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Abstract: Models for adequately estimating water consumption in Taiwanese government institutions
were developed to assist the government to more accurately predict and account for their water needs.
A correlation coefficient matrix of associated factors was constructed based on records per unit of
water consumption, describing the impact of various water consumption factors. To understand and
quantify the effect of the impact factors, linear and nonlinear regression models, as well as an artificial
neural network model were adopted. To account for data variability, the data used for modelling were
either fully or partially adopted. For partial adoption, the quartile method was employed to remove
any outliers. Analysis of the factors affecting water consumption revealed that the building floor
area and number of personnel in an organization had the largest impact on estimated consumption,
followed by the number of residential personnel. As the coefficient of variation for the green irrigated
area and number of consulting personnel was low, the total area and the total number personnel of
water consumption decreased the effectiveness of the model.

Keywords: artificial neural network; outlier; quartile outlier method; statistical analysis;
water consumption

1. Introduction

The subtropical island nation of Taiwan is affected by monsoons, plum rains, and typhoons. In the
northwest Pacific, which is where Taiwan is located, four typhoons occur on average per year. Annual
precipitation in Taiwan ranges from 1600 to 3200 mm. Although it is reasonable to expect that Taiwan
has abundant fresh water—considering its annual rainfall—70% of precipitation landing on the plains
is runoff to the sea and lost to evaporation each year. Most precipitation occurs in summer and autumn,
with 78% from plum rains and typhoons between May and October. Additionally, the average annual
amount of rainfall per capita in Taiwan is only 4074 m3 as its population density is high at 647 per km2,
which is low at one-fifth the global rainfall average per capita. Furthermore, the average price of water
is USD 0.36 per thousand liters, which is less than 0.1% of the nation’s per capita income. Consequently,
the people of Taiwan may take water for granted and not value it as a natural resource [1–3] as water
consumption per capita in Taipei reaches as high as 335 L per day.

Global warming and climate change are threatening water resources. Given that the volume of
reservoirs is limited, much of Taiwan’s terrain is precipitous, and increasingly more areas are being
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designated as environmental protection areas; thus, balancing the supply of water with demand is
becoming more difficult [4,5]. Due to water use in irrigation and filtration, domestic households
do not consume the highest percentage of water in Taiwan, but there is still a water shortage crisis.
Thus, the promotion of water conservation and the enhancement of water consumption efficiency
are indispensable.

To ensure sustainable water consumption, the creation and comparison of different domestic
water consumption models may provide a reference for decision-makers in charge of implementing
water policy. Therefore, the urgency of a precise water consumption estimation model for government
institutions in Taiwan is justified. Water consumption forecasts are affected by numerous factors such
as geographical and meteorological phenomena, economic factors, and methods of water consumption.
Forecasts simulated using traditional statistical methods may lack sufficient accuracy [6]; however,
the water consumption data have a varying range of non-linearity. Therefore, a method or function
that does not need specifically structured data is necessary.

The aim of this study was five-fold: (a) to examine the correlation between annual water
consumption and the factors affecting water consumption at each government institution; (b) to identify
factor differences between different estimation methods; (c) to establish different models suitable
for different government institutions; (d) to analyze the accuracies of different water consumption
estimation models; and (e) to develop a model that adequately estimates water consumption.

2. Materials and Methods

Related studies can be classified into three major categories: consideration of water consumption
impact factors, regression model analyses, and artificial neural network (ANN) analyses.

2.1. Water Consumption Impact Factors

Several studies [6–8] have noted the significant impact of various water consumption factors
including previous water demand, number of family members, age of family members, garden size,
frequency of irrigation, and the water consumption of agriculture.

Previous water consumption data have been considered as the key to estimating future
consumption in numerous studies. To manage water consumption effectively, the data of each
institution’s water consumption must be collected [9,10]. Creating a suitable model for Taiwanese
domestic water consumption requires identifying the major impact factors, thus step-by-step filtering
was used in this study to select the major impact factors. Moreover, to avoid multicollinearity problems,
all factors were considered in the regression models.

2.2. Regression Model

Numerous studies have employed linear and nonlinear regression to establish water consumption
models. Some based on linear regression have included rainfall, air temperature, family income,
and the cost of water as independent variables. Regression models have also been used to establish
models for related topics such as the water utility market structure [11–14]. A typical linear regression
model of water consumption is expressed as

y = c + w1x1 + w2x2 + · · ·+ wPxP (1)

where y is the unit water consumption; wi is weights; xi is an impact factor of water consumption; and c
is constant. As the model is linear, it is easy to estimate its advantages and disadvantages; however,
the true relationships between water consumption and impact factors are not linear, but more complex.
Hence, a model using one dependent variable and multiple predictive variables does not yield accurate
forecasts. Therefore, nonlinear regression can also be employed

y = c·xC1
1 ·x

C2
2 · · · x

CP
P (2)
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where ci is the weight of regression. For rapid and convenient calculation, Equation (2) can be
reformulated through logarithmic conversion

(y + δ) = c·(x1 + δ)c1 ·(x2 + δ)c2 ·(x3 + δ)c3 (3)

or
(y + δ) = c′ + c1· log(x1 + δ) + c2· log(v2 + δ) + · · ·+ cP· log(vP + δ) (4)

where c′ = log(c).

2.3. Artificial Neural Networks (ANNs)

Errors are common when traditional forecast methods such as time extrapolation are used.
Although widely used in the early 20th century, time extrapolation is rarely used in current studies.
ANNs are fast and flexible methods for effectively forecasting domestic water demand [15].

ANNs have been used for estimation models and forecasting in numerous fields. An advantage
of ANNs is that they can correlate large and complex datasets [16,17]. An ANN was previously used
to develop and assess a drinking water quality model, and a multilayer perceptron ANN was required
in the hydrological modelling [18].

2.4. Model of the Current Study

Over the past few decades, there has been a dramatic increase in the published research
on sustainable water consumption, with most studies focusing on different industrial contexts.
Few studies have discussed water consumption by individual government institutions. Despite the
adoption of recent policies in Taiwan aimed at actively promoting water conservation, water demand
has not substantially decreased as water consumption efficiency has not been enhanced (Table 1).

Table 1. Average daily per capita domestic water consumption in Taiwan (2007–2016).

Year 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Average in
10 Years

Per capita
domestic water
consumption
(Liter/day)

265 261 258 259 258 257 259 264 263 265 260

Note: Constructed by the authors after review of data from the Water Resource Agency, Ministry of Economic
Affairs, Taiwan, ROC.

This paper reports the results of a five-phase study that explored the theoretical basis for the
estimation model, thus establishing a framework, collecting data, analyzing simulation results,
and deriving conclusions. The subjects considered were government institutions located on Taiwan
Island, the Penghu Islands, the Kinmen Islands, and the Matsu Islands, all of which have water
supplied by faucet. Our data consisted of 2611 units taken from government institution-reported
water consumption data since 2006. As there are numerous categories of government institutions in
the original database, the categories were divided into 6 primary categories and 47 minor categories
(Table 2). Twenty-two independent variables were adopted in this study (Table 3).
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Table 2. Categories of government institutions.

Primary
Categories Minor Categories Primary Categories Minor Categories

No. Subject No. Title Data
Amount No. Subject No. Title Data

Amount

1
Perform
official

institution

01 Executive branch 186

3
Investigate

training
institution

01 Research
institution 4

02 Local government 20 02 Training institution 2

03 Institution belong
local government 114 03 Vocational training

center 7

2
Specialized
government

agencies

01 Tax administration
institution 35 04 Other kinds of

training center 4

02 Engineering
department 13

4
Medical

treatment
institution

01 Medical treatment
department 39

03 Court 11 02 Nursing house 18

04 Security
department 25

5 School

01 National school of
technology 10

05 Police office 52 02 National
university 15

06 Library 40 03 Armed and
policed school 118

07 Citizen delegate
center 37 04 National senior

high school 282

08 District office 111 05 Public junior high
school 933

09 Household
registration office 120 06 Public elementary

school 5

10 Hygiene
institution 124 07 Preschool 38

11 Land
administration 48 08 Special education

school 14

12 Election committee 9

6 Other kinds

01 Retail market 16

13 Weather bureau 9 02 Gymnasium 7

14
Accident

investigation
committee

2 03 Prison 30

15 Veterans service
office 15 04 Agricultural

institution 9

16 Airport 9 05 Cleaning squad 20

17 Funeral institution 2 06 Landfill 1

18
Other kinds of

specialized
institution

13 07 Radio 3

19 Fire bureau 11 08
Other kinds of
management

institution
10

20 Police force 4
09 Preparatory office21 Cultural center 7 0

22 Museum 9
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Table 3. Independent variables adopted in this study.

Code Independent Variable Code Independent Variable

v1 Major institution categories v12 Usage of simple faucet water
v2 Minor institution categories v13 Usage of groundwater
v3 Floor space v14 Usage of rainwater
v4 Irrigate area v15 Usage of reclaimed water
v5 Number of staff v16 Usage of other kinds of water
v6 Number of visitor v17 Unit of faucet water demand
v7 Number of accommodation v18 Cost of faucet water
v8 With kitchen v19 Simple faucet water demand
v9 With swimming pool v20 Groundwater demand
v10 Number of water kinds v21 Rainwater demand
v11 Usage of faucet water v22 Reclaimed water demand

The original database was sufficiently large to guarantee the accuracy of outlier effect models and
data analysis. The quartile outlier method was adopted in this study. Furthermore, linear regression,
nonlinear regression, and ANN models were developed by outlier effect models. To accord and
compare these models, stepwise regression was used to select an independent variable. Each variable
was also chosen to carry out the regression with other variables one by one. The advantage of
this approach was that it avoided the problem of multicollinearity in each independent variable,
thus preventing unstable regression parameters.

The ANN used in this study was the backpropagation neural network (BPNN), which is the
most classic and general training algorithm. It also effectively solves problems including multilayers,
feed-forwards, and supervised learning functions for different industries [19]. A constructive algorithm
was used to determine the number of neurons in the hidden layer, which was initially set to one and
gradually incremented until the most suitable number was determined [20]. The output was then
expressed as

Zk = f

(
b0k +

J

∑
j=1

bjk· f
(

a0j +
I

∑
i=1

aij·xi

))
(5)

where f (·) is a transfer function; xi is the input; aij and bjk are the weights; and a0j and b0k are the bias.
The function f (·) is a mapping rule for converting input into output. The most commonly adopted
nonlinear conversion function in BPNN studies is the binary logistic sigmoid

f (x) =
1

1 + e−x (6)

where f (x) = [0, 1]. To obtain more optimal BPNN parameters, Zk (output value) and tk (target value)
are adjusted through

E =
1
2

K

∑
k=1

(Zk − tk)
2 (7)

BPNN uses the method of gradient descent to train all the examples during each learning epoch
and obtains the weights aij and bjk. The results obtained during the learning epoch are then fed back
into the hidden layer to increase accuracy. Accordingly,

∂E
∂bjk

=
∂E
∂zk
· ∂zk
∂vk
· ∂vk
∂bjk

(8)

where ∂E/∂zk = (zk − tk), zk = f (vk). Thus, ∂zk/∂vk = f ′(vk).
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As vk = b0k + ∑J
j=1 bjk·yj, ∂vk/∂bjk = 1 (j = 0) or yj(j = 1, 2, · · · , J), Equation (8) can be

differentiated as
∂E
∂aij

=

(
K

∑
k=1

∂E
∂zk

)
·
∂yj

∂uj
·

∂uj

∂aij
(9)

where yj = f
(
uj
)
; thus, ∂yj/∂uj = f ′

(
uj
)
. The weights can be determined using Equations (8) and (9).

When gradient descent was used, a common problem was that convergence did not feedback to the
whole network, but only a partial network. To increase learning rate and accuracy, a momentum term
was added to avoid oscillation during convergence. The mth weight can be expressed as

∆wm = −η· ∂E
∂wm + α·∆wm−1 (10)

where η is the learning rate of the gradient descent method; and α is the momentum factor. To fit the
range of the transport function, data were normalized using the max–min mapping method. For a
minimum and maximum of the transport function fmin and fmax, the minimum and maximum inputs
in the database were xmin and xmax, respectively

x(s) = ζ·
[

fmin +
x− xmin

xmax − xmin
( fmax − fmin)

]
(11)

where ζ is the normalized factor. Equation (11) can be reversed as

x̂ = xmin +

(
x̂(s)/ζ

)
− fmin

fmax − fmin
× (xmax − xmin) (12)

where x̂(s) and x̂ are estimates of x(s) and x, respectively.

2.5. Model Efficiency Indexes

A comparison of three methods was adopted, where the R2 of ANN was obviously the highest.
However, judging which method was more suitable via R2 was far from enough. Five model efficiency
indices were employed to determine the suitability of each model: the mean absolute deviation (MAD),
root mean squared error (RMSE), revised Teil inequality coefficient (RTIC), correlation coefficient (CC),
and coefficient of efficiency (CE), defined as

MAD =
1
N

N

∑
i=1

∣∣Qi − Q̂i
∣∣ (13)

where N is the total number of units; Qi is the real water consumption; and Q̂i is the estimated water
consumption.

RMSE =

√
∑N

i=1
(
Qi − Q̂

)2

N
(14)

RTIC =

√√√√∑N
i=1
(
Qi − Q̂i

)2

∑N
i−1(Qi)

2 (15)

CC =
∑N

i=1
(
Qi −Qi

)(
Q̂i − Q̂i

)
√

∑N
i=1
(
Qi −Qi

)2·∑N
i=1

(
Q̂i − Q̂i

)2
(16)
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where Qi is the mean of Qi; and Q̂i is the mean of Q̂i.

CE = 1− ∑N
i=1
(
Qi − Q̂i

)2

∑N
i=1
(
Qi −Qi

)2 (17)

Of the five efficiency indices, MAD, RMSE, and RTIC indicated higher efficiency as they
approached zero. As CC approached one, the simulated and actual values became more closely
correlated, whereas CE approaching one indicated higher precision.

3. Results

For multiple regression models, selecting suitable factors that were consistent and comparable
was crucial; thus, each water consumption factor was tested against the water consumption data
through a correlation analysis. The top six correlations between v17 and other water consumption
factors were: v18, v05, v03, v07, v09, and v06. As v18 was converted from v17, it was not included in
the analysis. Given that collinearity in the design matrix can result in inaccurate regression model
estimates, v19 and v21 were excluded from the initial estimations due to the high collinearity between
v19, v21, and v05. Usage of faucet water (v11) was one for all working databases; therefore, v11 was
also eliminated.

Through step-by-step filtering, independent variables that failed a t test (i.e., t = 1.96) were
eliminated one by one. The linear regression and nonlinear regression models developed in this study,
which considered 2611 data inputs, are shown in Equations (18) and (19), respectively

v17 = c + c3v3 + c4v4 + c5v5 + c6v6 + c7v7 + c8v8 + c9v9 + c13v13 + c15v15 (18)

(v17 + δ) = c·(v3 + δ)c3 ·(v4 + δ)c4 ·(v5 + δ)5·(v6 + δ)c6 ·(v7 + δ)c7 ·(v9 + δ)c9

·(v13 + δ)c13 ·(v15 + δ)c15
(19)

The R of these models was 0.665 and 0.692, respectively.
When the ANN was employed to simulate the models, 100 random data inputs were sampled to act

as a verification sample. The number of hidden layers was determined through trial and error, with the
minimum number from 1 to 20, which was calculated from [(input layer = 9) + (output layer = 1)] × 2.
To determine the lowest RMSE and highest R, a constructive algorithm was used. Eight hidden layers
were found to result in the lowest RMSE, as depicted in Figure 1. The R and RMSE in this model were
0.929 and 41,636, respectively.
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Due to the possible typographical errors in the data used in this study, outliers for water demand
per floor space unit (qA), water demand per number of staff (qN), and water demand per number of
staff and per floor space (qAN) were considered. The quartile outlier method was employed for qA

data, with the linear regression model

v17 = c + c3v3 + c4v4 + c5v5 + c6v6 + c7v7 + c9v9 + c13v13 (20)

The R of this linear regression model for deducting outliers under qA was 0.710. Equation (20)
was then modified to an improved nonlinear regression model

log(v17 + δ) = ć + c3· log(v3 + δ) + c4· log(v4 + δ) + c5· log(v5 + δ) + c6· log(v6 + δ)

+c7· log(v7 + δ) + c9· log(v9 + δ) + c13· log(v13 + δ)
(21)

The R of this nonlinear regression model for deducting outliers under qA was 0.699. In the eight
hidden layers of the ANN, the R was 0.904. Regarding the aforementioned quartile outlier method,
the outliers under qN were deducted. With this condition, the linear regression, nonlinear regression,
and ANN models were obtained. The linear regression model for deducting outliers under qN is
shown in Equation (22), and the resultant R was 0.773

v17 = c + c3v3 + c4v4 + c5v5 + c6v6 + c7v7 + c13v13 (22)

The nonlinear regression model for deducting outliers under qN is shown in Equation (23), and
the resultant R was 0.738

log(v17 + δ) = ć + c3· log(v3 + δ) + c4· log(v4 + δ) + c5· log(v5 + δ) + c6· log(v6 + δ)

+c7· log(v7 + δ) + c13· log(v13 + δ)
(23)

Under this condition, with eight hidden ANN layers, the R was 0.953.
Furthermore, outliers under qAN were considered. With the quartile outlier method, the linear

regression model was found to be identical to Equation (22), with R = 0.688. Similarly, the nonlinear
regression model was identical to Equation (23), with R = 0.720. Eight was again, the most suitable
number of hidden layers, and R was 0.866.

As previously mentioned, full adoption and partial adoption models were estimated. Given that
the quartile outlier method for partial adoption is similar to that used to estimate the energy usage
index in Taiwan, the use of raw water demand data to establish a model of water consumption was
found to be unsuitable. Therefore, the outliers determined in the water demand per floor space unit,
water demand per number of staff, and water demand per number of staff and per floor space unit
were ignored. This outlier removal method was expected to improve the accuracy of the established
water consumption model.

Table 4 details the performance of each water demand model for full and partial adoptions,
with the linear regression, nonlinear regression, and ANN models employed. Five efficiency indices
were used to gauge model performance. The ANN model with outlier removal under water demand
per number of staff was the most accurate model for estimating water consumption by government
institutions in Taiwan, demonstrating the closest fit to the actual data. Considering all five model
efficiency indices, the descending order of efficiency of these approaches was as follows: Excluding
outliers under qN > excluding outliers under qA > excluding outliers under qAN > full adoption. The total
efficiency for qAN was low due to a factor multiplication effect (vA = v03 + v04; vN = v05 + v06 + v07).

Considering the MAD index, all three models were more accurate when the quartile outlier
method was implemented to remove outliers under qN. The RMSE for the nonlinear regression
model was higher than that for the linear regression model, which might be attributable to the
nonlinear regression model being reversed and any deviation thus being increased. For the RTIC index,
which indicates higher precision as it approaches 0, the ANN model was identified as the most efficient.
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The qN ANN model was also the most precise model when the RTIC index was considered. The CC
index of the qN ANN model was 0.9528, which was the highest among all the models. Therefore, outlier
removal under qN using an ANN was the most suitable model for estimating water consumption.

Table 4. Performance comparison of each water demand model with full or partial adoption.

Data Model MAD RMSE RTIC CC CE

Full adoption
Linear regression 9,020.42 92,010.83 0.7153 0.6657 0.4431

Non-linear regression 6,890.49 31,581.66 0.7058 0.6917 0.4580
ANN 5,591.42 15,936.16 0.3561 0.9285 0.8620

Exclude outlier of qA

Linear regression 6,547.07 22,858.52 0.6693 0.7098 0.5037
Non-linear regression 5,172.72 24,286.02 0.7111 0.6985 0.4398

ANN 4,652.40 13,857.35 0.4057 0.9043 0.8176

Exclude outlier of qN

Linear regression 5,633.69 16,870.19 0.5967 0.7730 0.5973
Non-linear regression 4,453.26 18,383.52 0.6503 0.7375 0.5219

ANN 3,734.64 8,083.06 0.2859 0.9528 0.9076

Exclude outlier of qAN

Linear regression 9,033.15 31,288.56 0.6931 0.6879 0.4732
Non-linear regression 7,013.14 31,088.85 0.6887 0.7201 0.4799

ANN 6,867.00 21,605.54 0.4786 0.8662 0.7488

Notes: qA = Total area of water consumption, qN = Total number personnel of water consumption, qAN = Water
demand of per number of personnel times per floor space unit.

4. Conclusions

The data employed in this study concerned the water consumption of all government institutions
in Taiwan. Linear regression, nonlinear regression, and an ANN were adopted to establish a water
consumption estimation model. The quartile outlier method was also used to determine the effect
on prediction accuracy for full or partial adoption of data. The major factors influencing water
consumption were divided into four categories: area of water demand (floor and irrigation areas);
water demand population (number of staff, visitor, and accommodation); usage of equipment with
high water consumption (kitchens and swimming pool); and usage of non-faucet water sources
(i.e., groundwater). In each case, the removal of outliers under qN with an ANN was the most accurate
model. Furthermore, adopting the quartile outlier method maintained the median and effectively
decreased data variability.

The school (education) category was identified as consuming the most water. The total number
of school category was 1415, which accounted for most of the database in this study. Educational
institutions were the best fit and the model used for other types of institutions, therefore, the model
was most suitable when qN outliers were identified because the qN ANN model was the most suitable
for fitting within the school category. An improved model that considered other categories could be
established if more complete data on other institutions were available. A classic and general ANN
model was employed in this study; thus, the activation function and number of hidden layers may
also have affected its efficiency and precision.

The models established in this study could form the review process when each government
institution imports their variable data in that year. Therefore, estimated water consumption can be
calculated and used to judge whether the water consumption of government institutions is deemed
reasonable. Hence, the established models could be the evaluation for saving water.
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