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Abstract: Hedging rules for water supply reservoir operations provide guidelines for balancing
the consequences of competing water allocations. When inflow forecast uncertainty is addressed,
hedging acts as insurances for offsetting the negative influence of water shortage in the future,
especially when drought is anticipated. This study used a risk-averse criterion, the conditional
value-at-risk (CVaR), rather than the expected value (EV) criterion, to rationalize water delivery for
overcoming the shortcomings of risk-neutral hedging rules in minimizing water shortage impacts
in unfavorable realizations, in which actual inflow is less than anticipated. A two-period hedging
model with the objective of maximizing the CVaR of total benefits from water delivery and water
storage is established, and the optimal hedging rules using first-order optimality condition are
analytically derived. Differences in hedging rules under the two criteria are highlighted by theoretical
analysis and numerical experiments. The methods are applied to guide the operations of a water
supply reservoir, and results show that: (1) the hedging rules under the EV criterion are special cases
under the CVaR criterion; (2) water delivery in the current period would be greatly curtailed under
the high influence of forecast uncertainty or the significant risk-averse attitude of decision makers;
(3) hedging to maximize the CVaR of total benefit is at the cost of reducing the EV of total benefit; and
(4) in real-time operations, compared with the hedging policies under the EV criterion, the hedging
policies under the CVaR criterion would be more effective when applied to dry and extremely dry
hydrological conditions, especially when inflow is overestimated. These implications provide new
insights into rationing water supply and risk aversion.

Keywords: Reservoir operation; Hedging rules; Forecast uncertainty; Expectation; Conditional value
at risk

1. Introduction

Modern water resource systems face water shortage risks from multiple uncertainties, which
could cause negative social, economic, and ecological impacts. To alleviate the negative impacts
of water shortage, management techniques such as increasing water supply and decreasing water
demand are essential for the supply–demand balance. As a common component of a water resources
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system, reservoirs [1,2] can redistribute natural water resources over time by using water storage.
However, during drought, total water availability may be insufficient to meet total demand, resulting
in conflicts among competing water uses in different periods. In such cases, whether limited water is
delivered for immediate use or kept for future use should be decided to best balance the consequences
of current water use versus those in the future. For water supply reservoir, the consequence means that
both the benefits of the current water delivery and carryover storage (for future water deliveries) can
be jointly assessed. When potential drought is anticipated, the water delivery in the current period can
be curtailed to alleviate the negative influence of water shortage in the future [3], although the current
availability is adequate to satisfy immediate water demand. This condition is a hedging policy [4,5],
which is a water-saving approach to reducing maximum drought impacts.

Early studies have focused on developing various forms of hedging policies [6] or models
for reservoir operations. Hashimoto et al. [7] analyzed the formulation of loss function and its
corresponding optimal operational rules. Klemes [8] verified that the standard operating policy (SOP)
is the best policy given a linear loss function. For nonlinear loss or benefit functions, hedging rules
vary with regard to various model formulations and purposes. Draper and Lund [3] introduced a
two-stage optimal hedging model that determines the optimal water delivery strategy for maximizing
the summation of current and future benefits, and they found that the optimality condition for hedging
is at which the marginal benefit of storage equals the marginal benefit of water release. They then
derived the analytic hedging rules for monotonic increasing benefit functions. Shiau [9] noted that
either the release or the storage deviating from their targets could cause economic loss and used
normalized deviations as loss functions to characterize competing water allocations. Zeng et al. [10]
extended the study of Draper and Lund [3] to explore optimal hedging rules for multiple reservoirs
that operate in parallel with a joint water demand.

Decision makers often rely on inflow forecasts [11] to estimate potential water available for
allocations, considering that water supply reservoir operations usually require scheduling releases and
storage over several months. The influence of inflow forecast uncertainty should be incorporated into
decision making, given that it is often difficult to precisely forecast the actual inflow at the beginning
of the current time. Therefore, the hedging model turns out to be a stochastic optimization problem
wherein the conventional objective [12,13] is to optimize the expected value (EV) of total benefit
or total loss. This model yields a risk-neutral decision that is suited for all possible future inflow
realizations, considering both cases wherein inflow is overestimated or underestimated. You and
Cai [14] examined how reservoir inflow uncertainty affects hedging operations using the EV of total
benefit as the objective. They concluded that hedging should reduce the current release to face future
risk induced by hydrological uncertainty. Zhao et al. [15] developed optimal hedging rules for reservoir
flood operations considering the influence of forecast uncertainty. To minimize the total expected flood
damages, they analyzed how the expected flood-safety margin should be optimally allocated to the
current and future time periods for different levels of flood events.

The expected value (EV) criterion provides a risk-neutral policy that is indifferent between gaining
benefit in favorable realizations and suffering loss in unfavorable realizations because it seeks the
best average outcome. Consequently, high benefit can be obtained when inflow is high, whereas
high loss could also be a result of a low inflow. The optimal policy yielded from the EV criterion is
often vulnerable to risks in unfavorable realizations. In water resource allocations, decision makers
are often more concerned about the overall benefit in unfavorable realizations wherein water is
less than anticipated [16,17]. This concern suggests a more conservative criterion, rather than EV,
to focus on outcomes under unfavorable or even worst-case scenarios. The conditional value-at-risk
(CVaR), or the expected shortfall, is a suitable criterion for assessing the mean value of outcome from
undesirable cases, which is originally used in finance [18,19] to measure expected losses above a
given loss threshold. Yamout et al. [20] verified that applying the CVaR criterion to water allocation
problems presents continuous and consistent model behavior compared with the modeling results
under the value-at-risk (VaR) criterion. Piantadosi et al. [21] proposed a model for managing the urban
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storm water to minimize CVaR, and they showed that the optimal policy under CVaR differs from
the optimal policy obtained under expected loss minimization criterion. Hu et al. [22] established a
multiobjective model including water allocation equality and economic efficiency risk control, and
the model incorporates a constraint to bind the CVaR of economic efficiency risk induced by the
uncertainty of water availability. The optimal decision and model performance under the CVaR
criterion differ from that under the expectation criterion. Thus, analytic derivations and analysis on the
related formulations of hedging rules could provide decision makers intuitive and effective guidance
in rationing water resource allocations.

The purposes of this study are: (1) to derive the hedging rules for water supply reservoir
operations under the CVaR criterion considering inflow forecast uncertainty and (2) to explore the
differences in rationing water deliveries and related performances under two criteria (CVaR and
EV). Specifically, this study extends the studies of Draper and Lund [3] and You and Cai [14] and
establishes a stochastic programming model for hedging under the consideration of inflow forecast
uncertainty. Setting the objectives of maximizing the EV and the CVaR of total benefit, we derive the
optimality condition of hedging policies and their analytic formulations. Comparative experiments
and model simulations are conducted to investigate the differences. The methods are derived under
the background of a reservoir solely for water supply, and the utility of water supply and water storage
are evaluated in monetary values. These methods could limit the application of the methodologies
to the operations of multipurpose reservoirs, except for the cases wherein the utility of operational
purposes can be common-measured or converted into the same measuring unit using weights or
conversion factors.

The remainder of this paper is organized as follows. Section 2 reviews the classical two-period
optimal hedging model under the EV criterion and extends it to a hedging model using the CVaR
criterion. Thereafter, we derive the optimality condition for the hedging model under the CVaR
criterion and obtain analytically formulated hedging rules. Section 3 applies the methodology to a
water supply reservoir, the Foziling Reservoir in China, and investigates the influences of parameters
on the hedging rules and their statistical measures via sensitivity analysis. Section 4 discusses the
differences in performances of hedging rules when applied to guide real-time operations using
numerical simulations. Finally, Section 5 concludes the study.

2. Materials and Methods

2.1. Model Formulation

2.1.1. Two-Period Optimal Hedging Model under the EV Criterion

The classical two-period optimal hedging model, which is established for a water supply reservoir,
seeks the optimal solution of water delivery that resolves the conflict between immediate and future
water use. Specifically, Draper and Lund [3] used a benefit function B(·) to assess the current benefit
associated with water delivery D and a carryover storage value function C(·) to calculate the future
benefit related to carryover storage S. B(·) and C(·) can be measured in terms of monetary values
or utilities for the reservoir. These two functions are assumed to be monotonically increasing and
concave. The model formulation is provided as follows:

max
D

E[Z] = E[B(D) + C(S)] = B(D) + E[C(S)] (1)

where Z is the total benefit measured by monetary value assessed by Chinese Yuan, (CNY); E[·] is the
EV function; and E[Z] is the EV of the total benefit, (CNY).

The following constraints are addressed:

E[S] + D = A (2)
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A = S0 + I − EP (3)

0 ≤ S ≤ k (4)

0 ≤ D ≤ dm (5)

where A is the water available for allocation, which equals the summation of storage volume at the
beginning of current time period (S0) and the EV of inflow volume (I) during the current period
subtracting the EV of evaporation (EP), (m3); k is the storage capacity of the reservoir, (m3); and dm is
the user demand, (m3).

For the given functions of B(D) and C(S), the optimal solution of water delivery (D∗) can be
obtained. D∗ could be less than dm such that a certain amount of water is kept for future use, even when
the water available can meet the current user demand. This strategy saves some water from current use
to hedge against the negative influence of future water shortage induced by streamflow uncertainty.

The model provides the optimal hedging policy under the EV criterion considering streamflow
uncertainty. However, the model exhibits two limitations when applied to guide real-time decision
making. First, the model does not explicitly explore the use of streamflow forecasts because it only
uses the EV of the current inflow to address uncertainty. In real-time applications, the estimation
of the current inflow highly depends on the technologies of inflow forecasts, and the accuracy of
inflow forecasts directly affects hedging decisions. Second, the expectation criterion can only provide
a risk-neutral solution that suits all possible outcomes of streamflow realizations. When hedging is
necessary for water delivery, decision makers often hold a risk-averse attitude and concern about the
benefit that can be obtained under unfavorable situations.

2.1.2. Two-Period Optimal Hedging Model under the CVaR Criterion and Forecast Uncertainty

High risk is positively correlated with high returns and losses; as a risk-neutral criterion, which is
indifferent with high returns and losses, the EV criterion fails to control the risk of loss. For risk-averse
decision makers who expect to decrease the risk of high losses, the EV criterion could be inappropriate
for rationing water supply decisions. Therefore, a more conservative index, rather than the EV, should
be employed to manage the risk of loss.

The CVaR [18,21] is such a criterion, which assesses the mean value of loss above the threshold
VaR under the given confidence level of α. For a specific loss function (L = f (X, Y)) related to a
decision variable X and a random variable Y, CVaRα[L] can be characterized as follows:

CVaRα[L] = E{L|L ≥ VaRα[L]} (6)

VaRα[L] = min{L|P(L) ≥ α} (7)

where P(·) is the cumulative probability function of L; α is the confidence level (α ∈ [0, 1]); and VaRα[L]
is the VaR that evaluates the minimum loss such that the probability of exceeding the loss at 1− α.

We use the concept of CVaR to assess the mean value of total benefit below its VaR. The benefit
function, rather than the loss function, is used in this study. Thus, the definition of CVaR is changed
as follows:

CVaRα[Z] = E{Z|Z ≤ VaRα[Z]} =
1
α

∫ VaRα [Z]

−∞
Z · g(Z)dZ (8)

where g(Z) is the probability density function of Z.
The above equations imply that the EV criterion is a special case of the CVaR criterion for α = 1.

Compared with the EV criterion, variations in α allow the CVaR index to measure varied benefit
outcomes in the left tail of the benefit distribution. For instance, maximizing CVaRα[Z] when α = 0 is
equivalent to maximizing the minimum total benefit under the worst case. The relationship among
E[Z], VaRα[Z], and CVaRα[Z] is shown in Figure 1.
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To maximize the total benefit under unfavorable situations, a modified two-period optimal
hedging model is established with the objective of maximizing the CVaR of the total benefit:

max
D

CVaRα[Z] = CVaRα[B(D) + C(S)] = B(D) + CVaRα[C(S)] (9)

Aside from the storage capacity constraint (Equation (4)) and the delivery limit constraint
(Equation (5)), the water balance constraints (Equations (2) and (3)) in the model introduced in
Section 2.1.1 are modified in this model to consider inflow forecast uncertainty:

S + D = A f + ε (10)

A f = S0 + I f − EP (11)

where A f is the forecasted available water (m3); ε is the forecasting error that obeys the normal
distribution such that ε ∼ N(µ, σ2), and it is the difference between actual inflow and forecasted inflow,
ε = I − I f (m3); and µ and σ are the mean value and the standard deviation of the forecasting error,
(m3), respectively. The forecasted inflow is usually reasonable to be assumed unbiased such that µ = 0;
otherwise, the system error of forecasted inflow can be corrected by subtracting the mean value µ.

Equations (10) and (11) state that decision makers use forecasted inflow (I f ) to estimate the
water available in real-time decision making, and the uncertainty comes from the forecasting error.
Forecasting error (ε) directly influences carryover storage (S). Thus, the uncertainty of inflow forecasts
propagates to S and carryover storage value C(S).

2.2. Optimality Condition and Analytic Solutions

2.2.1. Optimality Condition

With the given values of parameters (α and σ) and variables (S0 and I f ), Equation (10) implies that
the random variable S also obeys the normal distribution with a mean value of A f − D and standard
deviation of σ,

S = A f − D + ε

E[S] = A f − D
σ2[S] = σ2

(12)
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By substituting S using Equation (12) into Equation (9), we can express the objective as a function
of D as follows:

max
D

CVaRα[Z(D)] = B(D) + CVaRα[C(A f − D + ε)] (13)

F(D) is defined as the objective function, and the definition of CVaR is expressed in Equation (8).
Equation (13) can then be further expanded as:

max
D

F(D) = B(D) + CVaRα[C(A f − D + ε)]

= B(D) + 1
α

∫ VaRα [ε]
−∞ C(A f − D + ε) · p(ε)dε

(14)

where p(ε) is the probability density function of ε as given by: p(ε) = 1√
2πσ

e
−ε2

2σ2 (µ = 0).
When the storage capacity constraint (Equation (4)) and the delivery limit constraint (Equation (5))

are not binding on the value of D, the optimal D for the objective can be obtained by applying the
first-order optimality condition as follows:

∂F(D)

∂D
=

dB(D)

dD
+

1
α

∂
∫ VaRα [ε]
−∞ C(A f − D + ε) · p(ε)dε

∂D
= 0 (15)

The use of Taylor’s series to expand C(A f − D + ε) in terms of ε and the neglect of high order
terms give the following approximation:

C(A f − D + ε) ≈ C(A f − D) + C′(A f − D) · ε +
C′′(A f − D)

2
· ε2 (16)

C(A f − D + ε) is substituted back to Equation (15), and then the first-order optimality condition
can be derived (Appendix A) as

dB(D)

dD
= −

∂C(A f − D)

∂D
+ CVaRα[ε] · C′′(A f − D) + CVaRα[ε

2] ·
C′′′(A f − D)

2
(17)

where CVaRα[ε] and CVaRα[ε2] are the CVaR of the random variable ε and that of ε2, respectively,
which can be characterized as follows:

CVaRα[ε] =

 µ− σ/(
√

2π · α) · e
−VaR2

α [ε]
2 , µ 6= 0

−σ/(
√

2π · α) · e
−VaR2

α [ε]
2 , µ = 0

(18)

CVaRα[ε
2] =

 σ2 + µ2 − 1
α [

σ2·VaRα [ε]+2σµ√
2π

· e
−VaR2

α [ε]
2 ], µ 6= 0

σ2{1− 1
α [

VaRα [ε]√
2π
· e
−VaR2

α [ε]
2 ]}, µ = 0

(19)

where ε obeys the standard normal distribution, ε ∼ N(0, 1).

2.2.2. Implications from the Optimality Condition

Defining S f = A f − D, we can rewrite the first term in the right hand side of Equation (17)

as follows: − ∂C(A f−D)

∂D = − ∂C(A f−D)

∂(A f−D)
· ∂(A f−D)

∂D =
dC(S f )

dS f
, which is the marginal benefit of storage.

Therefore, Equation (17) indicates that the optimal water delivery (D∗) is derived when the marginal
benefit of water delivery equals the summation of marginal benefit of storage and two added terms. To
facilitate discussions on the difference of optimal water delivery under the EV and CVaR criteria, we

let ∆1 = CVaRα[ε] · C′′(A f −D) and ∆2 = CVaRα[ε2] · C′′′(A f−D)

2 . The value of D∗ is highly influenced
by the value of ∆1 + ∆2.
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Under the EV criterion, for α = 1 and CVaR1[ε] = 0, as well as CVaR1[ε
2] = σ2, ∆1|α=1 +∆2|α=1 =

CVaR1[ε] · C′′(A f −D) + CVaR1[ε
2] · C′′′(A f−D)

2 = 0 + σ2 · C′′′(A f−D)

2 . Under the CVaR criterion, given

α < 1, ∆1|α<1 + ∆2|α<1 = CVaRα[ε] · C′′(A f − D) + CVaRα[ε2] · C′′′(A f−D)

2 . The difference between
the results under the two criteria ∆ = (∆1|α<1 + ∆2|α<1)− (∆1|α=1 + ∆2|α=1) would be calculated as
follows, using Equations (18) and (19):

∆ = − σ

α
√

2π
e
−VaR2

α [ε]
2 [C′′(A f − D) +

VaRα[ε] · σ · C′′′(A f − D)

2
] (20)

Equation (20) implies that ∆ is strictly nonnegative when α ≤ 0.5 for the following reasons:

(1) − σ
α
√

2π
e
−Var2

α [ε]
2 is negative; (2) C′′(A f − D) ≤ 0 for a concave storage value function with

diminishing marginal storage value; (3) Varα[ε] is nonpositive for α ≤ 0.5; and (4) following
the assumption made by [14,23], the marginal storage value function is convex in considering
precautionary water-saving motive for hedging against future risk. Therefore, the third derivative of
storage value function is nonnegative: C′′′(A f − D) ≥ 0.

Figure 2 plots the equilibriums between the marginal benefits of water delivery and storage
under the two criteria. The equilibrium point between the two marginal benefit curves under
the expectation criterion is A, and this point would be B under the CVaR criterion with α ≤ 0.5.
Accordingly, the optimal water delivery would be further curtailed for α ≤ 0.5 (D∗α≤0.5) compared
with the optimal water delivery for α = 1 (D∗α=1). Consistent with the observations made by You and
Cai [14], the forecast uncertainty and precautionary water-saving motive would suggest an increased
marginal future utility, especially when decision makers decide to hedge against unfavorable situations
wherein the confidence level is below 0.5: α ≤ 0.5.Water 2017, 9, 568  8 of 18 
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Consequently, the current water delivery is reduced by (D∗α=1 − D∗α≤0.5). The reduced release
helps increase the water storage S such that the risk of water shortage induced by overestimation of
inflow is decreased.

The level of reduced delivery (D∗α=1 − D∗α≤0.5) is jointly determined by σ and α. ∆1 + ∆2 is an
increasing function of σ but a decreasing function of α. Thus, D∗α=1 − D∗α≤0.5 would increase as σ

increases or α decreases, which means that water delivery would be greatly curtailed if σ is high or α

is low.

2.2.3. Analytic Solutions of Hedging

The examples introduced by Draper and Lund [3] are used, and the analytic hedging solutions
can be calculated by solving the optimality condition expressed in Equation (17). The analytic solution
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of hedging decision obtained from solving Equation (17) remains an approximation of the global
optimum, considering Taylor’s series used for approximating the value of C(A f −D + ε) neglects high
order derivatives (C(4)(A f −D)). Consequently, the approximation error caused by the neglected high
order terms would affect the solution optimality, except that the storage value C(·) can be expressed
by a polynomial function where high order derivatives (or approximation error) equal zero. Therefore,
the proposed methodologies would suit cases wherein C(·) can be calibrated as a polynomial function.
For other types of functions, the influences of approximation error in affecting the optimality of
hedging decisions should be further discussed.

Draper [24] discussed that either a cubic or a quadratic function is adequate for characterizing the
storage value function for a water supply reservoir. Accordingly, given that both benefit and carryover
value functions are quadratic functions with the following expressions: B(D) = ad + bd · D + cd · D2

and C(S) = as + bs · S + cs · S2, respectively, the optimal delivery D∗α under the CVaR criterion can be
derived as:

D∗α =
bs − bd + 2A f · cs + 2cs · CVaRα[ε]

2(cs + cd)
(21)

The optimal hedging solution is a linear function of A f and CVaRα[ε]. If EV criterion is applied

such that α = 1, then the optimal hedging solution (D∗α=1 =
bs−bd+2A f ·cs

2(cs+cd)
) is consistent with the optimal

hedging solution obtained from the study of Draper and Lund [3].
Accordingly, if α ≤ 0.5 is determined, then the reduced water delivery (D∗α=1 − D∗α≤0.5) is given

as follows:

D∗α=1 − D∗α≤0.5 = − cs · CVaRα≤0.5[ε]

(cs + cd)
(22)

2.3. Study Case

The Foziling Reservoir located at the East Pi River, one of the tributaries at the upstream of Huai
River in China, is selected as the case study. The catchment of the Foziling Reservoir in the humid
subtropical monsoon climate zone has an annual precipitation of 1480 mm and annual inflow of
1062× 106 m3. The reservoir is a major water source for irrigating the irrigation area of the Pi River
Basin and satisfying the municipal water use of two cities, namely, Lu-an and Hefei, with an annual
total water demand of 780× 106 m3 with monthly variations. The irrigation water demand would vary
for different months and years considering the influences of varying precipitations. With a limited
effective storage capacity of 260× 106 m3, the reservoir system could only ensure the water supply
reliability of 80% for irrigation and the reliability of 95% for municipal water use, which indicate the
probability that the irrigation and municipal demands can be met in a year. For normal hydrology
years, the water demand can be guaranteed. However, large seasonal variations in precipitation and
inflow raise the conflict between water demand and water supply due to the influence of monsoon
climate, which necessitates informed actions on rationing water supply.

During the dry season from October to April, informed decisions on monthly water delivery
should be made at the beginning of each month based on forecasted inflow information. Currently,
the accuracy remains low due to the limitation of long-term inflow forecasts. The standard deviation of
forecasting error for monthly inflow is 40× 106 m3, which is estimated from pairs of monthly observed
and forecasted inflow samples across all months using the moment estimation method. The benefit
function of water supply and the storage value function are assumed to be increasing and concave
functions [3], which satisfy the theoretical assumptions made in Section 2, and their related parameters
are determined according to the water price charged to municipal and irrigation water users. Table 1
lists the parameters of the case study, and the decision on how much water should be delivered in
the coming month is accomplished using the proposed methodologies. Sensitivity tests on the value
of parameters σ and α are conducted by setting different scenarios for each parameter to investigate
how the improvement in forecasting accuracy and the selection in confidence level affect the hedging
decisions and the total benefit.
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For a simplified demonstration, most of the parameters in the study are calibrated using the
collected samples in all 12 months. Thus, they are assumed to be homogenized over months, including
σ, ad, bd, cd, as, bs, and cs. When applying methodologies to other cases or reservoirs wherein
time-dependent parameters should be considered, these parameters can be calibrated by using the
samples measured in each specific time period.

Table 1. Parameters of the case study.

Parameters Parameter Values

Storage capacity k (106 m3) 260
Standard deviation scenarios of the forecasting error σ (106 m3) 40/30/20

Confidence level α 1/0.5/0.3/0.1

Parameters of the benefit function
ad bd cd
0 6.87 × 10−2 −1.05 × 10−4

Parameters of the carryover storage value function as bs cs
0 6.25 × 10−2 −8.72 × 10−5

3. Results

3.1. Hedging Decisions

Optimal hedging policies on D∗ can be obtained using Equation (21) under different conditions.
For a brief demonstration, in this section, we simulate the hedging policy of reservoir operations at the
beginning of March, facing a water demand (dm) of 80× 106 m3. To address the influence of α on the
results, Figure 3 plots the optimal hedging rules under different values of α but the same value of σ

(σ = 40× 106 m3).
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The hedging rule curves present linear trends with the increase in forecasted available water.
Consistent with the analysis made in Section 2.2.3, limited water would be delivered as α decreases.
The starting water availability (SWA) [25], which is the threshold of A f for triggering hedging, increases
as α decreases when α is less than or equal to 0.5. The ending water availability (EWA), which is the
threshold of A f for terminating hedging, increases as α decreases.

The variation ranges of SWA to EWA imply that the water delivery under the CVaR criterion
is more conservative than that under the EV criterion. For instance, under the condition of α = 0.5,
hedging would be triggered when A f varies from 0 to 170× 106 m3, whereas the triggered range of
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A f for α = 1 varies from 32× 106 m3 to 142× 106 m3, indicating that hedging would be undertaken in
a wide range of A f when α is low. The “zero-release” range of A f would be great under a low α value,
which means water is strictly reserved for anti-adverse hydrological conditions in the future rather
than delivered in the current.

The decrease in α indicates that decision makers become risk-averse toward water shortage in
the future, i.e., they would sacrifice current benefit to reduce the loss in the future benefit induced by
potential drought. Reduced water delivery is a surrogate of insurance for the worst outcomes, and the
most conservative decision upon the current water delivery would be made if α approaches zero.

Figure 4 plots the optimal hedging curves under different values of σ but with the same value
of α = 0.1. The optimal water delivery can be increased as σ decreases, which means that abundant
water can be delivered to ensure the current benefit if the influence of forecast uncertainty is reduced
by improving the precision of inflow forecasts. The decrease in σ results in a sharp forecasting error
distribution, in which the probabilities of adverse situations (e.g., inflow is greatly overestimated) are
low. Thus, substantial water can be delivered rather than reserved.
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3.2. Statistical Measures of Total Benefit

To investigate the statistical measures of total benefit under different water delivery plans, Table 2
lists the corresponding results for the case of A f = 130× 106 m3 and σ = 40× 106 m3.

Table 2. Water delivery plans and statistics of the results.

Water Delivery Plans CVaRff[Z] (106 CNY)

D∗α α = 1 (EV) α = 0.5 α = 0.3 α = 0.1
D∗α=1 7.60 5.91 5.06 3.57

D∗α=0.5 7.56 5.95 5.13 3.70
D∗α=0.3 7.51 5.94 5.14 3.74
D∗α=0.1 7.40 5.89 5.12 3.76

The results show that the optimal water delivery solution under the EV criterion (D∗α=1) can only
guarantee that CVaRα=1[Z] (E[Z]) is maximized, but it does not ensure that the statistical results of
total benefit under less-profitable situations (CVaRα<1[Z]) are maximized. Similarly, optimal water
delivery under the CVaR criterion (D∗α<1) guarantees that CVaRα<1[Z] is maximized at the expense
of degradation in the EV of total benefit. For instance, D∗α=1 would result in the highest CVaRα=1[Z]
of 7.6× 106 CNY, but the lowest value of CVaRα=0.1[Z] (3.57× 106 CNY), whereas D∗α=0.1 produces
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the highest CVaRα=0.1[Z] of 3.76× 106 CNY but the lowest value of E[Z] (7.4× 106 CNY). Therefore,
if decision makers select D∗α=0.1 rather than D∗α=1, CVaRα=0.1[Z] can be increased by 0.19× 106 CNY
(5.3%) at the expense of a reduction in E[Z] by 0.2× 106 CNY (2.7%). Tradeoffs exist among the indices.

Figure 5 draws the probability density functions of Z under different values of α to determine the
reasons for the tradeoffs among different CVaR indices under various hedging policies.
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The standard deviation of Z (σZ) decreases as D∗ diminishes. This result can be explained by a
theoretical analysis of the variance of Z, as analyzed in Appendix B. The decrease in α could result
in water-saving actions, which reduce water delivery D∗. Therefore, although actual inflow is less
than anticipated and water shortage may occur in the future, the influence on Z can be alleviated
because reduced water delivery helps increase water storage. Correspondingly, the total benefit in
dry hydrological scenarios is improved. If actual inflow is greater than anticipated and water that
spills, the reduced water delivery could result in water surplus with minimal marginal benefit. Thus,
the total benefit in those wet hydrological scenarios decreases. The probability density function of Z
sharpens due to the influence of a reduced σZ.

Figure 6 plots the probability density function of Z under different values of σ with
α = 0.1. This figure shows how the distribution of total benefit is influenced by improvements
in forecasting accuracy.
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CVaRα=0.1[Z] and CVaRα=1[Z] are improved as forecasting accuracy increases. If σ can be
reduced from 40× 106 m3 to 20× 106 m3, then CVaRα=0.1[Z] can be increased by nearly 53%, whereas
CVaRα=1[Z] can be increased by 3.4%. The total benefit under a low confidence level of CVaR is more
sensitive than the EV of total benefit considering the influence of forecasting accuracy. Therefore,
improving the forecasting accuracy is an effective approach to improving total benefit, especially for
the results under extremely dry hydrological conditions.

4. Discussion

The results under 49-year (1965–2013) actual streamflow sequences from observation records are
simulated to validate the performances of hedging policies under different confidence levels when
applied to guide real-time operations. Forecasted streamflow sequences are generated according
to the current level of forecasting accuracy and used for guiding operations. Four indices, namely,
the reliability η [7], maximum one-month shortage percentage υ [9], total water spillage γ, and actual
total benefit during droughts β, are used to assess the performances, which can be characterized
as follows:

η = Count{t ∈ [1, T], t|dt
m − Dt = 0}/T (23)

υ = max
t∈[1,T]

{ |min{Dt − dt
m, 0}|

dt
m

× 100%} (24)

γ =
T

∑
t=1
{ St − kt i f (St − kt > 0)

0 otherwise
} (25)

β =
n

∑
i=1

[
Tei

∑
t=Tsi

B(Dt) + C(STei+1)]/n (26)

where Count{·} is the number counting function; t is the index of time period; T is the total number
of time periods; i is the index of critical drought time spans during which water shortfalls occur; n is
the total number of drought events; and Tsi and Tei are the starting and ending indices of time period
during drought event i, respectively.

Long streamflow sequences are divided into four groups according to the frequency range of
annual water volume, namely, the wet (0% to 25%), medium (25% to 50%), dry (50% to 75%), and
extremely dry (75% to 100%) patterns to demonstrate the differences in the results under different
hydrological patterns. Table 3 presents the results of indices under different hedging decisions denoted
by confidence levels.

Table 3. Simulated statistics of indices under different hedging strategies and hydrological patterns.

α
η υ

Wet Medium Dry Extremely Dry Wet Medium Dry Extremely Dry

0.10 86.8% 73.1% 72.9% 70.1% 50.6% 74.0% 67.0% 73.0%
0.30 87.5% 75.0% 75.0% 70.1% 49.5% 72.4% 68.7% 74.2%
0.50 87.5% 75.0% 76.4% 70.1% 50.0% 71.8% 74.3% 78.3%
1.00 88.2% 75.6% 77.8% 70.8% 48.0% 70.8% 75.0% 89.8%

α
γ (106 m3) β (106 CNY)

Wet Medium Dry Extremely Dry Wet Medium Dry Extremely Dry

0.10 69.57 42.67 39.47 34.39 4.12 14.61 16.82 19.12
0.30 69.20 42.42 39.22 34.17 4.12 14.62 16.87 19.08
0.50 68.96 42.30 39.07 34.01 4.13 14.62 16.90 19.04
1.00 68.43 42.01 38.61 33.56 4.14 14.61 16.83 19.01
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Table 3 presents the following findings:

(1) Hedging decisions under the EV criterion (α = 1) result in the highest reliability of water supply
for all hydrological patterns. They could also cause the highest one-month water shortage
level under dry and extremely dry conditions. By contrast, hedging decisions under the CVaR
criterion (α 6= 1) cause frequent but small water shortages, yet the highest one-month water
shortages under dry and extremely dry conditions are all less than the results obtained under the
hedging decisions using the expectation criterion. However, under wet and medium hydrological
conditions, hedging decisions under the CVaR criterion could cause severe one-month water
shortage. Hedging decisions under the CVaR criterion would be suited for dry and extremely
dry hydrological conditions wherein the occurrence likelihood of drought is high.

(2) Substantial water would be spilled if the hedging policies under the CVaR criterion are
implemented compared with the results of hedging under the expectation criterion. Hedging
the loss of water shortage during drought by water conservation would have a side effect in
increasing the water spilled considering the influence of forecasting error.

(3) The effect of hedging under the CVaR criterion can be explored under dry or extremely dry
hydrological patterns. Consistent with theoretical analysis, the actual total benefit obtained from
hedging decisions under the CVaR criterion is greater than the total benefit obtained from hedging
decisions under the expectation criterion, during critical time periods of dry and extremely dry
hydrological patterns. In facing wet or medium hydrological patterns, the difference in actual
total benefit could be small.

The results of water shortage percentage and carryover storage for the reservoir during a typical
dry hydrological time span (with the hydrology frequency of 87%) are compared for the four scenarios
of hedging policies, as shown in Figure 7.
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under different hedging policies during the dry-hydrology time span while (b) draws the corresponding
simulated trajectories of carryover storages of the hedging policies.
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During the critical time periods, the total inflows are overestimated by 1%. The highest one-month
shortage percentage under the hedging policy using the EV criterion (α = 1) would be 79.4%, whereas
that obtained under the hedging policy using the CVaR criterion (α = 0.3) would be 74.2%. Both the
highest one-month shortages occurred in September 1976 as actual inflows from June to August 1976
are overestimated by 28%. Under the guidance of forecasted inflow, the policy (α = 1) delivers
5.9% more water than the water delivered by the hedging policy using the CVaR (α = 0.3) criterion.
Compared with the result of actual benefit obtained from the hedging policy using the EV criterion
(α = 1), the actual benefit can be increased by 0.4% if the policy of the CVaR criterion (α = 0.3) is
employed due to a successful water carryover.

5. Conclusions

This paper discusses the optimal hedging policy for a water supply reservoir considering the
influence of inflow forecast uncertainty. An optimal hedging model for maximizing the overall benefit
of water delivery (current benefit) and water storage (future benefit) is established. Inflow forecast
uncertainty is addressed when estimating current water availability. Two different optimization criteria,
the EV and CVaR criteria, are introduced to set different measures of total benefit of water delivery and
carryover storage. The optimality conditions for the optimal hedging policies under the two criteria
are analyzed, and the analytic solutions of hedging rules are derived. Differences in the hedging rules
under the two criteria are highlighted with regard to varied inflow forecasting precisions and attitudes
of decision makers toward risk hedging (the confidence level). Performances of hedging policies under
the two criteria in real-time operations are analyzed by numerical simulations.

The methodology is applied to the Foziling Reservoir in China. The results are as follows:

(1) Under the influence of forecast uncertainty, the optimal value of water delivery reduces as
σ increases or α decreases. Therefore, decision makers will be conservative on current water
delivery under a low inflow forecasting precision or a significant risk-averse attitude.

(2) The maximization of CVaRα[Z] is at the expense of potential degradation in E[Z]. Hedging the
risk of water shortage in the future encourages water saving in the current, but it could also
increase the chance of future water spill.

(3) In real-time operations, compared with the hedging policies using the EV criterion, hedging
decisions using the CVaR criterion would be more suited for dry and extremely dry hydrological
conditions wherein the occurrence likelihood of drought is high.

Although the optimal hedging rules under CVaR and EV criteria are systematically compared and
analyzed via analytic derivations, more complex and practical modeling techniques are encouraged to
bridge the gap between mathematical simplifications and real-world implementations. For example,
extending the study to guide the operations of multiple-reservoir systems presents challenges in
dealing with complex constraints that bind the physical and economic conditions of hedging. Future
efforts can improve the current study.
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Appendix A. First-Order Optimality Condition

According to the definition of CVaR, Equation (15) provides the first-order optimality condition
of D using an integration of the forecasting error ε. If we replace the Taylor’s series of C(A f − D + ε)

expressed in Equation (16) back to the integration term in Equation (15), it can be rewritten as:

∫ VaRα [ε]
−∞ C(A f − D + ε) · p(ε)dε ≈

∫ VaRα [ε]
−∞ [C(A f − D) + C′(A f − D) · ε + C′′(A f−D)

2 · ε2] · p(ε)dε (A1)

The integration can be decomposed into the summation of the following terms:∫ VaRα [ε]
−∞ C(A f − D) · p(ε)dε = C(A f − D)

∫ VaRα [ε]
−∞ p(ε)dε = C(A f − D) · α∫ VaRα [ε]

−∞ C′(A f − D) · ε · p(ε)dε = C′(A f − D)
∫ VaRα [ε]
−∞ ε · p(ε)dε = C′(A f − D) · α · CVaRα[ε]∫ VaRα [ε]

−∞
C′′(A f−D)

2 · ε2 · p(ε)dε =
C′′(A f−D)

2

∫ VaRα [ε]
−∞ ε2 · p(ε)dε =

C′′(A f−D)

2 · α · CVaRα[ε2]

(A2)

Therefore, Equation (16) can be expanded as:

∂F(D)
∂D ≈ dB(D)

dD + 1
α

∂{C′(A f−D)·α·CVaRα [ε]+C′(A f−D)·α·CVaRα [ε]+
C′′(A f −D)

2 ·α·CVaRα [ε2]}
∂D (A3)

For ∂F(D)
∂D = 0, Equation (17) can be obtained by expanding the derivative terms and reorganizing

Equation (A3).

Appendix B. Influence of D on σ2
Z

The variance of total benefit Z can be expressed as:

G[Z] = G[B(D) + C(S)] = G[C(S)] (A4)

where G[·] is the variance function. B(D) is a deterministic term, and its variance is zero. G[Z] is only
determined by the uncertainty in storage S.

With Equation (12), S = A f − D + ε, G[Z] can be characterized as G[C(A f − D + ε)]. Similarly,
using Equation (17) to expand C(A f − D + ε) in terms of ε, we can express G[Z] as

G[Z] = G[C(A f − D) + C′(A f − D) · ε +
C′′(A f − D)

2
· ε2] (A5)

For G[C(A f − D)] = 0, G[C′(A f − D) · ε] = [C′(A f − D)]2 · G[ε], and G[
C′′(A f−D)

2 · ε2] =

[C′′(A f−D)]2

4 G[ε2], G[Z] can be decomposed into the summation of the following terms:

G[Z] = [C′(A f − D)]
2 · G[ε] +

[C′′(A f − D)]2

4
G[ε2] (A6)

Therefore, the partial derivative of G[Z] on D is given by

∂G[Z]
∂D

= −2C′(A f − D) · C′′(A f − D) · G[ε]−
C′′(A f − D) · C′′′(A f − D)

2
G[ε2] (A7)

The carryover storage value function C[·] is an increasing function with decreased marginal
benefit. Accordingly, C′(A f − D) > 0 and C′′(A f − D) < 0. C′′′(A f − D), G[ε], and G[ε2] are all

positive, and both product terms in Equation (33) are positive such that ∂G[Z]
∂D > 0. Hence, the variance

of total benefit increases with water delivery D.
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