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Abstract: Northeast Brazil (NEB) has recently experienced one of its worst droughts in the last
decades, with large losses on rainfed agriculture. Soil moisture is the main variable to monitor
agricultural drought. The remote sensing approach for drought monitoring has been enriched with
the launch of the Soil Moisture and Ocean Salinity (SMOS) in November 2009 by European Space
Agency (ESA). In this work, the Soil Water Deficit Index (SWDI) was calculated using the SMOS L2 soil
moisture in the NEB. The SMOS-derived SWDI data (SWDIS) were evaluated against the atmospheric
water deficit (AWD) calculated from in situ observations. Comparisons were made at seven-day and
0.25° scales, over the time-span of June 2010 to December 2013. It was found that the SWDIS has
a reasonably good overall performance in terms of the drought-weeks detection (skill = 0.986) and
capture of the upper soil moisture temporal dynamic (r = 0.652), implying that the SWDIS could be
used to track agricultural droughts. Furthermore, SWDIS shows poor performance at sites located in
mountains regions affected by severe droughts (—0.10 < r < 0.10). It is also noted that the vegetal
cover/use, climate regime, and soil texture have little influence on the AWD-SWDIS coupling.

Keywords: agricultural drought; SMOS; soil moisture; Soil Water Deficit Index; Northeast Brazil

1. Introduction

Climate variability and extreme weather events threaten many populations throughout the
world [1]. The evidence indicates that, in many of these regions, variability and extreme events are
increasing [2,3]. In recent years, droughts have received a special attention in Brazil, because they
have been experienced with higher frequency, spatial extent, severity, and duration [4,5]. Some studies
have also revealed that prolonged droughts and increased evaporation can lead to reduced water
supply, crop failure, and diminished power generation, causing dramatic societal effects such as water
rationing and massive electricity blackouts [4,6-8].

Although most regions of Brazil have suffered extreme droughts, their impacts are significantly
more complex in the semiarid region of Northeast Brazil (NEB) due to its high variability of
precipitation in both time and space [8-10]. It is also the world’s most densely populous dry land
region [11-13]. Historically, NEB has been hit by many droughts. However, the 2012/2015 drought
was one of the most severe in the recent decades with more than 10 million people affected in the
semi-arid region [14]. This extreme condition in the northeast was linked to the deficit of rainfall and
drying conditions that contributed to reduced soil water availability [15,16].

The majority of smallholder farmers living in NEB rely on subsistence agriculture, therefore
droughts often trigger water shortage, leading to crop and economic losses [11,17,18]. Different types
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of drought are recognized in the world, including meteorological, agricultural, and hydrological
drought, depending on the variable used to characterize this natural hazard and its spatial and
temporal scale [19,20]. Unlike other types of droughts, the agricultural drought has a direct impact on
rainfed-based agricultural production [21]. Usually, an agricultural drought is considered to begin
when the soil moisture availability to plants drops to such a level that it unfavorably affects the crop
yield and therefore agricultural production [22,23].

As already mentioned, droughts are the main cause of limited productivity of rainfed agriculture
in NEB [24,25]. Hence, assessment of agricultural drought has a primary importance for rainfed
agriculture planning and management. Several drought indices based on combination measures
of precipitation, temperature and soil moisture, have been derived in recent decades to assess the
effects of agricultural droughts and besides measure their intensity, duration, severity and spatial
extent [26,27]. Among these, the Crop Moisture Index (CMI; Palmer, 1968), Atmospheric Water Deficit
(AWD; [28]), Soil Moisture Index (SMI; [29]), Agricultural Reference Index for Drought (ARID; [30]),
and Soil Water Deficit Index (SWDI; [22]) are the most widely used for monitoring drought conditions
on extensive crops (e.g., cereals).

The amount of available soil moisture in the root zone is a more critical factor for crop growth
than the amount of precipitation deficit or excess. In fact, the soil moisture deficit in the root zone
during various stages of the crop growth cycle has a profound impact on the crop yield [31]; therefore,
the accurate knowledge of soil moisture is a key aspect for the characterization of agricultural droughts.
Ground-based soil moisture measurements are very accurate, but they have an application limited
because of their point-based nature, their reduced spatial extent, and the high variability of soils [27].
Nevertheless, that limitation has been gradually overcome due to progress in the development of
satellite technology and retrieval algorithms for quantifying soil moisture from active and passive
microwave satellite platforms [32-34]. Currently, these estimates are used to detect and monitor
regions affected by droughts and have the advantage of their wide spatial distribution and coverage,
as well as the temporal availability of data [35-39].

The remote sensing approach for drought monitoring has been enriched with the launch of new
missions dedicated to global surface soil moisture (SSM) monitoring. For instance, the Soil Moisture
and Ocean Salinity (SMOS) satellite launched in early November 2009 by European Space Agency
(ESA), and the Soil Moisture Active Passive (SMAP) satellite launched in January 2015 by National
Aeronautics and Space Administration (NASA). SMOS is an L-band passive microwave satellite that
measures brightness temperatures with Microwave Imaging Radiometer using Aperture Synthesis
(MIRAS) [35,40].

SMOS is opening new perspectives for monitoring the effects of agricultural droughts over
large agricultural regions [35,36,41]. In this sense, some recent studies have proposed new indices
based on soil moisture estimates derived from SMOS to assess agricultural drought. Scaini et al. [37]
demonstrated the feasibility of SMOS-derived soil moisture anomalies for determining drought
conditions in a central semiarid sector of the Duero basin in Spain. In this same region,
Martinez-Fernandez et al. [36] compared series of the SWDI calculated with SMOS L2 data with ones
obtained from in situ soil moisture data, and their results showed that SMOS-derived SWDI reproduces
well the soil water balance dynamic. More recently, Sanchez et al. [42] introduced a new index, so-called
the Soil Moisture Agricultural Drought Index (SMADI), which is a synergistic fusion of the SMOS
L2 soil moisture with the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived land
surface temperature (LST) and several water/vegetation indices for agricultural drought monitoring.
These authors demonstrated that SMADI could provide early warning of incipient drought impacts in
rainfed farming systems.

Despite the great potential of SMOS for agricultural drought monitoring, very few works have
been published using soil moisture derived from SMOS data in worldwide; especially in Brazil.
For instance, Rossato and Angelis [43] used data of brightness temperature sensor MIRAS aboard
the SMOS satellite to assess the pattern of soil moisture in densely vegetated areas in some Brazilian



Water 2017, 9, 377 3of 21

locations with soil moisture data measured in situ. They have reported that the SMOS-derived data
infer accurate values of soil moisture over those areas, which demonstrated the feasibility of SMOS to
support in planning for planting and/or irrigation of crops. Over NEB, Ferreira et al. [44] found that
the soil moisture changes estimated by a Model of Soil Moisture for Agricultural Activities (MUSAG)
and those derived from SMOS show a significant correlation for 184 selected sites within the Ceara
state. Their results indicated that SMOS data might represent the soil moisture change in the Brazilian
Caatinga satisfactorily, allowing assessment of the seasonality of the water balance in this region.

In this work, the focus is specifically on the entire NEB, which has been hit by an unprecedented
drought since 2012. Severe droughts have caused serious impacts on water supply and agriculture
of the NEB, especially during the rainy season [8,15,45]. The main goal of this work is to compare
the series of the SWDI calculated with SMOS L2 data with those of the Atmospheric Water Deficit
derived from in situ observations, which is used as a reference index. We also analyzed its feasibility
for large-scale agricultural drought monitoring. It is important highlight that in none of previous study
has been examined the SMOS-derived SWDI as a proxy of upper soil moisture in the NEB.

2. Materials and Methods

2.1. Study Area

Northeast Brazil (NEB) is located within 1.3°-18.2° S and 34.4°—48.4° W (Figure 1), occupying an
area of about 1,555,000 km? (nearly 19% of Brazilian territory). It is divided into nine federal states:
Maranhao (MA), Piaui (PI), Ceara (CE), Rio Grande do Norte (RN), Paraiba (PA), Pernambuco (PE),
Alagoas (AL), Sergipe (SE) and Bahia (BA), which cover roughly 21%, 16%, 10%, 3%, 4%, 6%, 2%, 1%
and 36% of NEB, respectively. NEB has more than 53 million inhabitants (about 30% of the Brazilian
population) and a human population density of about 34 inhabitants per square kilometer [13], of
which about 50% are considered poor by Brazilian standards [46]. Its climate is hot (annual mean:
12-40 °C) and characterized by annual precipitation in amounts ranging between 250 and 2000 mm.
The rainy season occurs at different times of the year for different sub-regions. The eastern part of
NEB has its rainy season between May and August. The southern part of the region has maximum
precipitation in November—December. The semi-arid northern part of NEB has its rainy season between
February and May [11,16,47]. The Inter Tropical Convergence Zone (ITCZ) controls the weather system
in most of the NEB. When the ITCZ reaches its southernmost position in the course of the year, it
induces the production of rainfall over almost the entire NEB. The Upper Tropospheric Cyclonic
Vortex, Easterly Waves Disturbances, and Squall Lines also cause heavy rainfall at any time of the
year. The south of Bahia state has actuation of the Front Systems and the South Atlantic Convergence
Zone [12,17]. Rainfall in NEB shows a high interannual and seasonal variability, which favors the
occurrence of prolonged droughts [48].

The agricultural census from Instituto Brasileiro de Geografia e Estatistica (IBGE) for the reference
year 2006 showed that the states BA, PE and PI group about 27%, 21% and 18% of the croplands,
respectively (mainly sugarcane and cotton), whereas BA, MA and CE congregate about 40%, 19% and
9% of pasture areas, respectively [49]. For most rainfed crops of the NEB, the growing season occurs
from February to May [50]. An internal portion of the NEB (~63%) is occupied by a semi-arid polygon
known as the Sertao region (Figure 1b), where the subsistence agriculture is dominant and droughts are
very frequent [8,51]; consequently, efficient management of the Sertao’s water resources is of extreme
importance for socioeconomic development of this sub-region. The main biomes of NEB are Amazdnia
(Amazonia), Cerrado, Mata Atlantica (Atlantic Forest), and Caatinga, which cover about 7%, 29%, 10%,
and 52% of the entire NEB, respectively (Figure 1b). The Caatinga biome is characterized by a mosaic of
seasonally dry tropical forests and thorn scrubs, with more than 2000 species of vascular plants [52,53],
commonly inappropriate for rainfed agriculture [51]. The biome Cerrado is a vast tropical savanna,
whose main habitats are forest savanna, wooded savanna, park savanna, gramineous-woody savanna,
savanna wetlands, and gallery forests [54]. The Mata Atlantica biome also is known as Atlantic Forest.
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It extends along the Atlantic coast of the NEB and groups the seasonal moist and dry broad-leaf tropical
forests, tropical and subtropical grasslands, savannas, and shrublands, and mangrove forests [55].
The Amazobnia biome is also known as Amazon Rainforest. It is a moist broadleaf forest, which
comprises the largest and most biodiverse tract of tropical rainforest in the NEB [56]. On the other
side, most of the soils of NEB are Neossolos with a high content of clay (nearly 40% or more) and a
bulk density about 1.25 g cm 3 [57].
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Figure 1. (a) Northeast Brazil’s terrain elevation. Elevation based on 90-m DEM-SRTM images [58]
Circles denote the location of benchmark sites. (b) NEB’s main biomes: AMZ, Amazoénia; CER,
Cerrado; MAT, Mata Atlantica; and CAAT, Caatinga. The red line depicts the border of the Sertao
region. (c) NEB’s location in South America. The scale bar refers to the center of the map.

2.2. Datasets

2.2.1. In Situ Database

The temporal variations of the upper soil moisture are mainly driven by the variations of the
atmospheric water deficit near to topsoil [22,37]. In order to verify the impact of droughts on the
upper soil moisture of the NEB, daily values of the Atmospheric Water Deficit (AWD) were used.
The calculation of the AWD require as inputs, observations of daily rainfall and daily potential
evapotranspiration (ETo) [26]. For this study, four grids with a spatial resolution of 0.25°, of daily
rainfall, ETo, maximum and, minimum temperature for the entire Brazil throughout the period of
1980 to 2013 was used. Xavier et al. [59] developed these grids using in situ observations, which
were gridded using an inverse-distance weighted interpolation algorithm. The dataset is updated
regularly, and it is freely available at http://careyking.com/data-download/. This dataset is chosen
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because it constitutes the most complete set of in situ climatic observations for the northeast Brazil [60].
Their data sources are the Instituto Nacional de Meteorologia (INMET), the Agéncia Nacional de Aguas
(ANA), and Departamento de Aguas e Energia Elétrica de Sao Paulo (DAEE) [59]. More details about
the distribution of weather station net on the NEB can be found in Xavier et al. [59]. Daily ETo was
estimated using the Penman-Monteith methodology [61,62]. All grids were clipped using a shapefile
of the NEB as a mask, resulting new grids with 2050 equally spaced nodes at about 28 km. Hereinafter,
this is so-called the Reference Discrete Grid (RDG).

2.2.2. SMOS Database

MIRAS-SMOS is an interferometric radiometer that measures the thermal emission from the
Earth in the 1.4-GHz protected frequency range in full-polarization and for incidence angles from 0°
to about 60°. Microwave emissions from the Earth’s surface at L-band are attenuated by dielectric
materials, therefore these attenuation patterns are used to estimate soil moisture for the first 5 cm of
soil. SMOS has a revisit time of 3 days at Equator, an accuracy of 4% volumetric soil moisture and a
native spatial resolution of about 35-50 km [63,64].

In this study, the SMOS Soil Moisture Level 2 User Data Product version 6.20 was used to estimate
the upper soil moisture in the NEB (for details on SMOS L2, we recommend the work of Kerr et al. [65]).
This product is disseminated through ESA [66], over the Icosahedral Snyder Equal Area Earth grid
with equally spaced nodes at about 15 km, known as the Discrete Global Grid (DGG). Additionally,
the daily SMOS L2 soil moisture data are available from January 2010 to the present. Since the rainfall
and Eto datasets end in December 2013, the time-span from January 2010 to December 2013 was
chosen as analysis period. The first semester of 2010 was omitted, because of the MIRAS instrument
underwent several tests.

The SMUDP2 product provides to users the retrieved surface geophysical parameters as well
as quality indicators. The soil moisture retrieval is associated with a Data Quality Index (DQX),
which represents the uncertainty of the retrieval [36]. In this research, two filters were applied to
obtain reliable SMOS soil moisture retrievals: (1) SMOS retrievals with DQX less than 0.04 m3 m~3;
and (2) SMOS retrievals without significant radio frequency interferences (RFI); that is, SMOS SM data
with a RFI probability higher than 20% were filtered out. These criteria were implemented to the
ascending and descending orbits separately, and later, the average of the two orbits for each day was
calculated. Similar to rainfall and ETo, the filtered SMOS product was clipped to match the spatial
extent of the NEB, resulting a grid with 9205 equally spaced nodes at about 15 km.

2.3. Methodology

2.3.1. SMOS-Derived Soil Water Deficit Index (SWDIS)

The Soil Water Deficit Index (SWDI) was proposed by Martinez-Fernandez et al. [22] in order
to characterize the agricultural drought based on in situ soil moisture series and basic soil water
parameters. The SWDI was formulated as follows:

SWDI = 10 (9 _ GFC) 1)
Oawc

where 0 is the soil water content, FC denotes field capacity and AWC available water content, which is
the difference between FC and WP (wilting point). Authors argue that when the soil reaches a water
content below Orc, the deficit begins and water stress could occur. Even though soil water just below
field capacity not always triggers a plant water stress, below that point, plants are no longer in optimal
conditions as they start to need to use more and more energy for water uptake. The concept of the
readily available soil water (RAW) of the FAO (Food and Agriculture Organization) guidelines for the
determination of the crop water requirements is similar [62]. In fact, the p factor of the RAW definition
is the average fraction of total available soil water (TAW) that can be depleted from the root zone
before moisture stress occurs [36,61,62].
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Taking into account that the p factor varies for the main crops from 0.2 to 0.8 and, that 50% of the
crops considered by Allen et al. [62] has a p factor below 0.5, Martinez-Fernandez et al. [22] developed
a severity scale for the SWDI. Thus, a positive SWDI value reveals an excess of water in the soil; when
it equals zero, the soil is at the field capacity (i.e., no water deficit and no drought). Negative values
indicate agricultural drought, and its impact will depend of the type of crop and the fraction of total
available soil water that can be depleted from the root zone before moisture stress occurs [36,62].
When the SWDI < —10, the water deficit is absolute; that is, the soil water content is below the lower
limit of available water for plants [22].

The use of the SWDI in large-scale agriculture applications needs to know the spatial distribution
of the parameters FC and WP in the areas under study. This is a critical issue in the NEB, because
there is not enough available information about these soil water parameters. For those areas
where specific information on soil water parameters is scarce or absent, some researchers have
proposed different approaches for estimating FC and WP based on SMOS L2 soil moisture. Recently,
Martinez-Fernandez et al. [36] found that the SWDI at a weekly time scale, based on the percentile
method developed by Hunt et al. [29], where the 5th percentile is used as an estimator of WP and the
95th percentile as an estimator of FC, shows good correlation with the SWDI calculated with in situ
data. In this line, for this study, the 5th and 95th percentiles were used as estimators of WP and FC,
respectively at every DGG. Both parameters were derived from the SMOS L2 soil moisture series for
the period June 2010-December 2013.

The daily SMOS-derived SWDI data (i.e., 9205 SMOS grid cells for each day within the NEB, see
Section 2.2.1) were re-sampled with the nearest neighbor interpolation technique to a resolution of 0.25°
to ensure consistency with the rainfall and ETo data. This procedure allowed the use of a common grid
for the daily SMOS soil moisture, daily rainfall, and daily ETo, whose nodes coincide with those from
the RDG (see Section 2.2.1). Next, the daily SMOS-derived SWDI data were weekly averaged (SWDIS)
at every RDG (with the arithmetic mean). When, within a RDG, there were less than three daily data
during the week, the weekly SWDIS average was omitted (i.e., these were considered as missing
values). This temporal scale was chosen because farmers commonly use a weekly period for irrigation
schedules. The number of weeks was based on International Organization for Standardization (ISO)
standard week numbers.

2.3.2. Atmospheric Water Deficit Derived from in Situ Observations (AWD)

The concept of the Atmospheric Water Deficit (AWD) was proposed by Purcell et al. [28]. AWD is
a suitable tool to identify the drought dynamics related to soil water storage [26,67]. For its calculation,
the cumulative ETo for the preceding 6-day and the day under consideration are summed (7-day total),
and the 7-day cumulative precipitation is subtracted from this value, resulting in a 7-day cumulative
AWD estimate for each day of the long-term record.

In the present work, a modified AWD suggested by Martinez-Fernandez et al. [36] was used,
where the AWD is calculated as the 7-day running sum of precipitation minus the 7-day running sum
of ETo to obtain negative values, similar to those of the SWDI, during the dry episodes. The SWDIS
was then compared with the AWD for the common period, using a weekly temporal scale as previously
described (i.e., June 2010-December 2013, equivalent to 186 weeks).

2.3.3. Linear Relationship and Drought-Weeks Probability of Detection (POD)

It is worth be mentioned that the upper soil moisture is closely linked to atmospheric water
deficit [26,36,67]. For this reason, a linear correlation analysis can be used to explore the temporal
relationship between both signals. Hence, the Pearson's correlation coefficient (r) was used to quantify
the strength of the relationships between the SWDIS and ADW time series at pixel scale, whereas its
statistical significance was tested on base to the Student’s t-test [68]. To guarantee the reliability of the
comparison, those cases where the number of SWDIS-ADW pairs was less than 30 were omitted [69].
This threshold was changed to 10, when the growing season was analyzed (i.e., from February to May).
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The drought-weeks detection capability based on the SWDIS is important for irrigation schedules.
This term refer to the skill of the SWDIS for detection of drought weeks, taking into account a threshold
to differentiate the non-drought weeks from drought-weeks. In assessing the SWDIS performance for
detection of drought weeks on each RDG grid cell, the Probability of Detection (POD) was used [47,70].
The POD indicates the fraction of the observed drought weeks that were correctly detected; with a
threshold equal zero for SWDIS and AWD. The perfect score for this metric is one. POD is given by:
A

where A and C represent number of hits and number of misses for pairs of SWDIS-AWD, respectively.
3. Results

3.1. Spatial and Seasonal Relationship between the SWDIS and AWD

Following the computation of SWDIS and ADW (Section 2.3), a point-to-point comparison was
carried out to explore the overall association between both variables. The SWDIS-AWD pairs for the
entire NEB covering the period of June 2010 to December 2013 (i.e., 186 weeks of time span) is shown
in Figure 2a, whereas Figure 2b displays only those pairs during the growing season (i.e., February to
May for each year, equal to 12 weeks). In both cases, the SWDIS showed a moderate overestimation of
the observed values of AWD < 0, though it tends to underestimate positive values.

(a)

SWDIS
o
L

(b)

SWDIS

AWD

Figure 2. Observations-derived AWD and SMOS-derived SWDI from June 2010 to December 2013
considering all RDG grid cells in the NEB for: (a) the entire year; and (b) the growing season. Blue line
indicates 1:1 correspondence and dashed red line gives the linear regression best fit.
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In order to evaluate the effect of spatial factor on the SWDIS-AWD relationship, a linear correlation
analysis was applied at each grid point (0.25° x 0.25°). The Pearson’s correlation coefficient is
non-dimensional and quantifies the strength and direction of the linear association between both
variables over time. Figure 3a shows the spatial distribution of linear correlation between the SWDIS
and AWD for the entire year. Pearson’s correlation coefficients were slightly high in most of the RDG
grid cells (averaged r for all RDGs, 0.652). At first view, the SWDIS captures reasonably well the spatial
variability of the AWD, mainly over the major part of MA and PI (Figure 1). On the other hand, this
relationship stayed moderately high throughout the growing season (averaged r for all RDGs, 0.633),
which was reflected by values of correlation similar to those seen for the entire year (Figure 3b).

1.0

0.4

02

0.0

Lat [Deg]

F-02

-0.4

-1.0

Lon [Deg]

Figure 3. Spatial distribution of Pearson’s correlation coefficients between the AWD and SWDIS from
June 2010 to December 2013 for: (a) the entire year; and (b) the growing season. Whited cells depict
gaps or omitted values.

An aspect less evident in Figure 3 is the presence of zones where the SWDIS-AWD relationship
was significantly weak (i.e., r near to zero) or even negative. This asynchronous relationship was more
marked throughout the growing season and over some croplands located in PI and BA (Figures 1 and
3b). It is also possible to see that this discrepancy was significantly frequent inside the central Sertao
region (in particular, between 40° and 45° west longitude). An analysis more exhaustive of the results
revealed that when the number of valid SWDIS-AWD pairs increases in RDG grid cells, the linear
correlation tends to be stronger (not shown). However, this last feature cannot be generalized to the
entire NEB, due to that it was only observed in certain grid points.

3.2. The Skill of SWIDS in Terms of Detection of Drought Weeks

In order to improve the assessment of the performance of the SWDIS was calculated the POD
on each RDG grid cell. This metric shows how many drought weeks were correctly identified by the
SWDIS. For this analysis, it was assumed that a drought week occurs when AWD < 0 and SWDIS < 0,
as in Martinez-Fernandez et al. [36]. A yearly average POD equal to 0.986, and an average POD
for the growing season of 0.995 were obtained (Figure 4), indicating that the drought periods were
well captured by the SWDIS. However, Figures 3 and 4 reveal a high proportion of gaps for the
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AWD-SWDIS linear correlation and POD from 37° to 41° longitude. This behavior was caused mainly
by radio frequency interference during the most of the study period. In general, an increase in the
radio frequency interference increase the values flagged as poor quality in the SMUDP2 product
(i.e., RFI_Prob field > 20%), leading to a very little amount of daily SMOS L2 soil moisture data
available for this region.

08

0.6

Lat [Deg]

F04

0.2

0.0

Lon [Deg]

Figure 4. As Figure 5, but for the Probability of Detection (POD) of drought weeks, (a) the entire year;
and (b) the growing season.

3.3. Behavior of the SWDIS-AWD Relationship at Local Scale

In order to examine with more detail the SWDIS-AWD relationship at local scale, 6 RDG grid
cells were selected as benchmark sites (Figure 1). Sites were chosen based on proportion of complete
pairwise. Thus, it was taken into account a threshold of 80% (i.e., N > 149 weeks). Table 1 shows the
geographical location of the benchamark sites and other features such as their elevation above sea
level, soil texture, soil taxonomy, biome, and soil cover/use. Ultisols are the dominant soils with the
exception of Oxisol soil present at Correntina. On the other hand, Carnaubais croplands are mainly
dedicated to cotton and banana crops; whereas at Fazendas do Piaui large monocultures of soya and
cotton are dominant. Carnaubais and Campo Maior are located in a vast open flatland. Otherwise,
Correntina and Fazendas do Piaui are located in high mountains with complex relief (Figure 1).
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Table 1. Geographical and other information of benchmark sites.

10 of 21

. 3 (o, .
Id Name/State Biome ! Lat. (deg) Lon. (deg) Elevation 2 (m.a.s.l) SCollalyTg)i(lt:;ZI\(Il/;) "ll"i i(?rﬁ)i(;g Soil Cover/Use
1 Carnaubais/RN CAAT —5.37 —36.87 51 19-13-68 Aquults Cropland

2 Campo Maior/PI CAAT —4.87 —42.12 128 22-23-56 Aquults Pasture

3 Correntina/BA CER —13.62 —44.87 643 21-12-67 Udox Pasture

4 Sao Raimundo Nonato/PI CAAT —8.62 —42.12 282 18-15-67 Udults Pasture

5 Esperantin6polis/MA CER —4.88 —44.88 107 22-21-57 Udults Grassland

6 Fazendas do Piaui/PI CER —8.38 —45.13 517 32-17-53 Udults Cropland

1 CER: Cerrado; CAAT: Caatinga; 2 based on the SRTM 250 m database [71]; 3 based on the SoilGrids 1 km database [72].
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A Walter-Lieth climatic diagram [73] at each benchmark site was used to characterize the climate
regime over the period of 1980-2013 (Figure 5). The mean precipitation, mean maximum daily
temperature, mean minimum daily temperature, and absolute monthly minimum temperature
were derived from climatic datasets developed by Xavier et al. [59]. In principle, Carnaubais
(P =623 mm/year) and Sao Raimundo Nonato (P = 669 mm/year) show semiarid climate regimes
characterized by the presence of a short rainy season from January to March (i.e., weeks: 1-17).
Both locations are within the Sertao region (Figure 1b), which is the driest of the NEB [13,45,74]. In
contrast, climatic diagrams for Campo Maior (P = 1300 mm/year) and Esperantinépolis (P = 1378
mm /year) reveal a longer wet period (i.e., December-May, Weeks 1-22, and 48-52), where monthly
precipitation is greater than 100 mm. Besides, in spite of show less amount of yearly precipitation,
Correntina (P = 1009 mm/year) and Fazendas do Piaui (P = 1202 mm/year) have the most long wet
period (i.e., October—April; weeks: 1-17, and 40-52).

Figure 6 shows a visual comparison of the SWDIS and AWD time series at each site. Note that the
SWDIS had highest capacity to capture the temporal dynamic of the drought at Carnaubais ( = 0.85;
Figure 6a) and Campo Maior (r = 0.85; Figure 6b). Furthermore, the drought periods were well
captured by the SWDIS (POD = 1.00 for both cases), revealing a strong linear coupling between the
superficial soil moisture and environmental dryness. On the other hand, the AWD-SWDIS relationship
was weaker in Fazendas do Piaui (r = 0.02; Figure 6f) and Correntina (r = —0.108; Figure 6¢c), whereas
at Sao Raimundo Nonato (r = 0.578; Figure 6d) and Esperantinopolis (r = 0.640; Figure 6e) a slightly
improvement was observed. At first view, this result suggests that the climate regime does not affect
the overall performance of the SWDIS, when it is used in order to track the local drought dynamic
(based on the AWD).

When the inter-week variation calculated by successive differences from the SWDIS data was
compared to those derived from the AWD data in each benchmark site, some consecutive weeks where
the values of the AWD tend to stay almost constant and persistently negative during several weeks
were observed. This feature was only noted in Fazendas do Piaui, Correntina, and Sao Raimundo
Nonato (not shown). In these sites, the SWDIS seems to vary uncoupled to the AWD, but showing
negative values (see Figure 6¢,d,f); in particular, through weeks: 51-60, 106-123, and 152-163. In order
to investigate the effect of the duration of dry spells on the AWD-SWDIS coupling at Fazendas do
Piaui, Correntina, and Sao Raimundo Nonato, the amount of dry episodes with AWD < —20 and
length > 4 weeks was calculated. For these locations, results show the occurrence of four, nine and
nine dry episodes with an average duration of 28, 25, 11.22, and 14.4 weeks, respectively. Overall,
the persistence of dry spells seems to affect the performance of the SWDIS. That is, an increase in the
persistence of drought environmental conditions tends to weaken the coupling between the AWD and
SWDIS; in particular, at Fazendas do Piaui.

In order to assess if there is a delay between the signals of SWDIS and AWD a cross-correlation
analysis was applied in each benchmark site. This analysis computes the linear correlation between
AWD [t + k] and SWDIS [t], where t represents number of weeks and k indicates the lag value
between the SWDIS and AWD, respectively. It was found that the AWD-SWDIS connection is
persistent until by 6 weeks, but with weaker in strength than when k = 0 (i.e., both signals in phase) at
Carnaubais, Campo Maior, Sao Raimundo Nonato, and Esperantinépolis. In contrast, a decoupling
very evident was found for values of k from 0 to 6 weeks at Correntina and Fazendas do Piaui (not
shown). These results reveal an important disconection between the dynamics of the atmospheric
system and the soil system at Correntina and Fazendas do Piaui, which seems to be driven by
environmental conditions.

Some statistical parameters of the SWDIS and AWD at benchmark sites are shown in Table 2.
It is possible to see that the cropland and pasture covers show notable differences in terms of their
correlation coefficients. The most obvious dissimilarity is evident when are compared Carnaubais
and Fazendas do Piaui (Id = 1 and 6). Despite their different correlation coefficient (r = 0.85 and 0.02,
respectively), these sites coincide with the dominant soil use (i.e., cropland). The situation is similar
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when comparing Campo Maior (r = 0.85; soil cover: pasture) with Correntina (r = —0.11; soil cover:
pasture), suggesting that the soil cover/use had little influence on the AWD-SWDIS relationship.
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Figure 5. Walter—Lieth climatic diagrams for the 19802013 period at: (a) Carnaubais (benchmark site
#1); (b) Campo Maior (benchmark site # 2); (c) Correntina (benchmark site # 3); (d) Sdo Raimundo
Nonato (benchmark site # 4); (e) Esperantinépolis (benchmark site # 5); and (f) Fazendas do Piaui
(benchmark site # 6). Locations of benchmark sites are shown in Figure 1a. The black horizontal
line indicates monthly precipitation greater than 100 mm and the graph over it is filled in solid blue.
When P < 2T, where P is monthly mean precipitation, and T monthly mean temperature, there is a dry
period (filled in dotted red vertical lines). Otherwise, the period is considered wet (filled in blue lines).
Daily maximum average temperature of the hottest month and daily minimum average temperature of
the coldest month are labeled in black at the left margin in each diagram.
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Figure 6. Comparison of the temporal evolution of the AWD and SWDIS for the same benchmark sites
displayed in Figure 5 from June 2010 to December 2013. The black and red lines depict the weekly
values of AWD and SWDIS, respectively. The dashed vertical lines in each panel depict the end of 2010,
2011, 2012, and 2013, respectively. Whited segments indicate gaps or omitted values.

Table 2. Main statistical parameters for the SWDIS and AWD at benchmark sites.

Gaps SWDIS AWD SWDIS AWD P

1 2 o
ld® o« %) Mean  Mean  CV (%) CV(%) (mmlyean 10O
1 08 591 649 —3068 296 2220 513 275
2> 08 215 657 —1517 3.0 32.85 1102 285
3 —010 1452  -520  —1078 315 38.89 1084 26.0
4 057 1452 —637 3068 297 24.10 525 285
5 064 1882 504  —898 323 32.69 1303 29.0
6 002 1398 534  —11.65 28 29.56 1064 29.0

11D as in Table 1;2 Pearson’s linear coefficient between the SWDIS and AWD. Gaps are referred to values of paired
SWDIS-AWD; CV indicates the coefficient of variation in percentage. P and T depict the annual average precipitation
and temperature during the period 2010-2013.

To get further insight into the characteristics of the precipitation during the analyzed period
(i.e., 2010-2013), it was compared to 1980-2013 and 2010-2013 precipitation average (see Figure 5
and Table 2). Results revealed that most of the benchmark sites were exposed to drought conditions.
For example, the annual average precipitation for the 2010-2013 period at Sao Raimundo Nonato,
Carnaubais, Campo Maior, and Esperantinopolis was —22%, —17%, —15%, and —5%, respectively
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with respect to their observed average through the 1980-2010 period. It is noteworthy that the spatial
distribution of these sites in Figure 1, suggests the occurrence of a severe drought mainly focused in
the Sertdo region. As expected, this result is coherent with the long dry spells previously identified at
Sao Raimundo Nonato.

Finally, in order to assess if the SWDIS-AWD relationship is sensitive to the texture of the soil,
elevation, gaps in the SWDIS-AWD pairs, and environmental dryness, a correlation analysis was
applied considering the values of percentage of clay, sand and silt shown in Table 1 against the Pearson
correlation coefficient (r) from Table 2. Figure 7 displays a summary of the comparisons. Paired values
of clay-r (Figure 7b), silt-r (Figure 7c), and sand-r (Figure 7d) showed linear correlation coefficients
equals to —0.53, 0.45, and 0.06, respectively. At first view, a low clay content and high silt content
seems to be favorable for the SWDIS-AWD coupling (at least, at Campo Maior and Esperantindpolis).
However, they were statistically not significant at the 5% level, implying that the texture of the
soils is not associated necessarily with the soil-atmosphere coupling in the entire NEB. On the other
side, it is important to notice the strong association between the elevation and the SWDIS-AWD
coupling (r = —0.97; p < 0.05), suggesting that the SWDIS-AWD coupling could be mainly driven
by topographical factors. In general, the SWDIS tends to show best performance as an agricultural
drought index in open flatland (e.g., Carnaubais) than at mountainous regions (e.g., Correntina).
Contrastingly, the percentage of gaps in SWDIS-AWD pairs and the intensity of drought based on
weekly AWD did not affect significantly the overall performance of the SWDIS at benchmark sites
(r=—0.53 and —0.51; both with p > 0.10).
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Figure 7. Comparison of the Pearson’s linear coefficient between the SWDIS and AWD (r) against:
(a) elevation (m.a.s.1.); (b) clay (%); (c) silt (%); (d) sand (%); (e) gaps (%); and (f) weekly average AWD
(dimensionless) taking into account all benchmark sites. Numbers are the IDs shown in Tables 1 and 2.
Dashed red line depicts the linear regression best fit. Clay, silt, sand, and elevation were taken from
Table 1, and gaps and r from Table 2.

4. Discussion

In line with the results from some previous studies [26,28,36,67,75,76], it was found that the
atmospheric conditions over NEB influences the upper soil water balance dynamic. This characteristic
is reflected by a moderate coupling strength between the AWD and SWDIS from June 2010 to December
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2013 in the entire NEB (Figures 2 and 3). There, it was also possible to identify different levels of
bias between both signals. As expected, the AWD cannot be directly compared to the SWDIS, as the
variation range of the first was larger (—59 < AWD < 406) than that of the second (—16 < SWDIS < 52)
(Figure 2a). Consequently, one could expect that a negative value of the AWD will be reflected by a
negative SWDIS value, but with lower magnitude.

Results revealed that during the 2012-2015 drought the central Sertao region was exposed
to drought conditions more severe than other regions of the NEB, which is consistent with find
by [13-15,45]. It is interesting to indicate that the Sertao region showed high radio frequency
interference (RFI) during the analyzed period, leading to SWDIS time series with high proportion
of gaps. On the other side, according to Hengl et al. [72], various zones of the Sertdao region have
argillic horizons very near the surface, which could have favored the soil water retention in surface
soil layer during the occurrence of a drought episode. Both physical factors could be related to the
poor performance of the SWDIS in some areas of the Sertao region (Figure 3).

In terms of detection of drought weeks, the SWIDS showed a moderately high skill (Figure 4).
One implication of this result is that there is great potential in using SWDIS to monitor weekly dry
spells. The same conclusion was arrived at by Martinez-Ferndndez et al. [36], who found that the
drought periods are relatively well captured by the SWDIS at the central part of Spain, which has a
similar climatic regime to the NEB (Figure 5) [77].

Other relevant aspects were observed at the local scale. For instance, according to Hengl et al. [72],
Carnaubais and Campo Maior, where the SWDIS-AWD relationship was stronger (Figure 6a,b), show
Ultisols with a water table near the surface for much of the year (Table 1). Furthermore, Correntina
and Fazendas do Piaui, where the SWDIS-AWD relationship was weaker (Figure 6c,d), present Oxisols
and Ultisols, respectively, as their dominant soils (Table 1). It is well known that the amount of clay
and sand has an important influence on the soil water dynamic [22]. In fact, soil water retention is
strongly correlated to the clay content [78]. In this context, one could suppose that clay soils may
show positive values of SWDIS, in spite of the presence of severe drought conditions (i.e., AWD << 0),
leading to values of correlation near to zero or negative when the AWD and SWDIS are compared.
About this point, results suggest that the AWD-SWDIS relationship was not influenced significantly by
the soil texture. Evidence of this is that this physical attribute did not show a statistically significant
correlation coefficient with respect to the AWD-SWDIS correlation when were taken into account all
benchmark sites (Figure 7b—d). Nevertheless, caution must be taken about this hypothesis due to that
the amount of benchmark sites represent less than 2% of the size of the sample (2050 RDG cells).

One of the advantages of SMOS is that it can observe at a lower frequency (1.4 GHz) than
previous instruments (e.g., NASA /JAXA Advanced Scanning Microwave Radiometer (AMSR-E)) [79].
This frequency is less affected by the vegetation cover [64]. Moreover, the soil moisture retrievals on
forest have been improved with the new level 2 V620 algorithm [80], which was the version used in this
study. These features of SMOS help to explain why the influence of vegetal cover/use on the coupling
strength between the AWD and SWDIS in the benchmark sites was little (see Table 1). However,
despite this local response, results suggest that the SWDIS does not capture enough well the temporal
dynamics of the agricultural drought in semiarid biomes such as in the Caatinga (Figures 3 and 4).
Previous studies have already shown that SMOS has a relatively low ability in arid and semiarid
biomes [65,81], therefore, this result has been consistent.

A critical issue of soil moisture retrieval from SMOS is that their estimations are limited to the first
centimeters of the surface soil layer (i.e., 0-5 cm) and depend on soil water content [36]. This water
is stored not only in the surface layer but also in the root-zone layer [26]. Although some studies
have demonstrated the presence of a strong correlation between the content of moisture in surface
and root-zone [67,82], the coupling strength among soil layers decreases as depth increases, and
moreover depend on the prevailing hydrometeorological conditions [36,83,84]. As already mentioned,
the climatic conditions of the NEB during the period of analysis (i.e., June 2010-December 2013) were
characterized by persistent drought conditions, which intensified near to end of 2012 and extended until
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2015 [13,45,74]. It is convenient to mention that previous studies have indicated that the SMI-AWD
relationship tend to be weaker in the drier years [29,85]. During the driest episodes, the atmospheric
and soil dynamics are more disconnected, because the water transfer is mainly controlled by soil
characteristics [22,86]. This physical feature would explain partially the AWD-SWDIS decoupling
observed in sites such as Sao Raimundo Nonato (Figure 6d), where Marengo et al. [13] found the level
of dryness most severe throughout the 2012-2015 drought. Note that this situation of extreme dryness
can be observed in Figure 7f by the fact that the AWD was negative persistently at Sdo Raimundo
Nonato (see point # 4) over the time span of June 2010 to December 2013.

The physical factor that has more influence on the AWD-SWDIS coupling for the entire NEB
is terrain elevation (Figure 7a). In general, the SWDIS shows better performance in open flatland
than in areas with complex relief. The same behavior has previously been found for the retrieval
of soil moisture from SMOS with respect to relief, and it has been attributed mainly to surface
roughness [87,88].

Summarizing, the above results suggest that the topographical factors and the level of atmospheric
dryness have played a key role in the overall performance of the SWDIS as a proxy for agriculture
drought at local and regional scales. Overall, when the dryness level is persistently negative over time
(i.e., AWD << 0) in mountain regions (e.g., Correntina), the SWDIS tends to show poor performance.
On the other hand, the vegetal cover/use and soil texture are physical attributes that have a marked
influence local, whereas that the RFI and biomes are dominant on the global performance of the SWDIS.

Although the results presented in this study are limited in terms of the time span of SWDIS
(approximately four years), this index seems to be reliable when it is used to identify the beginning,
end, and duration of a drought episode, because these attributes are inferred from the dry spells
(i.e., drought weeks). However, the assessment of the SWDIS as a proxy of the superficial soil moisture
deficit in the NEB should be further investigated by considering other agricultural drought indices
obtained from in situ data, such as the Crop Moisture Index [89]. In any case, it should be pointed out
that these preliminary results are very promising for the NEB, since in the future one could obtain the
SWDI from exclusively SMOS data. The SWDIS could be also a suitable tool to monitor the drought
dynamics related to soil water storage in open and low-elevation flatlands of NEB. In this context, its
operative implementation may facilitate the preparation of drought plans by national government
decision makers.

5. Conclusions

NEB suffers from regular droughts, particularly inside the semi-arid Sertao region. Future climate
projections suggest temperature increases and rainfall reductions in this region, which would affect
the rainfed crop yields such as corn, sugarcane, and cotton. In this context, drought monitoring and
early warning systems are needed to improve the level of preparedness for agricultural drought.
Soil moisture is among the more reliable physical parameters for tracking the effects of droughts on
soils. Currently, soil moisture may be retrieved from space using a new generation of satellites such
as SMOS, which provide a unique opportunity to incorporate remote sensing tools into agricultural
drought monitoring.

In this work, the agricultural drought index (SWDI), based on soil moisture content derived from
the SMOS satellite (SWDIS) for a weekly scale, has been assessed for the first time as a proxy of the
superficial soil moisture deficit in NEB. Several calculation approaches have been applied to measure
its overall performance at large-scale and local-scale. The SWDIS data have been compared with the
Atmospheric Water Deficit (AWD) calculated from in situ ETo and rainfall data, and an acceptable
correlation was obtained. Results also revealed that the SWDIS reproduces soil water balance dynamic
relatively well at low-elevation flatlands of the NEB; thus, it could be a feasible tool for agricultural
drought monitoring. With regard to the performance of the SWDIS, the vegetal cover/use and soil
texture have a marked local influence, but the RFI, biomes, and elevation seem to be more influential at
global scale. Nevertheless, it is obvious that, although good results have been obtained, it is necessary
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to assess the SWDIS with the SWDI derived from longer soil moisture data or other agricultural
drought indices.
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