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Abstract: The Multiplicative Discrete Random Cascade (MDRC) class of model is used to temporally
disaggregate rainfall volumes through multiplying the volumes by random weights, which is repeated
through multiple disaggregation levels. The model development involves the identification of
probability density functions from which to sample the weights. The parameters of the probability
density functions are known to be dependent on the rainfall volume. This paper characterises the
volume dependency over the scarcely observed extreme ranges of rainfall, introducing the concept
of volume-bounded MDRC models. Probable maximum precipitation (PMP) estimates are used
to define theoretically-based points and asymptotes to which the observation-based estimates of
the MDRC model parameters are extrapolated. Alternative models are tested using a case study
of rainfall data from Brisbane, Australia covering the period 1908 to 2015. The results show that
moving from a baseline model with constant parameters to incorporating the volume dependency
of the parameters is essential for acceptable performance in terms of the frequency and magnitude
of modelled extremes. As well as providing better estimates of parameters at each disaggregation
level, the volume dependency provides an in-built bias correction when moving from one level to
the next. A further, relatively small performance gain is obtained by extrapolating the observed
dependency to the theoretically-based bounds. The volume dependency of the parameters is found
to be reasonably time-scaleable, providing opportunity for advances in the generalisation of MDRC
models. Sensitivity analysis shows that the subjectivities and uncertainties in the modelling procedure
have mixed effects on the performance. A principal uncertainty, to which the results are sensitive, is
the PMP estimate. Therefore, in applications of the bounded approach, the PMP should ideally be
described by a probability distribution function.
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1. Introduction

Since observed rainfall records tend to be more accurately and completely observed at daily or
longer intervals than at sub-daily intervals, temporal disaggregation models are commonly used for
the synthesis of sub-daily rainfall as part of flood estimation. Multiplicative discrete random cascades
(MDRCs) [1–3] make up one class of disaggregation model. Using a MDRC model, the rainfall falling
in any interval (say, one day) is divided into two or more sub-intervals (say, two intervals each of 12 h)
using a set of weights, W. This is repeated over a number of disaggregation levels until the required
time interval (say, one hour) is reached. This requires the probability distribution functions (PDFs)
of W to be estimated from rainfall observations. Using the ‘microcanonical’ type of MDRC model,
the PDF parameters are estimated for each disaggregation level independently, although empirically
derived scaling relationships may be used to generalise between levels.
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Much of the work on microcanonical MDRCs has pointed out the strong volume-dependence
of the PDF parameters [4–6]. This is intuitive; the more rainfall falling in an interval, the more likely
the rainfall will be distributed evenly between its sub-intervals, so that the PDF of W is expected to
have lower variance around the value W = 0.5. This volume dependence may be included in the
model by making the PDF parameters a function of volume [4]; however, due to the low number
of observations covering the extreme high rainfall volumes, the PDFs that are most important for
flood estimation applications will have high uncertainty. Conversely, obtaining a sufficient number
of samples will require a large range of volumes to be used; hence the parameter estimates may not
be sufficiently applicable to the relevant extremes. Furthermore, the applicability of the parameter
estimates to volumes beyond the observed range yet within the range to be simulated will be unknown.
This may contribute to the over-estimation of high rainfall volumes seen in some previous applications
of microcanonical MDRC models [5–7]. The problem of reducing uncertainty in the parameters of
rainfall disaggregation models applicable to high extreme rainfall volumes is the subject of this paper.

The probable maximum precipitation (PMP) is often considered to be an estimate of the theoretical
maximum rainfall volume at a given location, time, and space scale. This paper proposes that the
PMP can be used to define a theoretical bound on the parameters of the PDFs used for MDRC models.
The paper aims to develop this concept into a modelling procedure, test its performance on a case
study, and discuss the potential for improvement. While the concept of bounded disaggregation to
describe the time scale dependence of parameters, i.e., that the variance of the PDF tends to zero as the
time interval becomes shorter, is established [8], the concept of bounding the disaggregation using
theoretical volume constraints is new.

2. Theory

The theory presented here is restricted to microcanonical MDRC models in which each interval is
divided into two sub-intervals and the disaggregation is symmetrical so that a given volume of rainfall
is equally likely to fall in the first sub-interval as in the second. Deeper insight into the theory and
application of MDRC models can be found in [7] and the papers cited therein.

The ratio of rainfall volume R (mm) in the time interval t to t + ∆t/2 to rainfall volume in the
interval t to t + ∆t is:

W =
Rt:t + ∆t/2

Rt:t + ∆t
(1)

which we write as
WL =

RL+1

RL
(2)

where L is the disaggregation level and N is the total number of levels. For example, Figure 1 shows a
cascade with N = 7, where R1 has a time-step of one day and R8 has a time-step of 11.25 min. Assuming
that volumes are preserved from intervals to sub-intervals, 0 ≤ WL ≤ 1 and the proportion of the
interval’s rainfall falling in the second sub-interval equals 1 −WL.

A sample of W over each disaggregation level may be obtained from the observed rainfall.
The MDRC model may then be estimated by fitting probability distribution functions to the available
sample of W. Typically the model has two parts. First, from the probability that W is equal to zero or
equal to one, P01, is estimated. Then 1 − P01 is the probability that 0 < W < 1, and, in this range, W is
modelled using a probability distribution function, Px.
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Figure 1. Schematic of the employed Multiplicative Discrete Random Cascade (MDRC), wherein daily
data are disaggregated into 11.25 min data using seven cascade levels (from [6]; adapted from [1]).

The PMP estimate at each level is termed PMPL. If an available estimate of PMP is taken to be the
maximum possible rainfall, then, if the rainfall volume RL is greater than PMPL+1, it is impossible for
it all to fall within only one of the two sub-intervals, so P01 = 0. More generally, it is impossible for W
to be large or small enough for RL+1 to exceed PMPL+1. If RL > PMPL+1, then:

1 − PMPL+1

RL
< WL <

PMPL+1

RL
(3)

If Px is assumed to be a uniform distribution, for example [1], for which the only parameters are
the upper and lower bounds, deriving Px from (3) is straightforward. However, in general, alternative
distributions are preferable for Px, in which case the parameters cannot be directly derived from (3).

In the hypothetical case that RL = 2 × PMPL+1 because RL+1 cannot exceed PMPL+1:

WL = 0.5 and Px = δ0.5 (4)

where δx0 is the Dirac delta. Although hypothetical, (4) provides an asymptote that may be useful for
the extrapolation of the observed volume dependency, as illustrated by the case study results.

Henceforth, the subscript L is dropped for convenience of presentation, except where it is necessary
to use it because an equation includes variables from two different levels. It should be kept in mind
that all model inputs, outputs, and parameters are specific for each level of disaggregation.

3. Methods

3.1. Case Study

Brisbane has an almost continuous 6 min rainfall record from 1908 to 2015. A previous study [6]
fitted a number of alternative microcanonical MDRC models to this data set, using 1987 to 2015
for fitting the model and 1908 to 1986 for assessing performance and using the seven levels of
disaggregation shown in Figure 1. At each level, they removed the values of W calculated from
trace rainfall volumes (R < 0.3 mm) and those calculated from rainfall data with poor quality ratings.
They then used the W values calculated using the upper quartile of non-trace R volumes (R ≥ 0.3 mm)
to estimate the MDRC model parameters; however, no volume dependency of the parameters was
included. The upper quartile was used because the intended application was the simulation of high
rainfall. A Beta distribution of W was adopted, and, in the simplest version of the model, symmetry
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was assumed so that only two parameters, P01 and β, were estimated per level. One of the conclusions
was that, while the model performance was considered good, the model tended to over-estimate the
high extreme rainfall volumes.

The PMP estimates are derived using the procedures in [9] (22.5 min to 6 h intervals) and
in [10] (daily intervals). The PMP for the 12 h interval is linearly interpolated (using units mm/hour)
between the 6 h and the daily estimate. The PMP for the 11.25 min interval, which is less than
the minimum interval of 15 min used in [9], is estimated by linear extrapolation using 30 min and
15 min estimates. Recognising that there is inherent uncertainty in the procedures for estimating
PMP [9,11], the sensitivity of the results to the PMP estimates was tested by replacing the PMP values
with Historical Notable Point Rainfall (HNPR) values. These are the historical maxima recorded over
Queensland and New South Wales (Brisbane being near the border of these two states) from [12].
Where necessary, the published HNPR values were interpolated to the time intervals used in this study.
For the 11.25 min time interval, the interpolated HNPR value (51 mm) was less than the highest value
observed in the Brisbane record (75 mm), so the latter was used.

3.2. MDRC Models

Table 1 summarises three MDRC models: the ‘baseline model’, in which the model parameter
values are not volume dependent; the ‘unbounded model’, in which the model parameter values are
volume dependent but the theoretical bounds provided by the PMP are neglected; and the ‘bounded
model’, in which the model parameter values are volume dependent and the theoretical bounds
provided by the PMP are included. In all cases, the Beta distribution was used for Px because it
is considered to adequately represent the histograms of observed W values over a broad range of
volumes [6].

Table 1. Method of parameter estimation for different ranges of R for the unbounded baseline and
bounded models.

Model RL ≤ ML ML < RL ≤ PMPL+1 RL > PMPL+1

Baseline
model

P01 Maximum likelihood estimate from the observed [1] W values.

β Maximum likelihood estimate from the observed [1] W values (0 < W < 1).

Unbounded
model

P01
Logistic regression to describe volume dependency. Estimate parameters using

maximum likelihood using all the observed W values.

β Maximum likelihood estimate from the observed [1] W values (0 < W < 1).

Bounded
model

P01

Logistic regression to describe volume dependency bounded by
R = PMPL+1. Estimate parameters using maximum likelihood

using all the observed W values.
P01 = 0

β
Maximum likelihood estimate from

the observed [1] W values (0 < W < 1).
Equation (10) to described volume dependency.
Parameters of (10) are fixed as described in text.

Note: [1] Using only the values of W corresponding to the upper quartile of non-trace R

The baseline model is the two-parameter-per-level model of [6]. Recognising that the model
will be applied for high rainfall applications, this model uses the upper quartile of non-trace rainfall
observations (i.e., at each level, find all R ≥ 0.3 mm and take the upper quartile of these values) to
estimate the parameters.

The unbounded model models the relationship between R and P01 using logistic regression:

P01 = 1 − 1
(1 + e−Z01)

(5)

where
Z01 = a + b log10 R (6)
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where a and b are the coefficients to be estimated. This permits P01 values to be estimated for any value
of R, including those higher than observed during the model fitting period. A comparable log-normal
function was used by [4] to model the dependence between R and 1 − P01. For Px, the values of β used
in the baseline model, βBAS, were maintained because a relationship between R and β was not easily
identifiable for all levels from the observed W in the fitting period.

In the bounded model, the same continuous relationship between R and P01 is employed but
adjusted so that, from (3), P01 is zero when R equals the PMP of the sub-interval (PMPL+1).

P01 =
1(

1 + e−L′01

) − 1
(1 + e−L01)

(7)

where
L01 = a + b log10 R (8)

L′01 = a + b log10 PMPL+1 (9)

For R > PMPL+1, P01 = 0.
For the bounded model of β, after some trial and error, the following equation was selected:

log10 β = c +
1(

log10 X− log10 R
)d (10)

where c and d are the coefficients to be estimated and, following (4), X = 2PMPL+1.

3.3. Parameter Estimation

The parameters a, b, and βBAS are estimated by maximising the log-likelihood of the model given
the fitting period observations of W. An obvious fitting period would be 1987 to 2015 in order to
be consistent with the evaluation of the baseline model in [6]. However, that period includes some
of the highest extremes in the historical record, and hence evaluating the model on the remaining
years would require a limited degree of extrapolation. Instead, therefore, the 12 years in the historical
record with the fewest extreme events were identified and used for model fitting. For this purpose,
the frequency of extreme events in year Y was defined as N99Y/N99, where N99 is the number of R
values that lie above the 99th percentile of non-trace values, R99, over the entire record and N99Y is the
same number but only counting those values in year Y, scaled according to how many of the missing
data lie in that year. N99Y/N99 was calculated for each of the seven levels of disaggregation and the
average taken. The 12 years with the smallest averages were used as the fitting period. In order of an
increasing number of extremes these 12 years are 1993, 1908, 1962, 1989, 1913, 1978, 1936, 1911, 1918,
1952, 1944, and 2007.

Estimating parameters c and d in (10) using the observed W is problematic because the fitted model
leads to Px being widely inconsistent with (3). Instead, (3) is used to synthesise a theoretically-based
value of β at R = PMP, here called βPMP, and (10) is required to pass through this value. To estimate
βPMP, a lower bound on W corresponding to R = PMP, here called WPMP, is identified from (3),
and βPMP is optimised so that the probability of W < WPMP is equal to an arbitrarily low probability
of 0.001. Due to the assumption that Px is symmetrical, this leads to a 0.002 probability of a W value
being sampled from outside the bounds defined by (3) at R = PMP. The baseline model value of β,
βBAS, is maintained up to the maximum observed value of R, M. For R > M, (10) is applied and both
c and d are fixed by requiring β to pass through the point [PMP, βPMP] and also through [M, βBAS].
The latter means that there is no discontinuity in the volume dependency when moving from R < M to
R > M. This approach to estimating Px therefore has two questionable aspects: the use of βPMP allows
β to be extrapolated to extreme values in a way that is guided by the theoretical bounds defined in (3)
but does not strictly honour them; and the value of M is arbitrary rather being estimated from the
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observations. Why this is a reasonable approach and why alternative models are not useful for the
case study will be discussed later in the paper.

3.4. Model Evaluation

All years in the 1908 to 2015 period are used for model performance evaluation. The model
output of interest is the high extreme rainfall values, so only the values above R99 are considered in the
evaluation. As well as a visual comparison of the histograms of the observed and modelled rainfall,
the observed and modelled count of all values above R99 (a metric of frequency of extremes) and
the observed and modelled means of all R values above R99 (a metric of magnitude of extremes) are
also compared. Achieving a realistic time-structure of rainfall events would require a more complex
disaggregation approach, so only the frequencies and magnitudes are evaluated.

Running the model at level L requires that, for each time interval with non-zero R, the first of
the two sub-intervals is randomly assigned a zero or non-zero value of W consistent with P01, and
any non-zero values of W are then sampled from Px. The value of R in that sub-interval is then W.R,
and the value in the second sub-interval is (1 −W)R.

While the model fitting uses the observed values of W at all levels (Figure 1), most of the results
presented below are obtained using only the daily observations of R as inputs. In these cases, for L > 1,
the model input for the level L disaggregation is the model output from the level L − 1 disaggregation.
This approach is relevant because the intended application of the model is the disaggregation of
daily rainfall in periods where sub-daily data do not exist. To gain insight into the origin of errors,
the supplementary analysis uses the observed R as the input at each level.

3.5. Sensitivity Analysis

The potentially consequential subjectivities and uncertainties in the development of the models
are considered to be those listed in Table 2. Each of these is subject to a simple perturbation analysis as
presented in Table 2.
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Table 2. Sensitivity analyses conducted.

Subject of Sensitivity
Analysis Original Setting Perturbed Setting Rationale

Mean of All
Values > RL99 for
11.25 Mins (mm)

Count of All
Values > RL99
for 11.25 Mins

The range of R volumes used
to estimate P01 and Px
(baseline model, and all
models for Px)

Upper quartile of non-trace
observed R volumes in
fitting period

Upper 2% of non-trace
observed R volumes in
fitting period

The perturbation may improve the
estimate of β applicable to
modelling high extreme rainfall

12.9 806

The translation of theoretical
bounds on W to values of
βPMP (bounded model)

βPMP is set so there is a 0.002
probability of W values being
sampled from outside the
theoretical bounds

0.02 probability is used
instead of 0.002

This will reduce β estimates for
R > M, leading to stronger
disaggregation and
higher extremes

12.7 686

The identification of the point
of transition, M, from a
constant value of β to
volume-dependency
(bounded model)

M is the highest value of R
observed in the fitting period

M is the highest value of
R observed in the
entire record

M is unknown and arbitrarily fixed.
A higher value of M will reduce β
estimates at extremes, leading to
stronger disaggregation and
higher extremes

13.1 690

The probable maximum
precipitation (PMP) estimates
(bounded model)

PMP estimates are derived
using the Australian standard
approaches [9,10]

The Historical Notable
Point Rainfall (HNPR)
values values are used
instead

Although there is no ambiguity
about the parameters used to
calculate the PMP values, they are
generalised across Australia and
are high compared to the HNPR
values. The latter may be
considered a valid empirical rather
than theoretical bound

12.8 610

Observed values 11.9 688

Original results of bounded model 12.7 688
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4. Results

For each of the seven disaggregation levels, Table 3 shows the model parameter estimates as well
as the PMP values and other relevant properties of the data. Two values are given for M; the value
for the entire record and the value for the fitting period (in parenthesis). Comparing these two values
(and also the R99 values, which are derived from the entire record) indicates the high degree of
extrapolation required of the model in its evaluation.

Figure 2 shows the maximum likelihood result for the unbounded logistic regression, (5).
Superimposed on this are the ‘observed’ values of P01 estimated by fitting to the observed values of
W within each second percentile range of R, plotted against the mean values of R in these ranges,
using data from the entire historical record. Although there is considerable noise in these estimates,
they show that the logistic regression models are reasonably consistent with the observed volume
dependency and that the model identified using only the fitting period translates reasonably to the
entire historical record. Also included in Figure 2 are the theoretical point, RL = PMPL+1, at and above
which P01 = 0 in the bounded model and the results of a generalised model (see Discussion). The
results for the bounded model are barely distinguishable from those of the unbounded model so are
not included in Figure 2.
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Table 3. Data properties and estimated parameter values.

Level
Time Interval

(mins)
PMP
(mm)

HNPR
(mm)

R99
(mm)

M (mm) Baseline Model Unbounded Model Bounded Model

Full Period Fitting Period P01 log10(β) a b a b c d

1 1440 1440 960 91 311 70 0.40 −0.06 −1.78 2.04 −1.87 2.08 −1.19 0.60
2 720 1242 717 69 228 66 0.29 −0.12 −0.95 1.72 −1.02 1.73 −1.15 0.56
3 360 1043 589 49 167 42 0.29 −0.06 −0.54 1.69 −0.61 1.69 −1.09 0.55
4 180 790 356 36 111 41 0.24 0.00 0.01 1.67 −0.04 1.66 −1.05 0.55
5 90 550 279 26 103 35 0.18 −0.04 0.76 1.65 0.72 1.63 −1.07 0.52
6 45 371 176 18 82 35 0.12 0.04 1.48 2.12 1.46 2.12 −0.99 0.48
7 22.5 250 95 12 82 27 0.05 0.19 2.71 2.34 2.71 2.31 −1.06 0.65
− 11.25 184 75 8 75 18 − − − − − − − −
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Figure 3 shows the Beta distributions corresponding to the estimate of βPMP, illustrating the
degree to which the theoretical bounds on W are compromised. Figure 4 shows the baseline model
estimate of β that is used in all three versions of the model and also the volume dependency of β

obtained from (10). Superimposed on these curves are the ‘observed’ values of β estimated using the
entire historical record, as previously explained for P01. These ‘observed’ values indicate the errors
that arise from using only the fitting period for estimation, most notably at L = 1.

For the same three model baselines, unbounded and bounded, Figure 5 compares the histograms
of the observed and simulated extreme rainfall over the 1908–2015 period. The observed and the
simulated results in Figure 5 include only the R values that are above R99, and the frequencies are
relative to the total number of included observed values. Therefore the differences in the shape and
magnitude of the observed and simulated histograms can be used to visually assess the magnitude and
frequency performance of the model. For the same set of observed and simulated extremes, Table 4
compares the magnitude and frequency metrics. Table 4 also shows the means and standard deviations
of the results over the 100 realisations, which, for practical purposes, were the same between models
so are only given once.
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Table 4. Observed and simulated mean R above R99 and the number of R above R99 over 1908–2015.

Mean R above R99 (mm) Number of Peaks above R99

12 h 3 h 45 min 11.25 min 12 h 3 h 45 min 11.25 min

Observed R 93.9 50.1 26.6 11.9 118 215 398 688
Baseline model 103.3 [1] 57.7 31.4 14.8 121 [2] 283 552 1101

Unbounded model 100.5 54.1 28.4 13.2 103 210 370 710
Bounded model 98.7 51.9 27.1 12.6 100 203 365 688

Bounded model (generalised across levels) 100.6 53.4 27.8 12.9 107 206 342 678
Standard deviation of model results 2.0 [3] 1.1 0.5 0.2 5 10 15 21

Notes: [1] This and all subsequent mean values in the table are calculated by: generate 100 realisations of the 1908 to
2015 time-series; for each realization, calculate the mean volume, Rmean, of all modelled R above the observed R99
during 1908 to 2015; calculate the mean of Rmean over the 100 realisations. [2] This and all subsequent numbers of
peaks in the table are calculated by: generate 100 realisations of the 1908 to 2015 time-series; for each realisation
count the number of modelled R values, Rnum, above the observed R99 during 1908 to 2015; calculate the mean of
Rnum over the 100 realisations. [3] This and all subsequent standard deviation values in the table are the standard
deviations over the 100 samples of Rmean or Rnum for the baseline model (the standard deviation values for the other
models are within ±5% of this value).

5. Discussions

This paper explores the concepts of volume bounded temporal rainfall disaggregation. The case
study illustrates that using logistic regression to incorporate volume dependency (the unbounded
model) can allow more accurate simulation of high extremes than can be achieved using a baseline
model that uses constant parameters (Figure 5). Although the volume dependent model tends to
over-estimate the magnitudes and under-estimate the frequency (Table 3) of extreme rainfall, this error
is small compared to the baseline model error. A further small improvement is obtained by the
bounded model, in which the volume dependency is forced to honour theoretically–based bounds
derived from PMP estimates.

Although the unbounded and bounded models perform better than the baseline model in general,
the results in Figure 5 and Table 4 show that the baseline model is better at predicting the frequency of
extreme 12 h rainfall. This may be partly explained by Figure 2, which shows that, at level 1, the logistic
regression underestimates the P01 values at log10R > ~1.4, resulting in weaker disaggregation than
observed. This error persists even if fitting the logistic regression to the entire record. This may be
explained by diurnal convective processes that dominate wet season rainfall in Brisbane, whereby
extreme values of daily rainfall are often concentrated in the latter half of the day. In other words,
while in general higher volumes mean weaker disaggregation, this is not necessarily the case due to
strong convective processes that dominate extremes in this case. As the time–interval decreases, this
effect seems to become less important.

The errors at level 1 lead to the recognition that the better overall performance of the unbounded
and bounded models is because their level 1 errors are less compounded by level 2 to 7 errors; indeed
there is some recovery in performance. The ‘recovery’ is not unexpected as the volume dependence
included in these models requires that, if rainfall volumes at level L + 1 tend to be underestimated
due to a weak disaggregation at level L, a stronger disaggregation will apply at level L + 1. Therefore,
to some extent, the cascade has in–built error correction. Further insight into the role of the level 1
error is gained by removing level 1 and instead making the level 3 to 7 results conditional on the
observed 12 h rainfall. This improved performance generally, as it should, except for the number
of extremes simulated for the 11.25 min interval, which increased from the original bounded model
result of 688 to 733. This further highlights the relevance of how errors compound and cancel
over levels, with improved performance at level L not necessarily improving performance at the
higher levels. However, when observed R are used as inputs to each disaggregation level, while the
performances at levels 2 to 7 were better for all models, the relative performances between models do
not change appreciably.

Another point of discussion is whether changes to the baseline model may improve its relative
performance. The baseline model is simple, with only two parameters per level, whereas the new
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unbounded and bounded models both have three parameters estimated from the observations per
level. In [6], a number of alternative MDRC models were tested on the same case study using up
to 16 parameters per level without including volume dependency. The improvements in extreme
value performance using these models are marginal compared with the improvement using the new
models. Nevertheless, there may be alternatives to the Beta distribution that lead to more identifiable
volume dependencies and improved extreme value performance. For example, differences between
the observed and modelled distributions in Figure 5b,c may stem partly from the limitations of
the standard Beta distribution [13]. However, using an alternative distribution with more than one
parameter would create further challenges for determining the volume dependency.

The results of the sensitivity analysis (Table 2) show that using a more extreme range of rainfall
volumes (upper 2nd percentile instead of the original upper quartile) for the estimation of the baseline
values of P01 and β deteriorated the performance for all models. This illustrates that restricting the data
used for model fitting to a more relevant range of volumes is not useful here due to the lower number
of observations and hence higher variance in the baseline estimates of P01 and β. Reducing the PMP
estimates to the HNPR values caused the bounded model to substantially underestimate the number
of extremes above the threshold R99. This sensitivity confirms that the asymptote defined by (4) is an
active constraint and hence that reasonable approximations of PMPs are valuable. Since in practice there
is considerable uncertainty in PMP estimates [9,11], applications of the bounded approach to the PMP
should ideally be described by a probability distribution function; for example, the approach described
by [14] could be adapted. Changing the arbitrary values of βPMP and M as described in Table 2 also
affected the simulated magnitudes and frequencies as expected, although to a relatively small extent.

Several attempts were made to improve upon the bounded model of β. Although this model
was considered reasonable, using the standard Beta distribution over all possible values of R allowed
the theoretical constraint of (3) to be compromised in the range PMPL+1 < RL < PMPL. An alternative
translation of (3), which would avoid this compromise, would be scaling the Beta distribution so that
it’s upper and lower bounds are equal to the theoretical bounds calculated from (3). The β parameter
could then, in the absence of a better estimate, be fixed at zero (a uniform distribution) or at the
baseline model value. An alternative adjustment would be to maintain the standard Beta distribution
but to curtail it so that the probability density of W is zero outside the theoretical bounds defined
by (3). However, forcing the model to honour (3) is not useful for the case study because a very small
number of the observed R are high enough (RL > PMPL+1) to be directly affected by (3), and for each of
these the probability of an unrealistic sample of W is small. Rather, the value of (3) is supporting the
extrapolation of β in the range ML < RL < PMPL+1. Another subjectivity in developing the bounded
model of β is the arbitrary value of M, at which the model transitions from the constant baseline value
of β to volume dependence. M can be eliminated from the model by applying (10) over the full range
of R, in which case c can be fitted to the observations using maximum likelihood and d can be fixed
by still requiring (10) to pass through the point [PMP, βPMP]. This produces a reasonable volume
dependency over the higher ranges of R, similar to the results in Figure 4; however it only matches the
performance of the original bounded model in the less relevant case that the observed values of R are
used as inputs to every disaggregation level.

From the exploration of alternative bounded models of β, it is concluded that the ‘bounded’
concept raises some theoretical challenges due to the facts that (1) Px must transition, as the PMP value
is approached, from a distribution function bounded by the values W = 0 and W = 1 to a distribution
function with narrower bounds and (2) sufficient observations of extremes do not exist to examine the
transition. Therefore a reasonable judgment of how the theoretical bounds on W should be used to
bound Px as R tends to PMP was necessary in the case study and seems likely to be necessary in future
applications. It is possible that pooling extremes from a large number of sites, which adhere to the
same volume dependency model, will increase the number of extreme value observations and hence
permit a reduced level of subjectivity in developing the model.
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Previous work on this case study [6] found that the baseline model parameters P01 and β can
be generalised over the seven disaggregation levels using linear regression. This is potentially
advantageous for generating rainfall at unobserved time–resolutions; for example, extrapolating
the regression would provide eighth and ninth levels of disaggregation to generate rainfall at
approximately 5.6 and 2.8-min intervals. Furthermore, reducing the number of parameters by
generalising over levels may assist with the regionalisation of the model. To transfer these potential
benefits to the improved, volume–dependent models would require the parameters a and b to be
generalised over levels as well as the baseline value of β (recalling that parameters c and d can then be
fixed given βPMP and M). Figure 6 plots the estimates of log10β for the baseline model against L and
the estimates of a and b for the bounded model against L. More or less the same results for a and b are
obtained for the unbounded model.
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From Figure 6, parameter b is taken to be constant and a is taken to be linearly dependent on L
(R2 = 0.98). There is much less of a relationship between level and log10β than previously found by [6],
which must be due to the different fitting periods used (here, the 12 years with fewest extremes; there
the 12 available years between 1987 and 2015). It seems that either using a lower range of volumes
for fitting the model or relying more on the older pluviograph record rather than more modern
tipping bucket data produces less well–behaved β values. To generalise the volume dependency of β,
a generalised estimate of the point of transition, M, is also required. For the purpose of illustrating the
potential for generalising the model, an arbitrary value, M = PMP/10, is adopted. The generalised
volume dependencies are included in Figures 3 and 5. As should be expected, overall, the generalised
models are less consistent with the observations than the originals. However, for some levels, the
generalisation is actually better, presumably because in these cases the regression smooths out random
errors in the original estimates; for example, errors associated with the relatively short fitting period
used. The model output statistics for the generalised bounded models, included in Table 4, show a
slightly reduced performance compared to the original bounded model but still a considerably better
performance than the baseline model. In summary, there is evidence that scaling relationships exist
in the bounded and unbounded models, and it is speculated that these are useful for extending the
application to unobserved time intervals and regionalisation.

As a final point of discussion, although this paper has focused entirely on the MDRC type of
model, the principle that rainfall disaggregation can be bounded by the consideration of PMPs could be
applied more broadly. This may include, in the context of climate change impacts on rainfall, deriving
the volume-dependence of change factors and their PMP-derived bounds in much the same way as
Figure 4 has been constructed, noting that the consideration of climate change may require the PMPs
to be treated as non-stationary.

6. Conclusions

The concept of bounding the volume dependence of rainfall disaggregation model parameters
using PMP estimates has been formally developed. Applying a MDRC model to the simulation of
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short-duration, point-scale rainfall at a site in Brisbane, the new approach is seen to be capable of
improving simulations of extreme rainfall. However, the main improvement on the constant-parameter
baseline model comes from including a reasonable volume dependency without the PMP-based
bounds. This is associated with obtaining improved estimates of the model parameters for the rarely
observed extreme volume ranges and the ability of the cascade to self-compensate for errors. An initial
exploration shows that the volume dependencies are scalable across time resolutions, showing promise
for an extended range of applications. The method should be tested on other gauges that represent a
broader range of extreme rainfall distributions
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