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Abstract: High-resolution water mapping with remotely sensed data is essential to monitoring
of rainstorm waterlogging and flood disasters. In this study, a modified linear spectral mixture
analysis (LSMA) method is proposed to extract high-precision water fraction maps. In the modified
LSMA, the pure water and mixed water-land pixels, which are extracted by the Otsu method and a
morphological dilation operation, are used to improve the accuracy of water fractions. The modified
LSMA is applied to the 18 October 2015 Landsat 8 OLI image of the Pearl River Delta for the extraction
of water fractions. Based on the water fraction maps, a modified subpixel mapping method (MSWM)
based on a pixel-swapping algorithm is proposed for obtaining the spatial distribution information
of water at subpixel scale. The MSWM includes two steps in subpixel water mapping. The MSWM
considers the inter-subpixel/pixel and intra-subpixel/subpixel spatial attractions. Subpixel water
mapping is first implemented with the inter-subpixel/pixel spatial attractions, which are estimated
using the distance between a given subpixel and its surrounding pixels and the water fractions of the
surrounding pixels. Based on the initialized subpixel water mapping results, the final subpixel water
maps are determined by a modified pixel-swapping algorithm, in which the intra-subpixel/subpixel
spatial attractions are estimated using the initialized subpixel water maps and an inverse-distance
weighted function of the current subpixel at the centre of a moving window with its surrounding
subpixels within the window. The subpixel water mapping performance of the MSWM is compared
with that of subpixel mapping for linear objects (SPML) and that of the subpixel/pixel spatial
attraction model (SPSAM) using the GF-1 reference image from 20 October 2015. The experimental
results show that the MSWM shows better subpixel water mapping performance and obtains more
details than SPML and SPSAM, as it has the largest overall accuracy values and Kappa coefficients.
Furthermore, the MSWM can significantly eliminate the phenomenon of jagged edges and has smooth
continuous edges.
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1. Introduction

Areas of impervious surface have significantly increased along with the rapid urbanization,
leading to a rapid decrease in areas of forest, farmland, wetland, and river floodplain [1]. The areas of
forest, farmland, wetland, and river floodplain can act as a sponge for storing water and regulating
runoff, which are important for reduction, mitigation, and prevention of rainstorm waterlogging and
flood disasters. The Pearl River Delta (PRD) is frequently struck by heavy rainstorms, which often
results in urban waterlogging [2]. Therefore, accurate land surface water mapping at higher resolutions
is very relevant.

As an effective mapping method for extracting surface water, subpixel mapping (SPM),
or super-resolution mapping, was first introduced by Atkinson [3] to retrieve an appropriate spatial
distribution for land cover fractions within each pixel. SPM can be considered a post-processing
technique that combines the advanced features of both hard and soft classifications based on the spatial
dependence theory [3]. Various SPM methods have been developed and grouped into two categories
according to whether prior spatial structure information is required. The SPM methods in the first
category do not necessarily require prior spatial structure information of land cover classes and are
mainly based on spatial dependence. These SPM methods contain linear optimization techniques [4],
pixel-swapping algorithms [5–8], subpixel/pixel spatial attraction models (SPSAM) [9–12], Markov
random fields [13–15], Hopfield neural networks [16–19] and Swarm Intelligence Theory [16–19].
The SPM methods in the second category, which do need prior information from available high spatial
resolution images, include the back-propagation neural network [20,21], two-point histogram [22], and
indicator cokriging [23–25]. The aforementioned SPM methods have been successfully applied to map
subpixel land cover and have an acceptable accuracy in subpixel mapping. For mapping the waterline
or shoreline at a subpixel scale, many relevant SPM methods have been continuously developed [26,27].
Muslim et al. [28] used the pixel-swapping algorithm to accurately map the shoreline, combining
with a localized soft classification approach. Foddy et al. [29] evaluated the super-resolution mapping
methods to map the waterline at a subpixel scale. The results showed that the geostatistical approach
can make the most accurate predictions of waterline location. Ling et al. [30] presented a novel
algorithm based on a high spatial resolution digital elevation model (DEM) to map the subpixel-scale
waterline according to the physical features of the water flow and additional information provided by
the DEM. Zhang and Chen [31] proposed a super-resolution mapping technique based on geostatistics
to extract coastline at a subpixel scale using the fine-resolution indicator variogram as the prior model
of spatial structure. Ge et al. [32] proposed a linear template matching-based SPM algorithm (SPML) to
predict the spatial distribution of linear objects, including water and roads. The experimental results
demonstrated that the proposed SPM performed better than traditional SPM methods in mapping
linear objects. However, the mapping accuracy of these subpixel mapping methods was highly dependent
on the accuracy of water or land cover fractions of the linear spectral mixture analysis (LSMA) [33].

The endmember class fractions can be quantitatively extracted from remote sensing images
using the conventional LSMA method, which decomposes the reflectance of a mixed pixel into
different proportions [33]. This method has been successfully applied for extracting impervious
surface, vegetation, soil, and water fractions. However, the LSMA involving all of the land-cover types
was too complicated for only mapping surface water [34]. Previous studies have proposed modified
methods for subpixel water mapping [35,36]. Ma et al. [37] proposed a locally adaptive unmixing
method to extract lake-water area using 250 m MODIS images, which referred to the reflectivity of the
neighbouring pixels with different weights. Xie et al. [34] proposed an adaptive iterative endmember
class selection method based on the spatial similarity of adjacent ground surfaces for automated
subpixel surface water mapping from a Landsat 8 OLI image. Pardopascual et al. [38] presented a
high precision geometric method for automated shoreline detection from Landsat TM and ETM+
imagery. The above experiments showed that these methods can obtain better performance in water
mapping than the conventional LSMA. However, the greatest spectral similarity of endmembers
within each pixel constrains the prediction of inter-class boundaries among pixels, which still leads to
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certain difficulty in the accurate extraction of water fractions with subpixel precision [29,39]. To extract
high-precision endmember class fractions, a modified LSMA method was developed by integrating
spectral indices, including the normalized difference built-up index, the normalized difference bare-soil
index, and the normalized difference vegetation index [2,40]. High-precision surface water fractions
are required to map the spatial distribution of water at a subpixel scale, which determines the precision
of subpixel water mapping. However, the LSMA method cannot retrieve the spatial distribution
for surface water fractions at a subpixel scale. The appropriate spatial distribution for surface water
fractions within each pixel can be obtained by the SPM methods.

In this study, we propose a modified LSMA method to extract the water fractions in five regions of
PRD, China, by combining a high-resolution image from GF-1 and the pure water and mixed water-land
pixels. The high-precision water fractions can be then integrated into a modified pixel-swapping
algorithm to estimate subpixel-scale water bodies. The goal of this study is to improve the extraction
accuracy of water at a subpixel scale, mainly for river-water, which includes: (1) extracting the pure
water and mixed water-land pixels with a normalized difference water index (NDWI) using the Otsu
method and a morphological dilation operation; (2) modifying the conventional LSMA with the
pure water and mixed water-land pixels to extract the high-quality water fractions of each pixel; and
(3) proposing a modified subpixel water mapping method (MSWM) based on the pixel-swapping
algorithm to extract water bodies at a subpixel scale based on the unmixing water fractions of the
modified LSMA.

2. Study Area and Data

2.1. Study Area

The PRD region locates in Guangdong Province in southern China (Figure 1), and contains nine
large prefectural cities: Guangzhou, Shenzhen, Foshan, Dongguan, Zhongshan, Zhuhai, Huizhou,
Jiangmen, and Zhaoqing. It is a typical subtropical monsoon climate, with an annual average
temperature of 21.0–23.0 ◦C. The rainy season is from April to September, and the dry season is
from October to March [41]. The annual average precipitation in the PRD is about 1600 mm over
130 rainy days per year, which contributes to the high river levels. The water bodies in this region are
very diverse. To extract different surface water bodies with remote sensing imagery, five regions with
different land use types are selected as the case study areas in Figure 1.
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Figure 1. Five study areas of Pearl River Delta, (A) River water is mainly neighboured by fishponds;
(B) River water is mainly neighboured by fishponds and impervious surface; (C) River water is mainly
neighboured by impervious surface; (D) River water is mainly neighboured by cultivated land and
impervious surface; (E) River water is mainly neighboured by cultivated land (RGB: bands 7, 5,
3 Landsat OLI image).
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2.2. Remote Sensing Image

In this study, we used the Landsat-8 Operational Land Imager (OLI) without cloud cover
(Acquired on 18 October 2015) for mapping the subpixel surface river water from heterogeneous
environment. We obtained a pre-processed dataset or a raw dataset from the United States Geological
Survey (USGS) Landsat distribution scheme (https://landsat.usgs.gov/landsat-surface-reflectance-
high-level-data-products). In this study, the pre-processed Landsat-8 surface reflectance data, which
were generated from the L8SR algorithm [42], were downloaded from the USGS Earth Resources
Observation and Science (EROS) Center Science Processing Architecture (ESPA) on Demand Interface
(https://espa.cr.usgs.gov/). The surface reflectance products were geometrically rectified to the
Universal Transverse Mercator (UTM) projection system (zone 49N). In addition, to verify the accuracy
of subpixel water mapping, a reference image with a spatial resolution of 6 m was obtained with a
geometrically-corrected fusion GF-1 image from 20 October 2015. The fusion GF-1 image was generated
by fusing multi-spectral data and panchromatic data from the GF-1 image via the Gram–Schmidt
method [43–45]. The Gram–Schmidt method showed good performance in GF-1 image fusion because
it can preserve the original spectral characteristics and reduce the loss of useful information [46,47].

3. Methods

The subpixel water mapping method (SWMM) was divided into three major steps: (1) extracting
the pure water and land-water pixels automatically (Section 3.1); (2) extracting the fraction map of
water bodies using the linear spectral mixture analysis method and modifying the fraction of water
bodies by combining the pure water pixels (Section 3.2); and (3) achieving the fine spatial resolution
water maps based on a modified subpixel water mapping method (MSWM). The detailed process of
the SWMM method is shown in Figure 2.
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3.1. Automatic Extraction of Pure and Mixed Pixels

The NDWI has been widely used to extract land surface water (LSW) because of its unique
characteristic of more accurately delineating LSW information from remote sensing imagery [48,49].
A previous study demonstrated that the NDWI using the green band (Band 3) and short-wave infrared
band 1 (SWIR1, Band 6) of Landsat 8 OLI imagery shows better performance in accurately mapping
LSW [50].

NDWI =
ρGreen − ρSWIR1

ρGreen + ρSWIR1
(1)

where ρGreen and ρSWIR1 are the reflectances of band 3 and band 6, respectively.
In this study, based on the NDWI, the pure water and mixed water-land pixels are identified using

the threshold and morphological dilatation methods, respectively. In general, the pure water pixels
are extracted by setting the NDWI threshold value to 0 [48,49]. However, this threshold cannot be
applied to every region because water in different regions shows different spectral features. The Otsu
method [51] determines the optimal threshold through the maximum inter-class variance criterion and
has been successfully utilized for extracting water and land pixels [34,52]. The mathematical formula
of the Otsu method is as follows:

σ2 = Pnw·(Mnw −M)2 + Pw·(Mw −M)2

M = Pnw·Mnw + Pw·Mw

Pnw + Pw = 1

t = arg max
a≤t≤b

[
Pw·Pnw·(Mw −Mnw)

2
] (2)

where σ is the inter-class variance; M is the mean value of NDWI; Pnw and Pw are the percentage of
non-water and water pixels, respectively; Mnw and Mw are the mean values of non-water and water
pixels of NDWI, respectively; and t is the optimal threshold. The Otsu method is used to obtain the
pure water pixels via application to the NDWI image. Here, the pure water pixels are extracted if the
NDWI of a given pixel is greater than the threshold t.

A previous study demonstrated that the mixed water-land pixels between water and land are
adjacent to and surround the pure water pixels, and they can be determined according to their spatial
relationship to the pure water pixels [37]. In this study, based on their unique spatial relationship,
the mixed water-land pixels are extracted by dilating the pure water pixels through a morphological
dilation operation, with a window of size 3 × 3 pixels. If any one pixel in the window is adjacent to
and surrounds a pure water pixel at the centre of the window, then the pixel is changed to a pure water
pixel. If all pixels in the window are land or mixed pixels, then these pixels are not changed.

3.2. Modified Linear Spectral Mixture Analysis

In this study, the conventional linear spectral mixture analysis (LSMA) method [33] is used
to extract the fractions of water, impervious surface, vegetation and soil endmembers, and the
mathematical formula is as follows:

Ri =
n

∑
k=1

fkRik + εi (3)

where Ri is the spectral reflectance of mixed pixels for band i, i = 1, 2, . . . , m; m is the number of
spectral bands, k = 1, 2, . . . , n; n is the number of endmembers (here four endmembers are selected);
fk is the proportion of water, impervious surface, vegetation, and soil endmembers; Rik is the known
spectral reflectance of endmember k of band i; and εi is the error of band i. The proportion fk of four
endmembers is solved by the least square method with the following constraint:

n

∑
k=1

fk = 1, fk ≥ 0 (4)
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Endmember selection is a necessary prerequisite to spectral mixture analysis and is critical
for accurately extracting the fraction of endmembers. However, large errors exist in the LSMA
results, partly because some endmembers are misclassified during the process of endmember selection.
Following the work of Xu et al. [2], a two-step method is applied to improve the accuracy of endmember
selection by combining the Maximum Noise Fraction (MNF) and a high-resolution image from Google
Earth. However, the numerical problems of LSMA and the imprecise selection of pure endmembers
directly result in large errors in the LSMA results; for instance, some water endmember fractions in
the pure water pixels may be misclassified as other endmembers. The inaccurate water fraction limits
the accuracy of subpixel water mapping. In this study, the pure water pixels extracted by the Otsu
algorithm and the mixed water-land pixels extracted by dilating the pure water pixels (Section 3.1)
are used to modify the water fractions by setting an appropriate value based the above LSMA results.
The detailed post-processing of the water fraction image is shown in Figure 2. In general, the water
fraction of the pure water pixels is set to 100%. Some studies have shown that an error of approximately
10% still exists in the LSMA results [2,53]. Therefore, to reduce uncertainties introduced by LSMA,
water fractions less than 10% in the mixed water-land pixels are set to 0, and these mixed water-land
pixels are not used in subpixel water mapping.

3.3. Modified Subpixel Water Mapping Method

Based on the subpixel/pixel spatial attraction model in Mertens et al. [9] and the pixel-swapping
algorithm [5,6], a modified subpixel water mapping method is proposed to predict the spatial
distribution of water at a subpixel scale using the previous high-precision water fraction maps.
The MSWM includes two steps for subpixel water mapping, which estimates the inter-subpixel/pixel
and intra-subpixel/subpixel spatial attractions, respectively. This study is focused on subpixel water
mapping; thus, only the water fractions of pixels are used, and the land fractions of pixels are set to 0.

In the initialized process of subpixel water mapping, the water spatial attraction of the current
subpixel within a pixel is influenced by the water fractions in surrounding pixels, and is calculated as:

InterAij =
2

∑
m=−2

2

∑
n=−2

Frac(x + m, y + n)
d
(

pij, Px+m,y+n
) , i, j = 1, 2, · · · , S (5)

where (x, y) are the coordinates of the current pixel, InterAij is the spatial attraction of the current
subpixel for the water class, i and j are row and column indices of the subpixels with the pixel,
respectively, and S is the scale factor. m and n are row and column indices of a window such that
the current pixel (x, y) is at the centre of the window. The window size indicates the total number of
surrounding pixels involved in the calculation of the inter-subpixel/pixel spatial attractions. Atkinson
demonstrated that just one neighbour, being 3 window size, for subpixel mapping may produce
unsatisfactory results, and the window size of 5 (two neighbours) may achieve high subpixel mapping
accuracy [5]. Thus, in this study, m and n are both set to −2, −1, 0, 1, and 2, which means that
25 surrounding pixels are used to calculate the spatial attractions. Frac(x + m, y + n) is the water
fraction of the surrounding pixels Px+m,y+n, and d

(
pij, Px+m,y+n

)
is the distance between the current

subpixel pij and its surrounding pixels Px+m,y+n. The distance can be calculated as:

d
(

pij, Px+m,y+n
)
=

√(
x′i − X′x+m

)2
+
(

y′j −Y′y+n

)2
(6)

where (x′i , y′j) are the coordinates of subpixel pij; and (X′x+m, Y′y+n) are the coordinates of pixels
Px+m,y+n, which are calculated using:{

x′i = x + 2×i−1
2×S

y′j = y + 2×j−1
2×S

i, j = 1, 2, · · · , S (7)
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{
X′x+m = x + m + 0.5
Y′y+n = y + n + 0.5

m, n = −2, −1, 0, 1, 2 (8)

After the spatial attractions of all the subpixels within pixel Px,y for the water class, the spatial
attractions are sorted in descending order. According to the descending list of subpixels, the first
Frac(x, y) × S2 subpixels in the list are allocated to the water class, other subpixels are allocated to
the land class. Frac(x, y) × S2 determines the number of subpixels in pixel Px,y for the water class.
The above processes are repeated until all subpixels of the water class within all pixels are allocated.

Once the initialized subpixel water allocation is completed, the subsequent subpixel water
mapping is further improved based on the subpixel swapping method. The intra-subpixel/subpixel
spatial attraction of the current subpixel at the centre of a moving window is influenced by the
surrounding water class pixels within the window, and is calculated as:

IntraAij =
2

∑
m=−2

2

∑
n=−2

λ
(

pi,j, pi+m,j+n
)
z
(

pi+m,j+n
)

(9)

where IntraAij is the spatial attraction of the current subpixel pi,j for the water class, and z
(

pi+m,j+n
)

is the value of the subpixel pi+m,j+n. z
(

pi+m,j+n
)

that is set to 1 for the water class, and 0 for the
land class. In this study, the moving window size is set to 25, which indicates that 25 surrounding
subpixels are used in the calculation of the intra-subpixel/subpixel spatial attraction. λ

(
pi,j, pi+m,j+n

)
is a distance-dependent weight:

λ
(

pi,j, pi+m,j+n
)
= exp

(
−d
(

pi,j, pi+m,j+n
)

α

)
(10)

where α is a non-linear parameter of the exponential model, and d
(

pi,j, pi+m,j+n
)

is the distance
between the current subpixel pi,j and its surrounding subpixels pi+m,j+n, and calculated as:

d
(

pij, pi+m,j+n
)
=

√(
x′i − x′i+m

)2
+
(

y′j − y′j+n

)2
(11)

Similarly, the spatial attraction for the land class is also calculated. After the intra-subpixel/
subpixel spatial attractions of all the subpixels within pixel Px,y for the water and land classes are
determined, the spatial attractions IntraA are sorted in descending order. The list contains S2 subpixels,
which includes water and land classes. The water class is set to 1, and the land class is set to 0. In the
list, the first “0” is found from left to right, and the first “1” is found from right to left. If the “0” is
in front of the “1”, the class values are then swapped. Otherwise, no change is made. The above
process is repeated iteratively until a solution is approached. The process can be stopped when
further improvement cannot be obtained or the iterations reach a fixed number. The details of the
subpixel-swapping algorithm can be found in Atkinson [5] and Wang [54].

4. Results and Discussion

4.1. Extraction of Pure Water and Mixed Water-Land Pixels

This study explored the extraction of pure water and mixed water-land pixels using the NDWI.
According to the histogram of NDWI, the thresholds of pure water were automatically estimated by
the Otsu method. The thresholds of NDWI for the five study regions are 0.093, 0.114, 0.101, 0.053,
and 0.171, which are different from the 0 threshold of Mcfeeters [48] and Xu [49]. The different water
bodies of the five regions exhibit different spectral reflectance, leading to obviously different thresholds.
The Otsu determined thresholds (Figures 3–7) are applied to obtain five pure water maps by setting
a condition such that the NDWI must be greater than the threshold. The pure water maps for the
five regions are shown in subfigure b of Figures 3–7. The visual interpretation indicates that the five
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pure water maps derived from the Otsu method show better performance than those pure water maps
derived from a 0 threshold. The pure water maps derived from 0 threshold are not shown in this study.
The mixed water-land pixels are determined through the dilation of the pure water pixels, as shown in
subfigure c of Figures 3–7.Water 2017, 9, 658  8 of 17 

 

 
Figure 3. Pure water and mixed water-land pixels for Region A: (a) normalized difference water index 
(NDWI) image of green and SWIR1 bands; (b) pure water pixels (white) of NDWI with a 0.093 
threshold; and (c) mixed water-land pixels (white). 

 
Figure 4. Pure water and mixed water-land pixels for Region B: (a) normalized difference water index 
(NDWI) image of green and SWIR1 bands; (b) pure water pixels (white) of NDWI with a 0.114 
threshold; and (c) mixed water-land pixels (white). 

 
Figure 5. Pure water and mixed water-land pixels for Region C: (a) normalized difference water index 
(NDWI) image of green and SWIR1 bands; (b) pure water pixels (white) of NDWI with a 0.101 
threshold; and (c) mixed water-land pixels (white). 

 
Figure 6. Pure water and mixed water-land pixels for Region D: (a) normalized difference water index 
(NDWI) image of green and SWIR1 bands; (b) pure water pixels (white) of NDWI with a 0.053 
threshold; and (c) mixed water-land pixels (white). 

Figure 3. Pure water and mixed water-land pixels for Region A: (a) normalized difference water index
(NDWI) image of green and SWIR1 bands; (b) pure water pixels (white) of NDWI with a 0.093 threshold;
and (c) mixed water-land pixels (white).

Water 2017, 9, 658  8 of 17 

 

 
Figure 3. Pure water and mixed water-land pixels for Region A: (a) normalized difference water index 
(NDWI) image of green and SWIR1 bands; (b) pure water pixels (white) of NDWI with a 0.093 
threshold; and (c) mixed water-land pixels (white). 

 
Figure 4. Pure water and mixed water-land pixels for Region B: (a) normalized difference water index 
(NDWI) image of green and SWIR1 bands; (b) pure water pixels (white) of NDWI with a 0.114 
threshold; and (c) mixed water-land pixels (white). 

 
Figure 5. Pure water and mixed water-land pixels for Region C: (a) normalized difference water index 
(NDWI) image of green and SWIR1 bands; (b) pure water pixels (white) of NDWI with a 0.101 
threshold; and (c) mixed water-land pixels (white). 

 
Figure 6. Pure water and mixed water-land pixels for Region D: (a) normalized difference water index 
(NDWI) image of green and SWIR1 bands; (b) pure water pixels (white) of NDWI with a 0.053 
threshold; and (c) mixed water-land pixels (white). 

Figure 4. Pure water and mixed water-land pixels for Region B: (a) normalized difference water index
(NDWI) image of green and SWIR1 bands; (b) pure water pixels (white) of NDWI with a 0.114 threshold;
and (c) mixed water-land pixels (white).

Water 2017, 9, 658  8 of 17 

 

 
Figure 3. Pure water and mixed water-land pixels for Region A: (a) normalized difference water index 
(NDWI) image of green and SWIR1 bands; (b) pure water pixels (white) of NDWI with a 0.093 
threshold; and (c) mixed water-land pixels (white). 

 
Figure 4. Pure water and mixed water-land pixels for Region B: (a) normalized difference water index 
(NDWI) image of green and SWIR1 bands; (b) pure water pixels (white) of NDWI with a 0.114 
threshold; and (c) mixed water-land pixels (white). 

 
Figure 5. Pure water and mixed water-land pixels for Region C: (a) normalized difference water index 
(NDWI) image of green and SWIR1 bands; (b) pure water pixels (white) of NDWI with a 0.101 
threshold; and (c) mixed water-land pixels (white). 

 
Figure 6. Pure water and mixed water-land pixels for Region D: (a) normalized difference water index 
(NDWI) image of green and SWIR1 bands; (b) pure water pixels (white) of NDWI with a 0.053 
threshold; and (c) mixed water-land pixels (white). 

Figure 5. Pure water and mixed water-land pixels for Region C: (a) normalized difference water index
(NDWI) image of green and SWIR1 bands; (b) pure water pixels (white) of NDWI with a 0.101 threshold;
and (c) mixed water-land pixels (white).



Water 2017, 9, 658 9 of 18

Water 2017, 9, 658  8 of 17 

 

 
Figure 3. Pure water and mixed water-land pixels for Region A: (a) normalized difference water index 
(NDWI) image of green and SWIR1 bands; (b) pure water pixels (white) of NDWI with a 0.093 
threshold; and (c) mixed water-land pixels (white). 

 
Figure 4. Pure water and mixed water-land pixels for Region B: (a) normalized difference water index 
(NDWI) image of green and SWIR1 bands; (b) pure water pixels (white) of NDWI with a 0.114 
threshold; and (c) mixed water-land pixels (white). 

 
Figure 5. Pure water and mixed water-land pixels for Region C: (a) normalized difference water index 
(NDWI) image of green and SWIR1 bands; (b) pure water pixels (white) of NDWI with a 0.101 
threshold; and (c) mixed water-land pixels (white). 

 
Figure 6. Pure water and mixed water-land pixels for Region D: (a) normalized difference water index 
(NDWI) image of green and SWIR1 bands; (b) pure water pixels (white) of NDWI with a 0.053 
threshold; and (c) mixed water-land pixels (white). 

Figure 6. Pure water and mixed water-land pixels for Region D: (a) normalized difference water index
(NDWI) image of green and SWIR1 bands; (b) pure water pixels (white) of NDWI with a 0.053 threshold;
and (c) mixed water-land pixels (white).Water 2017, 9, 658  9 of 17 

 

 
Figure 7. Pure water and mixed water-land pixels for Region E: (a) normalized difference water index 
(NDWI) image of green and SWIR1 bands; (b) pure water pixels (white) of NDWI with a 0.171 
threshold; and (c) mixed water-land pixels (white). 

4.2. Extraction of Surface Water Fraction 

In this study, the water, impervious surface, vegetation, and soil fractions were extracted by 
applying the conventional and modified LSMA methods using the Landsat 8 OLI image of 18 October 
2015. The surface water fractions generated by the conventional and modified LSMA methods are 
shown in Figures 8–12. It is obvious in Figures 8–12 that the modified LSMA exhibits better extraction 
performance than the conventional LSMA, particularly for the pure water regions. For the 
conventional LSMA results, some pixels have a water fraction of less than 100% in the pure water 
pixels, which leads to large errors in the LSMA results. These results seem inconsistent to the actual 
situation. In general, the pure water pixels have a fraction of 100%. Large errors in the conventional 
LSMA results may be closely related to inaccurate endmember selection and accumulation errors in 
the least square equations. Furthermore, dredges and ships in the river may change the reflectance 
of the water body, such that these pixels may be mistakenly treated as mixed water-land or land 
pixels. This may also introduce errors to the water fractions determined by the conventional LSMA. 
Therefore, based on the NDWI, a modified LSMA method was proposed in this study. First, following 
the work of Xu et al. [2], accurate endmembers were selected by integrating a high-resolution image. 
Then, based on the LSMA results, the surface water fractions in the pure water pixels are modified 
by setting water fraction equal to 100%. As shown in subfigure b of Figures 8–12, most pixels in the 
pure water regions have a water fraction of 100% in the modified LSMA. 

The water fractions, especially those less than 10%, in the mixed water-land pixels are not 
improved in this study, which may reduce the accuracy of subpixel water mapping. Although some 
efforts have been made to improve the LSMA results, errors of about 10% can still be found. Water 
fraction less than 10% are set to 0% to reduce uncertainties due to the calculation error of LSMA. This 
means that mixed water-land pixels with water fraction less than 10% are involved in the subpixel 
mapping. 

Furthermore, a bridge overlooking a river is considered land and has a water fraction of 0% 
(subfigure b in Figures 9–11). These bridge pixels may break down the river into discrete partitions, 
which leads to boundary discontinuity in subpixel water mapping. This is contrary to the actual 
observation. In the future, we can further enhance the accuracy of LSMA by modifying the bridge 
pixels above surface water to be water pixels. 

Figure 7. Pure water and mixed water-land pixels for Region E: (a) normalized difference water index
(NDWI) image of green and SWIR1 bands; (b) pure water pixels (white) of NDWI with a 0.171 threshold;
and (c) mixed water-land pixels (white).

4.2. Extraction of Surface Water Fraction

In this study, the water, impervious surface, vegetation, and soil fractions were extracted by
applying the conventional and modified LSMA methods using the Landsat 8 OLI image of 18 October
2015. The surface water fractions generated by the conventional and modified LSMA methods are
shown in Figures 8–12. It is obvious in Figures 8–12 that the modified LSMA exhibits better extraction
performance than the conventional LSMA, particularly for the pure water regions. For the conventional
LSMA results, some pixels have a water fraction of less than 100% in the pure water pixels, which leads
to large errors in the LSMA results. These results seem inconsistent to the actual situation. In general,
the pure water pixels have a fraction of 100%. Large errors in the conventional LSMA results may
be closely related to inaccurate endmember selection and accumulation errors in the least square
equations. Furthermore, dredges and ships in the river may change the reflectance of the water body,
such that these pixels may be mistakenly treated as mixed water-land or land pixels. This may also
introduce errors to the water fractions determined by the conventional LSMA. Therefore, based on the
NDWI, a modified LSMA method was proposed in this study. First, following the work of Xu et al. [2],
accurate endmembers were selected by integrating a high-resolution image. Then, based on the LSMA
results, the surface water fractions in the pure water pixels are modified by setting water fraction equal
to 100%. As shown in subfigure b of Figures 8–12, most pixels in the pure water regions have a water
fraction of 100% in the modified LSMA.
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The water fractions, especially those less than 10%, in the mixed water-land pixels are not
improved in this study, which may reduce the accuracy of subpixel water mapping. Although
some efforts have been made to improve the LSMA results, errors of about 10% can still be found.
Water fraction less than 10% are set to 0% to reduce uncertainties due to the calculation error of
LSMA. This means that mixed water-land pixels with water fraction less than 10% are involved in the
subpixel mapping.

Furthermore, a bridge overlooking a river is considered land and has a water fraction of 0%
(subfigure b in Figures 9–11). These bridge pixels may break down the river into discrete partitions,
which leads to boundary discontinuity in subpixel water mapping. This is contrary to the actual
observation. In the future, we can further enhance the accuracy of LSMA by modifying the bridge
pixels above surface water to be water pixels.Water 2017, 9, 658  10 of 17 
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4.3. Comparison of Different Subpixel Water Mapping Methods

To verify the accuracy of subpixel water mapping, the fusion GF-1 image was first classified
into water, vegetation, impervious surface, and soil by the maximum likelihood supervised
classification method. Then, other classes except water were merged by a post-processing operation.
After supervised classification, the water with a blue colour and land with a yellow-green colour were
extracted, as shown in subfigure a of Figures 13–16. Region E does not have a reference image because
of the lack of a GF-1 image in the same period.

Furthermore, to validate the performance of the proposed MSWM method, this study compared
the subpixel water mapping accuracies of the MSWM with those of SPML from Ge et al. [32] and
SPSAM from Mertens et al. [9]. The MSWM, SPML, and SPSAM were coded with C# language, and
the scale factor S was set to 5. Referring to the research of Atkinson [5], the non-linear parameter
of the exponential model a and the moving window size were set to 5 pixels, and the number of
iterations was 30 in the MSWM experiment. It should be noted that only the mixed water-land pixels
surrounding the pure water pixels need to be mapped.

Figures 13–17 show the subpixel water mapping results from the SPML, SPSAM, and MSWM
experiments. The MSWM shows better mapping performance than the SPML and SPSAM for all
regions. The SPML uses 20 rectilinear and curvilinear templates of 3 × 3 pixels to represent the
direction of water inside mixed water-land pixels. The subpixel mapping results of SPML are closely
associated with these templates, and have direction similar to the templates, as shown in subfigure b
of Figures 13–17. The optimal template is not shown here. The spatial dependence between subpixels
and pixels of templates in four directions are taken into account. However, the SPML does not consider
the spatial dependence between subpixels and neighbouring pixels acting towards template pixels.
This may introduce large errors in subpixel mapping and yield a suboptimal subpixel mapping result
(subfigure b in Figures 13–17). In the SPSAM experiment, it is obviously demonstrated that some jagged
edges exist at the junctions of water and land (subfigure c in Figures 13–17). This may be attributed to
imprecision of spatial dependence in the spatial attraction model. SPSAM only considers the spatial
attraction between subpixels and pixels and does not consider the spatial attraction between subpixels
and subpixels, which does not express the spatial dependence well. The MSWM can eliminate the
phenomenon of jagged edges to some extents and has smooth continuous edges. Subfigure d in
Figures 13–17 also show that the subpixel water mapping results of the MSWM are most similar to
the reference image. This is because the MSWM considers the inter-subpixel/pixel and intra-subpixel
spatial dependence.
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The subpixel mapping accuracies of SPML, SPSAM, and MSWM are further evaluated by
calculating the Overall Accuracy (OA) and Kappa Coefficient (κ) with respect the reference image.
The quantitative accuracy evaluation of subpixel mapping is shown in Table 1. In Table 1, the MSWM
OA values for Regions A and D are up to 97%, and κ reaches 0.94, which are higher values than
those of SPML and SPSAM for the whole reference image. For the mixed water-land pixels in the
reference image, the MSWM OA values are greater than 80% for Regions A, B, and D, while the
largest OA value of SPML and SPSAM is only 78.51%; κ for Regions A, B, and D based on the MSWM
are greater than 0.59, which is higher than that of SPML and SPSAM. The quantitative comparison
analysis indicates that both the OA and κ values of the MSWM are the largest among the three subpixel
mapping methods, and the MSWM exhibits better performance than SPML and SPSAM in subpixel
water mapping.

Table 1. Comparisons of subpixel water mapping accuracy among MSMM, SPML, and SPSAM.

Region Method

Whole Reference Image Mixed Pixels in Reference Image

Overall Accuracy
(OA, %)

Kappa Coefficient
(κ)

Overall Accuracy
(OA, %)

Kappa Coefficient
(κ)

A
MSWM 97.10% 0.94 80.89% 0.59
SPML 96.46% 0.92 70.72% 0.42

SPSAM 96.86% 0.93 77.39% 0.52

B
MSWM 95.35% 0.90 80.78% 0.60
SPML 93.92% 0.87 65.97% 0.30

SPSAM 94.85% 0.89 75.58% 0.50

C
MSWM 95.69% 0.84 76.23% 0.52
SPML 94.18% 0.78 62.30% 0.24

SPSAM 95.05% 0.82 70.30% 0.40

D
MSWM 97.24% 0.94 82.58% 0.60
SPML 95.85% 0.92 70.96% 0.33

SPSAM 96.78% 0.94 78.51% 0.50

From the visual and quantitative evaluation, it is concluded that the MSWM is more accurate
for subpixel mapping than the other two subpixel mapping methods; the MSWM can obtain more
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details in subpixel mapping than SPML and SPSAM. However, some jagged edges can also be found
in the MSWM results, as shown in Figure 16d. This may be related to the LSMA accuracy for mixed
water-land pixels. The water fraction of each pixel in LSMA determines the number of subpixels in
the pixels, which may directly influence the accuracy of subpixel mapping. Therefore, enhancing
the accuracy of LSMA results is the primary task for improving the accuracy of subpixel mapping,
especially for the water fraction of mixed pixels. A more reasonable LSMA could be exploited for
extraction of water fraction by combining it with different normalized difference indices or different
data in the future.

5. Conclusions

This study presents an improved method for surface water mapping with subpixel precision.
In the proposed method, the pure water and mixed water-land pixels were first automatically extracted
from the 18 October 2015 Landsat 8 OLI image based on NDWI using the Otsu method and a
morphological dilation operation. A modified LSMA method was then built based on the conventional
LSMA by combining a high-resolution image and the pure water and mixed water-land pixels; this
method was used to extract water fractions. The modified LSMA performs better than the conventional
LSMA in improving the water fraction of pure water pixels. As the water fractions for different
regions were extracted in advance, a modified subpixel mapping method (MSWM) based on the
pixel-swapping algorithm was proposed for subpixel water mapping. In the MSWM, the primary
subpixel water mapping was first implemented by computing the spatial attraction between the current
subpixel and the surrounding pixels within a window; the final subpixel water mapping was then
obtained by estimating the spatial attraction between the current subpixel at the centre of a moving
window and all surrounding subpixels within the window. In other words, the MSWM considers
the inter-subpixel/pixel and intra-subpixel spatial attractions. In this study, three subpixel water
mapping experiments were performed for five regions using the MSWM, SPML, and SPSAM methods.
The subpixel mapping results were validated using the GF-1 reference image from 20 October 2015.
The experimental results indicate that the MSWM indicates better performance and obtains more
details in subpixel mapping than SPML and SPSAM, as it has the largest overall accuracy values and
Kappa coefficients. Furthermore, the MSWM can significantly eliminate the phenomenon of jagged
edges and has smooth continuous edges. Overall, the MSWM is an effective subpixel mapping method,
which can improve subpixel mapping accuracy. However, the proposed method does not work fine in
these water bodies with dredges, ships, suspended sediment load, and floating vegetation. These pixels
may change the reflectance of water, which may be mistakenly considered as land, vegetation, or
mixed water-land pixels. This may introduce large errors in extracting water fractions by the LSMA
method, which leads to inaccurate subpixel water mapping. To further enhance the accuracies of
LSMA and subpixel water mapping, some schemes could be exploited for locating these pixels above
water and modifying them to be water pixels in near future.
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