, wet and normal seasons.
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Appendix A

Table A1. The environmental guidelines (GB3838-2002) of water quality for Honghu Lake.

Parameters
Environmental Guidelines

Class I Class II Class III Class IV Class V

pH 6–9
Transparency (m) -

DO (mg/L) >7.5 6 5 3 2
NH4

+–N (mg/L) <0.15 0.5 1.0 1.5 2.0
TN (mg/L) <0.2 0.5 1.0 1.5 2.0
TP (mg/L) <0.01 0.025 0.05 0.1 0.2

CODMn (mg/L) <2 4 5 10 15
Biomass (g) -
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