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Abstract: Having the ability to forecast groundwater levels is very significant because of their vital
role in basic functions related to efficiency and the sustainability of water supplies. The uncertainty
which dominates our understanding of the functioning of water supply systems is of great significance
and arises as a consequence of the time-unbalanced water consumption rate and the deterioration
of the recharge conditions of captured aquifers. The aim of this paper is to present a hybrid model
based on fuzzy C-mean clustering and singular spectrum analysis to forecast the weekly values of the
groundwater level of a groundwater source. This hybrid model demonstrates how the fuzzy C-mean
can be used to transform the sequence of the observed data into a sequence of fuzzy states, serving as
a basis for the forecasting of future states by singular spectrum analysis. In this way, the forecasting
efficiency is improved, because we predict the interval rather than the crisp value where the level will
be. It gives much more flexibility to the engineers when managing and planning sustainable water
supplies. A model is tested by using the observed weekly time series of the groundwater source,
located near the town of Čačak in south-western Serbia.

Keywords: general drawdown; groundwater level; forecasting; fuzzy states; C-mean fuzzy clustering;
singular spectrum analysis

1. Introduction

Maintaining the stability of groundwater exploitation represents a key issue in attaining efficient
and sustainable water supplies. It involves stable recharge conditions for the captured aquifer during
the exploitation, absence or the slight degradation of the initial seepage characteristics of the aquifer,
as well as the selection of an appropriate exploitation regime. An optimal-yield exploitation over
a period of many years produces effects related to the spread of general drawdown. It occurs as a
consequence of the exploitation regime of all of the intake objects. The fluctuation of the drawdown
values is influenced by seasonal wavering in the values of balance elements participating in the
recharge of the captured aquifer and the exploitation regime caused by changes of consumption rate.

The deterioration of the recharge conditions of the captured aquifer and its overexploitation lead
to an increase in the values of the drawdown and the effective groundwater source radius [1]. For the
purpose of the effective management of the exploitation, it is necessary to know the data regarding
the drawdown of the groundwater source, independent of the conditions influencing the wavering
of drawdown values. In this way, we can define the range of possible total flow of the groundwater
source, primarily in dry season periods.
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Many models and techniques have been proposed to forecast time series in hydrogeology: the
nonlinear optimization technique, the multiple linear regression method, the hybrid soft-computing
technique, the hybrid wavelet packet-support vector regression method, artificial neural-network
techniques, the adaptive neuro-fuzzy inference system method, and hydrodynamic modeling [2–7].
The singular spectrum analysis was used in this paper but is also implemented by various other
authors [8–17].

City water consumption represents a highly dynamic temporal appearance, which causes great
difficulties in the water supply management system. Reliable groundwater level forecasting is broadly
recognized for its key role in the efficient management of water resources and consumption. In this
paper, we proposed a hybrid model that could effectively forecast groundwater levels and improve
the efficiency of the process of their management. The hybrid model combined the fuzzy C-mean
clustering algorithm (FCM) and singular spectrum analysis (SSA). The FCM is able to effectively
classify the monitored data into temporal states of the groundwater level. In this way, the behavior
of the observed system can be defined much more flexibly. The SSA is able to effectively forecast
the state of the groundwater level and provide opportunities to make different combinations within
the obtained components of the data series. The proposed methodology represents an easier way of
modelling groundwater levels and offers an opportunity to describe the behavior of a groundwater
source without including the physical characteristics of the location. Furthermore, it can be easily
updated with new information. There is an opportunity to transform this one single time series model
into a multi-dimensional model by adding another observed parameter; in which case, we can use a
multivariate singular spectrum analysis.

The development of the model is related to the forecasting of the future states of the groundwater
level (the general drawdown) using data obtained during the period of exploitation. The model is
composed of two stages: in the first stage, we make fuzzy states of the monitored data, while in the
second, we forecast the future states. By using a fuzzy C-mean clustering algorithm, the original time
series is divided into an adequate number of fuzzy states. Accordingly, we can create the adequate
fuzzy time series. In many cases, the creation of fuzzy relations among fuzzy time series is a very
difficult task. In order to avoid this, we represent fuzzy time series by cluster time series, where each
cluster is defined by its center, minimum and maximum value. This approach enables us to apply a
deterministic forecasting model based on the singular spectrum analysis. This analysis reveals the
structure of the time series, i.e., components such as trend, oscillations and noise. Planners can create
different scenarios using different combinations of components. This model is very beneficial to city
authorities due to its effective water resource management.

2. Forecasting Model

In this paper, we study the forecasting time of the invariant fuzzy time series of groundwater
levels. The fuzzy C-mean algorithm is used for the fuzzification of the observed data, while the SSA is
applied to make a forecasting model.

By applying linear recurrent formulae, we predict the future values of cluster centers. After that,
the sequence of the forecasted cluster centers is transformed into a sequence of the actual centers
obtained by fuzzy C-mean clustering. The transformation uses the equation of the fuzzy C-mean
clustering algorithm, which calculates the membership degree. Finally, the developed model produces
the interval time series, characterized by the minimum and maximum value of the groundwater level
for every point in the future.

The developed model was tested by using the real data obtained by monitoring the groundwater
source Perminac. It is located in the upstream area of Čačak city. The groundwater source contains
14 wells with a maximum total capacity of 131 l/s and an average of 90 l/s. In recent years,
overexploitation caused a significant decrease in the groundwater level in the wider area of the
groundwater source. Accordingly, some wells were excluded from the exploitation, and supply
restrictions were introduced as a way of stabilizing consumption during the summer months.
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2.1. Fuzzy Time Series

Song and Chissom [18] first introduced the definition of fuzzy time series as follows [19]:
“Let X(t) ∈ R1, t = 0, 1, 2, . . . be the universe of observed data on which fuzzy sets fi(t),

i = 1, 2, . . . are defined and let F(t) be a collection of fi(t). Then, F(t) is called a fuzzy time series
on X(t).”

Song and Chissom [18] defined fuzzy relations among fuzzy time series, which are based on the
assumption that the values of fuzzy time series F(t) are fuzzy sets, and the observation of time t is
caused by the observations of the previous times [19].

If for any f j(t) ∈ F(t), there exist fi(t− 1) ∈ F(t− 1) and a fuzzy relation Rij(t, t− 1) such that
f j(t) = fi(t− 1) ∗ Rij(t, t− 1), where ”∗” is the relation, then F(t) is said to be caused by F(t− 1) only.
It is expressed as follows:

fi(t− 1)→ f j(t), F(t− 1)→ F(t) (1)

Suppose that F(t) is caused by F(t− 1) only, or by F(t− 1) or F(t− 2) or F(t− k), k > 0. This
relation can be expressed as follows:

F(t) = F(t− 1) ∗ R(t, t− 1) (2)

Equation (2) represents the first-order model of F(t). If F(t) is caused by
F(t− 1), F(t− 2), . . . , F(t− k), k > 0 simultaneously, then their relations are represented as:

F(t) = (F(t− 1)× F(t− 2), . . . , F(t− k)) ∗ R(t, t− k) (3)

Equation (3) represents the k-th order model of F(t), and R(t, t− k) is a relation matrix describing
the fuzzy relationship between F(t− 1)× F(t− 2), . . . , F(t− k) and F(t).

To fuzzify the observed data, we apply the fuzzy C-mean algorithm.

2.2. A Brief Description of the Fuzzy C-mean Algorithm

In order to divide the observed data into an adequate number of fuzzy states, we apply the
fuzzy C-mean clustering algorithm [20–23] over the set S = {si}, i = 1, 2, . . . , N. The reason that we
clustered the time series is primarily related to the need to develop models that use the results of
monitoring in a form that represents the states of the observed appearance. Decision-making models
based on the interval inputs are much more flexible than deterministic models. Management models
have a much higher confidence because they incorporate uncertainties expressed by intervals into
management systems.

The fuzzy C-mean algorithm is a method based on the minimization of a generalized least-squared
errors-function. Given a set S = {s1, s2, . . . , sN} j RN×q, where N is the number of the observed data
and q is the dimension of the sample si(i = 1, 2, . . . , N), q = 1. Every cluster is a fuzzy set defined
by the relative closeness of space S. Suppose that there is a groundwater level vector composed of
M cluster centers; Cm = {cm}, m = 1, 2, .., M. For the i-th relative closeness and m-th cluster center,
there is a membership degree umi ∈ [0, 1] indicating with what degree the relative closeness SN belongs
to the cluster center vector Cm, which results in a fuzzy partition matrix U = |uim|N×M.

Let uim be the membership, cm the center of the cluster, N the number of observed data and M the
number of clusters. This algorithm aims to determine cluster centers and the fuzzy partition matrix by
minimizing the following function:

J = (U, c1, c2, . . . , cm, S) =
N

∑
i=1

M

∑
m=1

uω
imd2

im(si, cm) (4)
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subject to
M

∑
m=1

uim = 1, i = 1, 2, . . . , N (5)

0 ≤ uim ≤ 1, m = 1, 2, . . . , M; i = 1, 2, . . . , N (6)

0 <
N

∑
i=1

uim < m, m = 1, 2, . . . , M (7)

where dim is Euclidean distance between the observation and the center of the cluster, defined as:

dim =

√
(si − cm)

2 , i = 1, 2, . . . , N (8)

Finally, the objective function is:

J = (U, c1, c2, . . . , cm, S) =
N

∑
i=1

M

∑
m=1

uω
im(si − cm)

2 (9)

The objective function J represents the intra-cluster variance. If we want to have those elements
that are most similar to the cluster center in a given cluster, we can do this by minimizing the variance
inside the cluster. The exponent ω is used to adjust the weighting effect of membership values. A large
ω will increase the fuzziness of the function J. Pal and Bezdek [24] suggested that ω in the interval
[1.5, 2.5] was generally recommended for use in FCM.

In this paper, the value of ω is set to 2 as a midpoint of the suggested interval. The objective
function is iteratively minimized. In j-th iteration, the values of uω

im and cm are updated as follows:

cm =
∑N

i=1 uω
imsi

∑N
i=1 uω

im
(10)

uim =

(
1

|si−cm |

) 1
ω−1

∑M
m=1

(
1

|si−cm |

) 1
ω−1

(11)

The iteration process stops at ‖J(j+1) − J(j)‖ < δ, where δ represents the minimum amount of
improvement. Sorting the sequence of obtained centers in an ascending order gives us c1 < c2 < . . . < cm.

The fuzzification of the data is done according to the results of the final fuzzy partition matrix.

U =

∣∣∣∣∣∣∣∣∣∣
u11 u12 · · · u1m
u21 u22 · · · u2m

...
...

. . .
...

ui1 ui2 · · · uim

∣∣∣∣∣∣∣∣∣∣
(12)

The number of fuzzy sets corresponds to the number of clusters. Each row of the matrix U
represents the fuzzy state of that observation. Accordingly, we obtain the fuzzy state matrix of the
observed data:

Ai =

∣∣∣∣∣∣∣∣∣∣∣

A1 = u11(c1)
c1

+ u12(c2)
c2

+ · · · + u1m(cm)
cm

A2 = u21(c1)
c1

+ u22(c2)
c2

+ · · · + u2m(cm)
cm

...
...

...
...

... · · · . . .
...

AN
ui1(c1)

c1
+ ui2(c2)

c2
+ · · · + uim(cm)

cm

∣∣∣∣∣∣∣∣∣∣∣
(13)
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The state of the observed data is defined as:

Aim = max
(

uim(cm)

cm

)
(14)

Finally, the sequence Aim represents a fuzzy time series on X(t). In this way, we obtain the
transitions from one state to another over the time of observation; Am(t = 0)→ Am(t = 1)→ . . .→
Am(t = N), m ∈ {1, 2, . . . , M}.

The creation of a set of certain transition rules for fuzzy relationships between states can be very
difficult. To overcome this situation, we transform the fuzzy time series into an adequate time series of
the center of the clusters. This approach enables us to apply a deterministic forecasting model based
on the singular spectrum analysis.

2.3. Forecasting Model Based on the Singular Spectrum Analysis

The process of the transformation of the fuzzy time series into a crisp time series is based on
the fact that each fuzzy state Am(t), m ∈ {1, 2, . . . , M} can be represented by a corresponding center
of the cluster. Accordingly, the following time series, cm(t = 0) → cm(t = 1) → . . . → cm(t = N),
m ∈ {1, 2, . . . , M}, are obtained.

The forecasting algorithm is based on SSA methodology [25–27]. In SSA terminology, it is often
assumed that the series is noisy with an arbitrary series length N. The SSA technique consists of two
main complementary stages: decomposition and reconstruction. The noisy series is decomposed in the
first stage, and the noisy reduced series is reconstructed at the second stage. The reconstructed series
will be used for forecasting the future values.

Consider the stochastic process {cm(t)}, t = 1, 2, .., N; m ∈ {1, 2, .., M} and suppose that a
realization of size N from this process is available: Cm(t) = {cm(1), cm(2), . . . , cm(N)}. Since we
are faced with time-invariant series, and for simplicity, we can rewrite the realization as follows:
CN = {c1, c2, . . . , cN}.

The first stage of the algorithm, called decomposition, includes the following two steps:
embedding and singular value decomposition (SVD).

Embedding is a mapping that transfers a one-dimensional time series of centers Cn =

{c1, c2, . . . , cN} into a multidimensional matrix [Y1, . . . , YK] with vectors Yj =
(
cj, . . . , cj+L+1

)T ∈ RL,
where L (1 < L ≤ N− 1) is the window length and K = N− L + 1. The window length represents a
vector of L observations of the original series. If we remember Equation (3), we can see the window
length model is similar to the k-th order model of the fuzzy time series, but taking into account original
values from t = 1 to t = L. The usual value of L is (N + 1)/2 if N is odd and N/2 or (N/2) + 1 if N is
even (for more details see [27]). The result of this step is the trajectory matrix:

Y = [Y1, . . . , Yk] =
[
cij
]L,K

i,j=1 =


c1 c2 · · · cK
c2 c3 · · · cK+1
...

...
. . .

...
cL cL+1 · · · cN

 (15)

The trajectory matrix Y is the Hankel matrix where all elements along the diagonal i + j = const
are equal.

The SVD of matrix Y is based on the spectral decomposition of the lag-covariance matrix
YYT ∈ RL×L. Denote λ1, . . . , λL as the eigenvalues of YT, arranged in decreasing order λ1 ≥ 0 . . . λL ≥ 0,
and U1, . . . , UL the corresponding eigenvectors. The SVD of the trajectory matrix Y can be
represented as

Ŷ =
d

∑
i=1

UiUT
i Y = Ŷ1 + Ŷ2 + . . . + Ŷd (16)
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where d is the rank of Y.
The second stage of the algorithm, called reconstruction, includes the following two steps:

grouping and diagonal averaging or Hankelization.
The grouping step corresponds to the splitting of the set of matrices

{
Ŷ1, Ŷ2, .., Ŷd

}
into several

disjointed subsets and the summing of the matrices within each subset. The procedure of choosing
the subsets {I1, . . . , Ik} is called grouping. As a simple case, where we have only signal and noise
components (k = 2), we use two subsets, I1 = {1, . . . , r} and I2 = {r + 1, . . . , d}, and associate the
subset I1 with the signal component and the subset I2 with noise. Selecting the appropriate number of
eigenvalues (r) to be included into the reconstruction is very important. If we take an r smaller than it
should really be, some parts of the signal will be lost and the accuracy of the reconstructed series will
be lower. On the other hand, if the value of r is too large, then a lot of noise will be included into the
reconstructed series. After performing a singular value decomposition of the trajectory matrix, singular
values ordered in a decreasing manner are obtained. The plot of the logarithms of the obtained singular
values gives very useful information regarding breaks in the eigenvalue spectra. The component
where a significant drop in values occurs can be interpreted as the start of the noise floor [28].

Diagonal averaging or Hankelization represents the last step in SSA, where each reconstructed
trajectory matrix (see Equation (16)) is transformed into a new one-dimensional time series of length N.
This corresponds to the averaging of the matrix elements over the anti-diagonals i + j=k + 1; the selection
k = 1 gives ĉ1 = ĉ11, for k = 2, ĉ2 = (ĉ12 + ĉ21)/2, ĉ3 = (ĉ13 + ĉ22 + ĉ31)/3 and so on. For example,
the reconstructed trajectory matrix Ŷ1 is transformed into a new one-dimensional time series Ĉ1. Finally,
the original time series CN is decomposed into a sum of r vectors or principal components:

→
CN =

r

∑
i=1

→
Ĉ iN =

→
Ĉ1N +

→
Ĉ2N + . . . +

→
ĈrN (17)

The reconstructed (extracted) series will be used to forecast new data points.
The third stage of the algorithm concerns the future states of the groundwater level and is based on

the linear recurrent formulae. Let U∇i denote the vector of the first L-1 coordinates of the eigenvectors
Ui and πi indicate the last coordinate of the eigenvectors Ui, i = 1, 2, . . . , r. Define the verticality
coefficient as

v2 =
r

∑
i=1

π2
i = π2

1 + π2
2 + . . . + π2

r (18)

If v2 < 1, then the h-step ahead SSA forecasting exists. Obviously, the value of r must be carefully
selected to satisfy the previous inequality, as well as to separate the signal from the noise components.
The main concept behind the definition of the value of r is related to the dependence between the
different reconstructed (principal) components [28]. The weighted correlation represents the level of

dependence between the two series
→
Ĉ1N and

→
Ĉ2N :

ρw
1,2 =

∣∣∣∣→Ĉ1N,
→
Ĉ2N

w
∣∣∣∣∥∥∥∥→Ĉ1N

∥∥∥∥w

‖
→
Ĉ2N

∥∥∥∥w (19)

where∣∣∣∣→Ĉ1N,
→
Ĉ2N

w
∣∣∣∣—absolute value of the weighted Frobenius inner product,∥∥∥∥→Ĉ iN

∥∥∥∥w

, i = 1, 2, . . . , r—the weighted norm

w(t) = min(t, L, N− t)—vector of weights.
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If the two reconstructed components have zero w-correlation, it means that these two components
are well separated. Large values of w-correlations between the reconstructed components indicate that
the components should possibly be gathered into one group and correspond to the same component
in SSA decomposition [28]. The obtained correlations can be effectively represented by the λL × λL
grey-scaled correlation matrix.

The linear vector of coefficientsR = (αL−1, αL−2, . . . , α1)
T is calculated as follows:

R =
1

1− v2

r

∑
i=1

πiU∇i (20)

The h-step ahead SSA forecasting is achieved by the following equation:

{c̃(t)}T =

{
{ĉ(1), . . . ĉ(t)}, t = 1, . . . , N

RTCh, t = N + 1, . . . , N + h
(21)

where
Ch(t) = {c̃(N− L + h + 1), . . . , c̃(N + h− 1)}T (22)

The accuracy of the proposed model is estimated by the mean absolute percentage error (MAPE)
and the coefficient of determination (R2):

MAPE =
1
N

N

∑
t=1

(
|s(t)− c̃(t)|

s(t)

)
(23)

R2 = 1− ∑N
t=1(s(t)− c̃(t))2

∑N
t=1(s(t)− s(t))2 (24)

where s(t) is the actual value, c̃(t) is the forecasted value of the cluster center and s(t) is the average of
the observed set. R2 is a positive number which demonstrates how well the model fits the data. It can
take values between zero and one, where zero indicates that there is a poor correlation between the
model output and the actual data. Note, there is a difference between the actual c̃m(t) and the forecasted
value c̃(t) of the cluster center. The sequence of the forecasted cluster centers is now transformed
into a sequence of the actual centers by Equation (11); C̃(t) = {c̃(1), . . . , c̃(N), c̃(N + h)} → Cm(t) =
{cm(1), . . . , cm(N), cm(N + h)}.

According to the concept of the C-mean clustering algorithm, each fuzzy state can be defined
as a triplet; A(t) =

[
amin

m (t), cm(t), amax
m (t)

]
, m ∈ {1, 2, .., M}, where amin

m (t) is equal to the element of
the cluster with the minimum value, amax

m (t) is equal to the element with the maximum value and
cm(t) has already been explained. Finally, the developed model produces the interval time series
A(t) =

[
amin

m (t), amax
m (t)

]
, m ∈ {1, 2, .., M}; t = 1, 2, . . . , N, N + h.

3. Numerical Example

The groundwater source of Perminac was formed in the alluvion of the Zapadna Morava river,
in the Zapadna Morava valley in the south-western region of the Republic of Serbia. Alluvial sediments
are composed of sand and gravel varying from 4 to 6 m in thickness. The presence of a hydraulic
connection to the Zapadna Morava river enables the intensive recharge of the aquifer. The groundwater
source was formed along the left bank of the river, upstream from the town of Čačak. The location of
the study area is represented by Figure 1.

The data used in this paper includes weekly groundwater level time series. We divided the set
of data into the training subset, where the model is applied, and the validation subset, where the
comparison between the forecasted and actual values is made. About 85% of the data was used to
check the confidence of the model, while about 15% was used to check its validity. The main reason
for such data division was primarily influenced by a lack of funds for a longer period of exploration;



Water 2017, 9, 541 8 of 16

the monitoring lasted only one year. By using this method of data division, we wanted to be sure
about the confidence of the model. Usually, 2/3 of data is used for training and 1/3 for validation.

Figure 1. Location of the groundwater source.

The observed data is represented in Table 1.

Table 1. Historical data of the groundwater level.

Week Level Week Level Week Level Week Level

1 245.384 14 244.725 27 245.539 40 245.335
2 245.173 15 244.918 28 245.389 41 245.161
3 246.492 16 244.810 29 245.253 42 245.078
4 246.806 17 244.564 30 245.134 43 244.980
5 246.676 18 244.458 31 245.021 44 245.057
6 245.776 19 244.547 32 245.559 45 245.303
7 245.571 20 244.515 33 245.932 46 245.584
8 245.663 21 244.639 34 245.977 47 245.694
9 245.648 22 245.386 35 245.735 48 245.785

10 245.304 23 245.698 36 245.539 49 245.794
11 245.162 24 245.311 37 245.489 50 245.551
12 245.002 25 245.244 38 245.552 51 245.400
13 244.747 26 245.547 39 245.556 52 245.159

Note: Bold numbers indicate the validation subset.

We used the exponent ω = 2 and seven clusters to partition the original time
series (from week 1 to 45) and the resulting cluster centroids were as follows:
C={c1,c2,c3,c4,c5,c6,c7}={244.603;244.994;245.162;245.329;245.552;245.740;246.641}. Next, the historical
data was fuzzified with respect to where the maximum membership degree occurred. For example, the
fuzzy state for week 7 was A5 because c5 had the greatest membership degree. Table 2 and Figures 2
and 3 give the results of the fuzzification of the data based on the application of the fuzzy C-mean
clustering algorithm.

Having obtained the sequence of fuzzy state transitions, we can continue searching for the relation
which describes it. For that purpose, we have performed an SSA decomposition of the cluster center
time series. The window length L in the SSA decomposition has taken a value of 23, while the value of K
was also 23. The initial cluster of the center time series was decomposed into 22 principal components,
and they were ordered with respect to the decreasing value of their eigenvalues. Figure 4 depicts the
plot of the logarithms of the 22 singular values. Here, a significant drop in the logarithm values occurs
around component 9, and we adopted this as the start point of the noise floor.
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Figure 5 represents the eigenvectors related to the first nine eigenvalues.

Figure 2. Surface plot of membership functions by a fuzzy C-mean algorithm for the observed data
(training subset).

Figure 3. Interval plot by a fuzzy C-mean algorithm for the observed data (training subset).

Figure 4. Logarithms of the 22 eigenvalues.
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Figure 5. One-dimensional plots of the first nine eigenvectors.

Table 2. Fuzzification of the observed data (training subset).

Week Membership Values Cluster
Center Interval Fuzzy

State

No. c1 c2 c3 c4 c5 c6 c7 m [min;max] Am

1 0.0353 0.0708 0.1244 0.5061 0.1638 0.0776 0.0220 245.329 [245.253;245.389] A4
2 0.0150 0.0480 0.8394 0.0543 0.0225 0.0150 0.0058 245.162 [245.133;245.244] A3
3 0.0443 0.0559 0.0630 0.0720 0.0891 0.1113 0.5643 246.641 [246.492;246.806] A7
4 0.0450 0.0548 0.0603 0.0672 0.0791 0.0930 0.6005 246.641 [246.492;246.806] A7
5 0.0146 0.0179 0.0199 0.0224 0.0269 0.0322 0.8661 246.641 [246.492;246.806] A7
6 0.0216 0.0324 0.0413 0.0568 0.1135 0.7052 0.0293 245.740 [245.648;245.976] A6
7 0.0144 0.0242 0.0341 0.0577 0.7744 0.0822 0.0130 245.552 [245.488;245.570] A5
8 0.0309 0.0490 0.0654 0.0981 0.2959 0.4272 0.0335 245.740 [245.648;245.976] A6
9 0.0318 0.0509 0.0685 0.1044 0.3480 0.3628 0.0335 245.740 [245.648;245.976] A6

10 0.0250 0.0567 0.1240 0.6708 0.0703 0.0401 0.0131 245.329 [245.253;245.389] A4
11 0.0010 0.0034 0.9893 0.0034 0.0015 0.0010 0.0004 245.162 [245.133;245.244] A3
12 0.0169 0.8950 0.0420 0.0206 0.0122 0.0091 0.0041 244.994 [244.810;245.078] A2
13 0.3888 0.2257 0.1345 0.0959 0.0693 0.0563 0.0295 244.603 [244.458;244.747] A1
14 0.4420 0.1997 0.1231 0.0890 0.0650 0.0530 0.0281 244.603 [244.458;244.747] A1
15 0.1219 0.4989 0.1568 0.0931 0.0604 0.0466 0.0223 244.994 [244.810;245.078] A2
16 0.2692 0.3011 0.1578 0.1070 0.0749 0.0598 0.0304 244.994 [244.810;245.078] A2
17 0.7671 0.0707 0.0509 0.0398 0.0308 0.0259 0.0147 244.603 [244.458;244.747] A1
18 0.5110 0.1384 0.1055 0.0852 0.0679 0.0579 0.0340 244.603 [244.458;244.747] A1
19 0.7030 0.0891 0.0648 0.0510 0.0397 0.0334 0.0191 244.603 [244.458;244.747] A1
20 0.6147 0.1130 0.0837 0.0665 0.0522 0.0442 0.0255 244.603 [244.458;244.747] A1
21 0.7641 0.0765 0.0520 0.0394 0.0298 0.0247 0.0136 244.603 [244.458;244.747] A1
22 0.0359 0.0717 0.1254 0.4969 0.1685 0.0793 0.0224 245.329 [245.253;245.389] A4
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Table 2. Cont.

Week Membership Values Cluster
Center Interval Fuzzy

State

No. c1 c2 c3 c4 c5 c6 c7 m [min;max] Am

23 0.0235 0.0365 0.0479 0.0697 0.1763 0.6189 0.0273 245.740 [245.648;245.976] A6
24 0.0200 0.0448 0.0955 0.7378 0.0584 0.0329 0.0106 245.329 [245.253;245.389] A4
25 0.0440 0.1130 0.3447 0.3298 0.0914 0.0569 0.0202 245.162 [245.133;245.244] A3
26 0.0059 0.0101 0.0145 0.0257 0.9100 0.0288 0.0051 245.552 [245.488;245.570] A5
27 0.0118 0.0203 0.0293 0.0527 0.8210 0.0550 0.0100 245.552 [245.488;245.570] A5
28 0.0366 0.0729 0.1268 0.4829 0.1759 0.0820 0.0230 245.329 [245.253;245.389] A4
29 0.0432 0.1087 0.3098 0.3665 0.0937 0.0577 0.0202 245.329 [245.253;245.389] A4
30 0.0351 0.1337 0.6489 0.0949 0.0444 0.0307 0.0123 245.162 [245.133;245.244] A3
31 0.0441 0.6939 0.1305 0.0597 0.0347 0.0256 0.0114 244.994 [244.810;245.078] A2
32 0.0056 0.0095 0.0136 0.0235 0.9131 0.0297 0.0050 245.552 [245.488;245.570] A5
33 0.0537 0.0760 0.0926 0.1183 0.1879 0.3709 0.1006 245.740 [245.648;245.976] A6
34 0.0577 0.0808 0.0974 0.1226 0.1871 0.3351 0.1194 245.740 [245.648;245.976] A6
35 0.0044 0.0068 0.0088 0.0124 0.0276 0.9345 0.0055 245.740 [245.648;245.976] A6
36 0.0121 0.0208 0.0301 0.0541 0.8164 0.0563 0.0103 245.552 [245.488;245.570] A5
37 0.0342 0.0613 0.0928 0.1903 0.4745 0.1206 0.0263 245.552 [245.488;245.570] A5
38 0.0004 0.0007 0.0010 0.0017 0.9939 0.0020 0.0003 245.552 [245.488;245.570] A5
39 0.0032 0.0055 0.0078 0.0135 0.9506 0.0166 0.0028 245.552 [245.488;245.570] A5
40 0.0063 0.0136 0.0268 0.9171 0.0212 0.0114 0.0035 245.329 [245.253;245.389] A4
41 0.0021 0.0071 0.9780 0.0070 0.0030 0.0020 0.0008 245.162 [245.133;245.244] A3
42 0.0616 0.3513 0.3464 0.1162 0.0616 0.0442 0.0187 244.994 [244.810;245.078] A2
43 0.0325 0.8208 0.0670 0.0349 0.0213 0.0161 0.0074 244.994 [244.810;245.078] A2
44 0.0621 0.4504 0.2681 0.1035 0.0569 0.0413 0.0178 244.994 [244.810;245.078] A2
45 0.0251 0.0569 0.1246 0.6696 0.0705 0.0402 0.0131 245.329 [245.253;245.389] A4

A matrix of weighted grey-scaled correlations between the 22 principal components is represented
by Figure 6. The first nine principal components were selected for the reconstruction stage (see Figure 7).

Figure 6. The weighted grey-scaled correlation matrix; the white color corresponds to zero values;
the black color corresponds to absolute values equal to 1.
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Figure 7. Principal components obtained by singular spectrum analysis (SSA) decomposition
(horizontal axis: week; vertical axis: level).

The reconstruction of the original time series CN = 45 using the first nine principal components
(r = 9) is represented by Table 3 and Figure 8.

Table 3. Reconstructed original time series.

Week s(t) Am cm ĉ(t) ĉm(t) Âm

1 245.384 A4 245.329 245.212 245.162 A3
2 245.173 A3 245.162 245.425 245.329 A4
3 246.492 A7 246.641 246.355 246.641 A7
4 246.806 A7 246.641 246.848 246.641 A7
5 246.676 A7 246.641 246.656 246.641 A7
6 245.776 A6 245.740 245.805 245.740 A6
7 245.571 A5 245.552 245.478 245.552 A5
8 245.663 A6 245.740 245.697 245.740 A6
9 245.648 A6 245.740 245.624 245.552 A5

10 245.304 A4 245.329 245.291 245.329 A4
11 245.162 A3 245.162 245.229 245.162 A3
12 245.002 A2 244.994 245.090 245.162 A3
13 244.747 A1 244.603 244.631 244.603 A1
14 244.725 A1 244.603 244.563 244.603 A1
15 244.918 A2 244.994 244.971 244.994 A2
16 244.810 A2 244.994 244.987 244.994 A2
17 244.564 A1 244.603 244.576 244.603 A1
18 244.458 A1 244.603 244.478 244.603 A1
19 244.547 A1 244.603 244.621 244.603 A1
20 244.515 A1 244.603 244.626 244.603 A1
21 244.639 A1 244.603 244.825 244.994 A2
22 245.386 A4 245.329 245.339 245.329 A4
23 245.698 A6 245.740 245.496 245.552 A5
24 245.311 A4 245.329 245.255 245.329 A4
25 245.244 A3 245.162 245.246 245.329 A4
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Table 3. Cont.

Week s(t) Am cm ĉ(t) ĉm(t) Âm

26 245.547 A5 245.552 245.510 245.552 A5
27 245.539 A5 245.552 245.540 245.552 A5
28 245.389 A4 245.329 245.367 245.329 A4
29 245.253 A4 245.329 245.329 245.329 A4
30 245.134 A3 245.162 245.242 245.162 A3
31 245.021 A2 244.994 245.059 244.994 A2
32 245.559 A5 245.552 245.206 245.162 A3
33 245.932 A6 245.740 245.647 245.740 A6
34 245.977 A6 245.740 245.843 245.740 A6
35 245.735 A6 245.740 245.724 245.740 A6
36 245.539 A5 245.552 245.636 245.552 A5
37 245.489 A5 245.552 245.592 245.552 A5
38 245.552 A5 245.552 245.453 245.552 A5
39 245.556 A5 245.552 245.341 245.329 A4
40 245.335 A4 245.329 245.301 245.329 A4
41 245.161 A3 245.162 245.174 245.162 A3
42 245.078 A2 244.994 244.972 244.994 A2
43 244.980 A2 244.994 244.938 244.994 A2
44 245.057 A2 244.994 245.165 245.162 A3
45 245.303 A4 245.329 245.452 245.552 A5

Bold letters indicate the difference between the original and reconstructed fuzzy state for the
training subset of data (weeks 1–45). In ten cases, the model missed the original fuzzy state within a
range of ±1 state, while the difference was ±2 states in only one case.

Figure 8. Interval plot by the SSA algorithm for the observed data (training subset).

The accuracy of the proposed model is estimated by Equations (23) and (24) and represented by
Table 4.

Table 4. Accuracy of the model.

Error MAPE (%) R2

E = f (s, ĉ) 0.000382 0.943
E = f (s, ĉm) 0.000404 0.931
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The results represented in Table 4 indicate that the model has a very high accuracy and can be
used for the forecasting of future states. We used Equation (21) over the period t = 46, 47, . . . , 52 for
the purpose of measuring the validity of the developed model; the results are represented in Table 5.

Table 5. Validation of the original series.

Week s(t) Am cm c̃(t) c̃m(t) Ãm

46 245.584 A5 245.552 245.646 245.552 A5
47 245.694 A6 245.740 245.736 245.740 A6
48 245.785 A6 245.740 245.697 245.740 A6
49 245.794 A6 245.740 245.519 245.552 A5
50 245.551 A5 245.552 245.345 245.329 A4
51 245.400 A4 245.329 245.280 245.329 A4
52 245.159 A3 245.162 245.208 245.162 A3

Bold letters indicate the difference between the original and forecasted fuzzy state for the
validation subset of data (weeks 46–52). Only in two cases did the model miss the original fuzzy state
within a range of ±1 state. The accuracy of the model for the period of validation is represented by
Table 6.

Table 6. Error of the validation.

Error MAPE (%) R2

E = f (s, c̃) 0.000490 0.522
E = f (s, c̃m) 0.000384 0.649

When applying Equation (21), we forecasted the future values of the groundwater level for t = 53,
54, . . . , 85 (see Figure 9).

Figure 9. Interval plot by the SSA forecasting algorithm.

4. Conclusions

Having the ability to forecast the future states of any system plays a key role in the planning
process. The main aim of this paper was to develop a forecasting model for future states of the
groundwater level (the general drawdown) using data obtained during the period of exploitation.
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The model is composed of two stages. In the first stage, we make fuzzy states of the monitored
data, while in the second, we forecast future states. Using a fuzzy C-mean clustering algorithm,
the original time series is divided into an adequate number of fuzzy states. After that, an adequate
number of fuzzy time series are created. In many cases, creating the fuzzy relations among the fuzzy
time series is a very difficult task. In order to avoid this, the fuzzy time series is represented by an
adequate cluster of time series, where each cluster is defined by its center, minimum and maximum
value. This approach enables us to apply a deterministic forecasting model based on a singular
spectrum analysis.

The validation of the developed hybrid model has been performed using real data obtained
by monitoring the groundwater level. The values of the mean absolute percentage error and the
coefficient of determination show the high accuracy of the developed model. There are no limits on
the application of the model for representing only numerical examples. We can use it to forecast the
future states of any time series in hydrogeology. For example, to forecast precipitation, the yield of a
groundwater source, and the inflow or outflow of a defined area using different time spans (day, week,
month, year).

The forecasted states of the flow or groundwater level that can be obtained by the application of
this model enable us to set up state boundary conditions for water supply planners more efficiently.
Further research will be focused on the creation of the multivariable forecasting model.
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Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bear, J. Hydraulics of Groundwater; McGraw-Hill: New York, NY, USA, 1979.
2. He, B.; Takase, K.; Wang, Y. Regional groundwater prediction model using automatic parameter calibration

SCE method for a coastal plain of Seto Inland Sea. Water Resour. Manag. 2007, 21, 947–959. [CrossRef]
3. Chang, F.; Chang, L.; Huang, C.; Kao, I. Prediction of monthly regional groundwater levels through hybrid

soft-computing techniques. J. Hydrol. 2016, 541, 965–976. [CrossRef]
4. Raghavendra, S.; Deka, P.C. Forecasting monthly groundwater level fluctuations in coastal aquifers using

hybrid Wavelet packet-Support vector regression. Cogent Eng. 2005. [CrossRef]
5. Emamgholizadeh, S.; Moslemi, K.; Karami, G. Prediction the Groundwater Level of Bastam Plain (Iran)

by Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS). Water Resour.
Manag. 2014, 28, 5433–5446. [CrossRef]

6. Sahoo, S.; Madan, K.J. Groundwater-level prediction using multiple linear regression and artificial neural
network techniques: A comparative assessment. Hydrogeol. J. 2013, 21, 1865–1887. [CrossRef]
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