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Abstract: Shallow translational slides are common in slopes during heavy rainfall. The classic
model for the occurrence of translational slides in long slopes assumes rising saturation above
a slip surface that reduces the frictional strength by decreasing the effective stress along soil
discontinuities. The classic model for translational slope failure does not conform well to the nature
of homogenous soils that do not exhibit discontinuities propitious to create perched groundwater
over the soil discontinuity or slip surface. This paper develops an alternative methodology for
the coupled numerical simulation of runoff and infiltration caused by variable rainfall falling on
a slope. The advancing depth of infiltration is shown to affect the translational stability of long slopes
subjected to rainfall, without assuming the perching of soil water over the slip surface. This new
model offers an alternative mechanism for the translational stability of slopes that are saturated from
the slope surface downwards. A computational example illustrates this paper’s methodology.
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1. Introduction

The infiltration of water on slopes is a common cause of slope failure. The source of the water
might be rainfall, snowmelt, irrigation, or leaking structures. Rainfall falling on a slope is partitioned
into overland flow (runoff, henceforth) and infiltration. The mechanism governing the partition of
rainfall water into runoff or infiltration depends on a number of factors: the rainfall intensity and its
temporal distribution, the angle of the slope, the infiltration rate at the slope surface, the hydraulic
characteristics of the soil underlying the slope, the moisture content distribution through the soil
profile, and the hydraulic characteristics of the slope surface. Infiltrated water moves downward
through the soil profile and changes the soil’s pore water pressure, its apparent cohesion, and its unit
weight. Those changes may affect the stability of the slope to the point of causing sliding. The cause of
slope failure is the increased moisture content through the soil profile and its effects on the soil’s unit
weight, the soil’s shear strength parameters, and the effective stress on the slip (or failure) surface [1–7].

There are two classic models of translational slope stability. Both models apply to “infinite” slopes,
which practically means that the thickness (H) of the sliding soil mass is much smaller than the length
(L) of the slope, say, H/L ≤ 30, and H is commonly less than 2 m [7], although it may be deeper.
The first model of the translational stability of long slopes is widely used [5]. It prescribes a phreatic
surface parallel to the ground surface and the slip surface, as shown in Figure 1.
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Figure 1. Long slope (elevation view) showing some elements of a translational slide. Not drawn to scale. ߛ ,ߛ ,ߚ ,ݖ ,ݑ ,ܪ௦௔௧ , and ߛ௪  in Figure 1 denote the thickness of the sliding mass, the pore 
pressure exerted along the slip surface, the thickness zone of saturation above the slip surface, the 
moist unit weight of the soil, the soil’s saturated unit weight, and the unit weight of the water (ߛ௪ = 
9.81 kN/m3), respectively. The stability of the slope decreases as the thickness of saturation ݖ 
increases. The degree of stability is measured by the factor of safety (FS) of the slope soil, which 
equals the ratio of the forces resisting sliding to the forces driving sliding. A slope with an FS value 
larger than 1 is stable, it is at limiting equilibrium when FS = 1, and it fails if FS < 1. It is known (see, 
e.g., [7]) that the FS of the long slope in Figure 1 associated with effective stress analysis is given by 
the following equation: 

ܵܨ = ܿᇱߛ௔௩௚	ܪ ߚݏ݋ܿ ߚ݊݅ݏ + ቆ1 − ௪ߛ ௔௩௚ߛݖ ቇܪ ߚ݊ܽݐᇱ߶݊ܽݐ  (1) 

in which ܿᇱ, ߛ௔௩௚, and ߶ᇱ denote the soil’s cohesion (or cohesive strength), the average unit weight 
of the sliding mass (ߛ௔௩௚ = ܪ)ߛ) − (ݖ + (ݖ	௦௔௧ߛ ⁄ܪ ), and the angle of friction of the soil, respectively. 
The reasons for slope failure as the saturated thickness ݖ increases are evident. The first term on 
the right-hand side of Equation (1) is cohesion related. It decreases as ݖ increases, thus lowering 
the FS. This is because the average unit weight of the sliding soil mass increases with increasing ݖ. 
In addition, the expression within the parentheses of the second term on the right hand side of 
Equation (1) decreases with increasing ݖ, is equal to 1 when 0 = ݖ, and is equal to 1 −  or ,(௦௔௧ߛ/	௪ߛ)
about ½, when ݖ =  lowers its factor of safety ݖ A slope becomes unstable whenever a rising .ܪ
below 1. 

The long-slope stability condition depicted in Figure 1 and quantified by Equation (1) does not 
explain how water enters the soil and moves through it. It implies that water enters the soil and 
becomes perched above the slip surface, which is found at a depth ܪ below the ground surface. 
For this to happen, there must be a change of soil properties or discontinuity at depth ܪ coinciding 
with the slip surface, where the soil beneath the depth ܪ must have a hydraulic conductivity 
smaller than that of the overlying soil. 

Loáiciga et al. [7] provides details of a second model of translational slope stability whereby the 
phreatic surface emerges from long slopes. This second model also assumes the existence of 
unconfined, perched, groundwater over a slip surface. Several authors have proposed slope stability 
models for rotational slides (see, e.g., [8,9]), and three-dimensional stress-strain models of slope 
deformation and failure solved by finite elements [10]. This paper deals with translational slides 
occurring on long slopes where the phreatic surface is parallel to the slope and slip surfaces (see 
Figure 1), and the source of water is rainfall. 
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Figure 1. Long slope (elevation view) showing some elements of a translational slide. Not drawn
to scale.

H, u, z, β, γ, γsat, and in Figure 1 denote the thickness of the sliding mass, the pore pressure
exerted along the slip surface, the thickness zone of saturation above the slip surface, the moist unit
weight of the soil, the soil’s saturated unit weight, and the unit weight of the water (γw = 9.81 kN/m3),
respectively. The stability of the slope decreases as the thickness of saturation z increases. The degree
of stability is measured by the factor of safety (FS) of the slope soil, which equals the ratio of the forces
resisting sliding to the forces driving sliding. A slope with an FS value larger than 1 is stable, it is at
limiting equilibrium when FS = 1, and it fails if FS < 1. It is known (see, e.g., [7]) that the FS of the long
slope in Figure 1 associated with effective stress analysis is given by the following equation:

FS =
c′

γavg H cosβ sinβ
+

(
1− γw z

γavg H

)
tanφ′

tanβ
(1)

in which c′, γavg, and φ′ denote the soil’s cohesion (or cohesive strength), the average unit weight
of the sliding mass (γavg = (γ(H − z) + γsat z)/H), and the angle of friction of the soil, respectively.
The reasons for slope failure as the saturated thickness z increases are evident. The first term on
the right-hand side of Equation (1) is cohesion related. It decreases as z increases, thus lowering
the FS. This is because the average unit weight of the sliding soil mass increases with increasing
z. In addition, the expression within the parentheses of the second term on the right hand side of
Equation (1) decreases with increasing z, is equal to 1 when z = 0, and is equal to 1− (γw /γsat),
or about 1

2 , when z = H. A slope becomes unstable whenever a rising z lowers its factor of safety
below 1.

The long-slope stability condition depicted in Figure 1 and quantified by Equation (1) does not
explain how water enters the soil and moves through it. It implies that water enters the soil and
becomes perched above the slip surface, which is found at a depth H below the ground surface. For this
to happen, there must be a change of soil properties or discontinuity at depth H coinciding with the
slip surface, where the soil beneath the depth H must have a hydraulic conductivity smaller than that
of the overlying soil.

Loáiciga et al. [7] provides details of a second model of translational slope stability whereby the
phreatic surface emerges from long slopes. This second model also assumes the existence of unconfined,
perched, groundwater over a slip surface. Several authors have proposed slope stability models for
rotational slides (see, e.g., [8,9]), and three-dimensional stress-strain models of slope deformation and
failure solved by finite elements [10]. This paper deals with translational slides occurring on long
slopes where the phreatic surface is parallel to the slope and slip surfaces (see Figure 1), and the source
of water is rainfall.
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The classic model of translational stability represented by Figure 1 and Equation (1) does not take
into account the intensity and temporal distribution of rainfall falling on a slope, nor does it consider
how much of that rainfall leaves the slope as runoff. It assumes that there is a source of water that
saturates the soil over the thickness z above the slip surface. This paper develops a methodology
for the coupled numerical simulation of runoff and infiltration caused by variable rainfall falling on
a slope that accounts for changing soil moisture conditions. The depth of infiltration is shown to affect
the translational stability of long slopes subjected to rainfall, without assuming a perching of soil water
over the slip surface. This new model offers an alternative mechanism for the translational stability of
slopes to that of the classic model represented by Figure 1 and Equation (1).

Iverson [3] proposed a theory for the translational stability of long slopes caused by rainfall
relying on a 1-D version of Richards’ infiltration equation in the analysis. A steady-state version of the
latter equation was applied to the analysis of long-term slope stability, and a linearized simplification
of the 1-D version of the Richards equation was employed to study short-term slope stability. The input
of variable rainfall at the slope surface was handled in Iverson’s [3] short-term analysis via a boundary
condition of infiltration at the slope surface, and by the superposition of solutions of the linearized
simplification of the 1-D version of the Richards equation to account for variable rainfall. Rainfall in
excess of the soil’s infiltration capacity (or maximum infiltration rate in Iverson’s terminology) becomes
runoff that does not influence the infiltration process [3]. It is relevant at this juncture that Iverson’s
simplified infiltration equation for the short-term analysis of translational slope stability implies the
piston-flow type displacement of the wetting front that descends from the slope surface, driven by
water input at the surface. It has, in this sense, some similarity with Green and Ampt’s [11] infiltration
model (see also, [12]), which is applied in the present work. There are several key differences between
the present work and Iverson’s [3]. First, this work numerically solves the coupled equations of
infiltration and runoff during variable rainfall, which includes the calculation of the depth of overland
flow on the slope surface. Secondly, infiltration is driven by a generalized version of the Green and
Ampt model, with a variable depth of water on the slope surface. Thirdly, translational slope stability
is assessed by calculating the effect that the wetting front has on the factor of safety as it moves
downward through the soil profile. Lastly, the numerical model for assessing runoff and infiltration
can be simulated for any arbitrary period during which infiltration is driven by rainfall. Slope stability
is assessed as a function of the advancing wetting front, the slope geometry, the soil’s unit weight,
and shear-strength properties.

2. The Generic Layout of a Slope Subjected to Rainfall that May Undergo Translational Sliding

Figure 2 depicts the various fluxes and geometric variables that are included in this paper’s
coupled analysis of rainfall, runoff, infiltration, and slope stability. The following notation is introduced
in Figure 1: k: station index for the longitudinal coordinate x that measures the distance from x = 0 at
the highest point of the sliding mass to x = L at the toe of the sliding mass, where k = 1, 2, . . . , M;
t denotes the time index, starting with t = 0 at the start of rainfall; f (x, t): the infiltration rate (at the
slope surface) at position x and time t; L: the length of the slope analyzed for slope stability = M ∆x;
q(L, t): the overland flow at the toe of the slope per unit width of the slope perpendicular to the plane
of Figure 2; w(x, t): the rainfall rate falling on the slope; β: the angle of the slope; x: the longitudinal
coordinate that coincides with the slope surface; y(x, t): the depth of runoff measured vertically
between the slope surface and the water surface as shown in Figure 2; z f (x, t): the depth of the wetting
front at position x and time t; and ∆x: the discretization interval, or length step, for the longitudinal
coordinate x.
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Figure 2. Generic elevation view of a slope subjected to rainfall and infiltration susceptible to 
translational sliding. Not drawn to scale. 

3. Kinematic-Wave Runoff Affected by Rainfall and Infiltration 

Runoff on a slope surface is wide and shallow, so that the hydraulic radius is approximately 
equal to ݕ cosߚ. Runoff is herein modeled with the kinematic-wave approximation to the equation 
of 1-D (shallow and wide) overland flow, with accretion by rainfall and depletion by infiltration (see, 
e.g., [13–15]): 

	ߙ ∙ ݉	 ∙ ௠ିଵݕ ݔ߲ݕ߲ + ߛ ∙ ݐ߲ݕ߲ = ݓ − ݂ = ݓ −  ௧ (2)ܨ

In Equation (2), ݕ is the depth of runoff, ݂ and ݓ denote the infiltration rate and rainfall rate, 
respectively, and the derivative of the infiltration ܨ with respect to time is represented by ܨ௧ = ݂. 
The coefficients ݉ = 5/3, = cosߙ ;ߚ	 is defined by the following equation: 

ߙ = 1ܰ ∙ cosହଷ ߚ ∙ ඥܵ଴ (3) 

where ܰ  and ܵ଴  denote the Manning’s roughness coefficient and the slope of the terrain, 
respectively. The initial condition of Equation (2) is as follows: ݔ)ݕ, ݐ =  (4) ݔ ௉) = 0; for allݐ

in which ݐ௉ denotes the time at which runoff emerges on the slope. The boundary condition of 
Equation (2) at the upstream end is as follows: ݔ)ݕ = 0, ݐ ;0 = (ݐ ≥  ௉ (5)ݐ

The overland flow ݔ)ݍ,  is given by ݐ and time ݔ at location (in m3/s per unit width of slope) (ݐ
Manning’s equation: 

,ݔ)ݍ (ݐ = 1ܰ ∙ cosହଷ ߚ ∙ ඥܵ଴ ∙ ,ݔ)ݕ)  ହଷ (6)((ݐ

The next sections present the infiltration model developed in this work. 
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Figure 2. Generic elevation view of a slope subjected to rainfall and infiltration susceptible to
translational sliding. Not drawn to scale.

3. Kinematic-Wave Runoff Affected by Rainfall and Infiltration

Runoff on a slope surface is wide and shallow, so that the hydraulic radius is approximately
equal to y cos β. Runoff is herein modeled with the kinematic-wave approximation to the equation
of 1-D (shallow and wide) overland flow, with accretion by rainfall and depletion by infiltration
(see, e.g., [13–15]):

α ·m ·ym−1 ∂y
∂x

+ γ·∂y
∂t

= w− f = w− Ft (2)

In Equation (2), y is the depth of runoff, f and w denote the infiltration rate and rainfall rate,
respectively, and the derivative of the infiltration F with respect to time is represented by Ft = f .
The coefficients m = 5/3, = cos β; α is defined by the following equation:

α =
1
N
· cos

5
3 β·
√

S0 (3)

where N and S0 denote the Manning’s roughness coefficient and the slope of the terrain, respectively.
The initial condition of Equation (2) is as follows:

y(x, t = tP) = 0; for all x (4)

in which tP denotes the time at which runoff emerges on the slope. The boundary condition of
Equation (2) at the upstream end is as follows:

y(x = 0, t) = 0; t ≥ tP (5)

The overland flow q(x, t) (in m3/s per unit width of slope) at location x and time t is given by
Manning’s equation:

q(x, t) =
1
N
· cos

5
3 β·
√

S0·(y(x, t))
5
3 (6)

The next sections present the infiltration model developed in this work.
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4. Infiltration on a Slope

Infiltration is herein modeled with the 1-D Green and Ampt model as modified by Loáiciga and
Huang [12] for level ground, and further extended in this study for the case of sloping terrain.

4.1. The Elapsed Time of Rainfall Required to Initiate Runoff on a Slope

The time required to initiate runoff on a slope depends on the intensity of the rainfall and the
saturated hydraulic conductivity (Ksat) of the slope’s soil. This paper considers the case of variable
rainfall w(x, t). Figure 3 shows a schematic of the infiltration process following Green and Ampt’s
model of “piston-flow” displacement of the wetting front.
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Figure 3. Schematic of the infiltration process. The pressure head at point x is approximately equal to
d = y· cos2 β. Elevation view not drawn to scale.

All of the nomenclature shown in Figure 3 was described above, except for the wetting-front
soil-water tension ψ f , a soil property, estimable from the textural parameters [16–18]. The pressure
head on the wetting front equals −ψ f . The infiltration at position x and time t, F(x, t), is given by the
following expression under the assumption of a uniform distribution of the volumetric water content
(v0) on the slope’s soil:

z f (x, t) =
F(x, t)
n− v0

(7)

in which n represents the soil’s porosity. The Darcian flux at the slope’s surface is the infiltration rate,
which equals the rainfall rate prior to the formation of runoff. In this case, Darcy’s law written between
the slope surface and the wetting front yields:

w(x, t) = f (x, t) = Ksat·
(

1 +
ψ f

z f (x, t)

)
(8)

in which Ksat denotes the soil’s saturated hydraulic conductivity.
W(x, t) denotes the cumulative rainfall, which equals the time integral of the left-hand side of

Equation (8), or:
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W(x, t) =
t∫

0

w(x, s) ds (9)

The cumulative rainfall equals the infiltration F(x, t) prior to runoff formation. Therefore:

z f (x, t) =
F(x, t)
n− v0

=
W(x, t)
n− v0

(10)

prior to runoff formation. Runoff begins at time tp when the cumulative rainfall exceeds infiltration.
The time tp is found by solving the integral form of Equation (8):

W
(

x, tp
)
= Ksat·tp + Ksat·ψ f ·(n− v0)

tP∫
0

dt
W(x, t)

(11)

The solution of Equation (11) is the time to the initiation of runoff, tp, that makes the left-hand
side equal to the right-hand side. The rainfall hyetograph is herein expressed as a sequence of rainfall
rates falling on a station k ∆x of the slope, w(k ∆x , j ∆t), j = 1, 2, 3, . . . .; k = 1, 2, 3, . . . ., whereby
each rainfall rate has a duration equal to the time step ∆t. This time step is equal to the numerical
simulation step employed in the solution of the coupled runoff and infiltration equations. Therefore,
the discrete form of Equation (11) applied to determine the time tp at which runoff begins, is as follows:

∆t

( jp

∑
j=1

w(k ∆x , j∆t)

)
= Ksattp + Ksat·ψ f (n− v0)·∆t·

jp

∑
j=1

1
W(k ∆x, j∆t)

(12)

where jp is such that jp ∆t = tp. The time tp is easily calculated graphically. The application of
Equation (12) is illustrated in this work’s computational example. The time tp is obtained by solving
the following equation in the case of constant rainfall w:

ln tP =
(w− Ksat)

Ksat
w ψ f · (n− v0)

·tP (13)

which is only solvable if w > Ksat. Otherwise, runoff does not form on the slope surface. The time to
ponding tP makes the left-hand side of Equation (13) equal to its right-hand side.

4.2. Infiltration after Runoff Formation

The second phase of infiltration occurs in the period t ≥ tP when there is runoff on the slope and
there is rainfall falling. The pressure head at the slope surface is approximately equal to (see Figure 2):

d(x, t) = y(x, t) cos2 β (14)

Darcy’s law written between the slope surface and the wetting front yields:

∂F
∂t
≡ Ft = f = Ksat

y cos2 β−
(
−z f − ψ f

)
z f

 (15)

The substitution of Equation (7) into Equation (15) and subsequent algebraic rearrangement
produces the following partial differential equation:

F Ft − KsatF− c0 y− c1 = 0; 0 ≤ x ≤ L; t ≥ tp (16)

where:
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c0 = cos2 β·Ksat·(n− v0) (17)

c1 = Ksat· ψ f ·(n− v0) (18)

The initial condition associated with Equation (16) is:

F
(

x, tp
)
= Fp(x) for all x (19)

in which Fp(x) denotes the infiltration at time tp:

Fp(x) = W(x, tP) (20)

The upstream boundary condition associated with Equation (16) considers that the depth of
runoff at x = 0 equals y = 0, and, thus, Equation (15) reduces to the following boundary condition:

∂F(x = 0, t)
∂t

= Ksat·
[

1 +
(n− v0)·ψ f

F(x = 0, t)

]
; t ≥ tp (21)

It is noteworthy that after solving the infiltration F(x, t), the depth to the wetting front
(z f (x, t)) is calculable from Equation (7). Equations (2) and (16) constitute two coupled, nonlinear,
partial differential equations. Their solution is discussed in Section 5. The simulation of Equations (2)
and (16) is herein carried out until the time when a rainfall event ends. Thereafter, the depth of
runoff quickly vanishes on the slope and the wetting front ceases to advance downward under the
assumptions of the Green and Ampt model. The analysis of slope stability is applied considering the
downward advance of the wetting front driven by rainfall, as described in Section 6.

Several approaches have been reported that calculate a rainfall excess in each rainfall interval ∆t,
whereby the rainfall excess equals the excess of rainfall falling in the interval ∆t over the incremental
infiltration occurring in the same interval (see a review in Dingman [18]). Those approaches, however,
do not simulate the joint dynamical equations of runoff and infiltration in the sloping terrain and the
effect that infiltration has on the translational stability of long slopes.

5. Numerical Solution of the Coupled Infiltration and Runoff Equations

5.1. Finite-Difference Discretization of the Runoff Equation

This study presents an explicit numerical scheme to jointly solve the runoff Equation (2) and the
infiltration Equation (16). The explicit scheme requires that the simulation time step meet the following
stability condition for the kinematic wave modeling of runoff [19]:

∆t ≤ ∆x
√

g·y (22)

in which g = 981 cm/s is the acceleration of gravity and y denotes the depth of runoff (shown in
Figure 2). The spatial step ∆x must be chosen to provide an adequate resolution along the length of the
slope. For illustration, suppose that the spatial step is equal to 100 cm and the depth of runoff equals
10 cm. Therefore, Equation (22) indicates a time step equal to 1 second for these values. Generally,
the explicit scheme involves the simulation of a large number of time steps to solve the coupled
runoff and infiltration equations. This, however, does not constitute a computational burden given
the current computational speed of personal computers (our model runs in 2 s in a standard laptop
computer). Moreover, the explicit solution scheme avoids the complexity of solving a system of
coupled nonlinear equations that arises when one chooses an alternative implicit solution scheme.
The explicit finite-difference discretization of the runoff Equation (2) is as follows:

γ
y(j)

k − y(j−1)
k

∆t
+ α·m·

y(j−1)
k + y(j−1)

k−1
2

m−1

·

y(j−1)
k − y(j−1)

k−1
∆x

 = w(j)
k −

 F(j)
k − F(j−1)

k
∆t

 (23)



Water 2017, 9, 327 8 of 16

k = 2, 3, . . . , M, and j = jP + 1, jP + 2, jP + 3, . . . , in which:

F(j)
k ≡ F(k∆x, j∆t) (24)

F(j−1)
k ≡ F(k∆x, (j− 1)∆t) (25)

w(j)
k ≡ w(k∆x, j∆t) (26)

y(j)
k ≡ y(k∆x, j∆t) (27)

y(j−1)
k ≡ y(k∆x, (j− 1)∆t) (28)

y(j−1)
k−1 ≡ y((k− 1)·∆x, (j− 1)∆t) (29)

The initial time jP·∆t = tP corresponds to the time of the initiation of runoff, tp. Notice that

Equation (23) involves the unknown depth of runoff y(j)
k and the unknown infiltration F(j)

k .
These variables’ values are known at the previous time step (j− 1)∆t. The initial condition associated
with Equation (23) is:

y(jP)
k = 0 ; k = 1, 2, 3, . . . , M (30)

The upstream boundary condition associated with Equation (23) is given by:

y(j)
1 ≡ 0 ; j = jP + 1, jP + 2, jP + 3, . . . (31)

The runoff rate is given by the following expression (in (m3/s)/m) :

q(j)
k =

1
N
· cos

5
3 β·
√

S0·
(

y(j)
k

) 5
3 (32)

5.2. Finite-Difference Discretization of the Infiltration Equation

The finite-difference, explicit, numerical discretization of the infiltration Equation (16) is as follows: F(j−1)
k + F(j−1)

k−1
2

·
 F(j)

k − F(j−1)
k

∆t

− Ksat·

 F(j−1)
k + F(j−1)

k−1
2

− c0·

y(j)
k + y(j−1)

k
2

− c1 = 0 (33)

k = 2, 3, . . . , M, and j = jP + 1, jP + 2, jP + 3, . . ., in which:

F(j−1)
k−1 ≡ F((k− 1)·∆x, (j− 1)·∆t) (34)

All other terms appearing in Equation (33) have been previously defined.
The initial condition associated with Equation (33) is:

F(jP)
k = W(k ∆x, tP) (35)

The boundary condition of Equation (33) is given by the discretized form of Equation (21):

F(j)
1 = F(j−1)

1 + Ksat·∆t·
[

1 +
(n− v0)·ψ f

F(j−1)
1

]
(36)

j = jP + 1, jP + 2, jP + 3, . . . The approach for the joint solution of Equations (23) and (33) is
described next.
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5.3. Explicit Solution Approach to the Runoff and Infiltration Equations

The finite-difference Equation (23) for runoff is rewritten in a simplified form, as follows:

γ·y(j)
k = y(j−1)

k − F(j)
k + d(j−1)

k,k−1 (37)

k = 2, 3, . . . , M, and j = jP + 1, jP + 2, jP + 3, . . ., (recall that y(j)
1 = 0) in which:

d(j−1)
k,k−1 ≡ −r(j−1)

k,k−1 + w(j)
k ·∆t + F(j−1)

k (38)

r(j−1)
k,k−1 ≡ ∆t·α·m·

y(j−1)
k + y(j−1)

k−1
2

m−1

·

y(j−1)
k − y(j−1)

k−1
∆x

 (39)

All other terms appearing in Equation (37) were defined previously. The discretized infiltration
Equation (33) is rewritten as follows:

F(j)
k = F(j−1)

k + a(j−1)
k,k−1·y

(j)
k + b(j−1)

k,k−1 (40)

k = 2, 3, . . . , M, and j = jP + 1, jP + 2, jP + 3, . . ., in which:

a(j−1)
k,k−1 ≡

c0

2 f (j−1)
k,k−1

(41)

f (j−1)
k,k−1 ≡

F(j−1)
k + F(j−1)

k−1
2 ∆t

(42)

b(j−1)
k,k−1 ≡ Ksat∆t +

c1

f (j−1)
k,k−1

+
c0

f (j−1)
k,k−1

·
y(j−1)

k
2

(43)

Equation (40) for F(j)
k is substituted into Equation (37) to yield an explicit equation for the runoff

depth in the j-th computational period:

y(j)
k = g(j−1)

k,k−1·y
(j−1)
k − g(j−1)

k,k−1·F
(j−1)
k − g(j−1)

k,k−1·b
(j−1)
k,k−1 + g(j−1)

k,k−1·d
(j−1)
k,k−1 (44)

k = 2, 3, . . . , M, and j = jP + 1, jP + 2, jP + 3, . . ., (recall that y(j)
1 = 0) in which:

g(j−1)
k,k−1 ≡

1

γ + a(j−1)
k,k−1

(45)

Equation (44) represents the explicit formulation for calculating the runoff depth. For physical
stability, y(j)

k must be equal to or larger than zero. Once y(j)
k , k = 2, 3, . . . , M is calculated, its value is

employed in Equation (40) to calculate F(j)
k , k = 2, 3, . . . , M. Recall that F(j)

1 is given by the boundary

condition (36). At this juncture, the computational time is increased to (j + 1)∆t to calculate y(j+1)
k ,

followed by the calculation of F(j+1)
k . The iterative calculations end when the runoff depth becomes

equal to zero on the slope. The depth to the wetting front at any computational location and time is
calculated as follows:

z f
(j)
k =

F(j)
k

n− v0
(46)

in which k = 1, 2, . . . , M; j = jP + 1, jP + 2, jP + 3, . . . Figure 4 depicts the flowchart of the algorithm
used for the numerical solution of the runoff and infiltration equations on a slope.
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6. Translational Stability Analysis of Long Slopes

This paper fundamentally departs from the classic long-slope, translational, failure mechanism
embodied by Equation (1) and diagramed in Figure 1. Figure 5 depicts an advancing wetting front
on the sloping terrain. The antecedent soil-moisture deficit equals n− v0, with n and v0 denoting the
porosity and initial volumetric content of the slope soil, respectively. Prior to slope saturation, the soil’s
(wet) unit weight equals γ. The soil within the saturated thickness extending from the surface to the
wetting-front depth has a saturated unit weight γsat.

Soil saturation occurs from the slope surface downwards. At some time, the effect of soil saturation
by infiltrating rainfall reaches a slip surface along which soil mass slides. The classic translational
sliding mechanism, on the other hand, assumes that slope failure is caused by rising saturation above
the slip surface. The translational mechanism herein proposed is as follows. Prior to infiltration (i.e.,
with antecedent conditions prevailing), the factor of safety in the slope’s soil at an arbitrary depth z
below the ground surface is given by the following expression (FSac denotes the factor of safety under
antecedent conditions derived with effective-stress analysis):

FSac =
c′ac

γ·z cos β sin β
+

tanφ′

tanβ
(47)
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in which c′ac denotes the apparent cohesion in the soil created by soil water suction (negative pore
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Figure 5. Diagram of a landslide caused by an advancing wetting front. Elevation view not drawn
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The apparent cohesion stems exclusively from negative pore pressure and differs from the actual
cohesion in cemented soils or in overconsolidated fine-grained soils [5,20]. Soils in which the slope
angle β exceeds the soil’s angle of friction φ′ may be stable due to apparent cohesion.

The soil pressure head developed by a downward-advancing wetting front equals −ψ f at the
wetting front (see Figure 5). The pressure head −ψ f is larger (that is, less negative) than the pressure
head that prevails under antecedent conditions. Therefore, the apparent cohesion is reduced by
infiltration to a value of c′r < c′a. This follows from a physical consideration of a soil’s characteristic
curve relating pore pressure to its volumetric water content: as the volumetric water content increases,
the pore pressure becomes less negative (increases), thus reducing the apparent cohesion. The reduced
apparent cohesion c′r could be nil in clean, coarse, granular soils. This reduces or nullifies the first term
on the right-hand side of Equation (47). There is a second effect that reduces the cohesion-related term
on the right-hand side of Equation (47). This stems from the increased unit weight of the soil as it
transitions from wet (or even dry conditions) to saturated conditions. The unit weight increases from
γ to γsat. The factor of safety on the wetting front after infiltration (FSin f ) becomes:

FSin f =
c′r

γsat· z f · cos β sin β
+

tanφ′

tanβ
(48)

The factor of safety in Equation (48) may fall below a value of 1 in soils with a slope angle β

larger than the angle of friction φ′. A failure condition at the wetting front is assured in this instance if
the apparent cohesion vanishes altogether by infiltration, in which case the factor is reduced to the
following minimum:

FSin f =
tanφ′

tanβ
(49)

Equation (48) indicates that slope soils whose shear strength relies exclusively on apparent
cohesion are particularly vulnerable to translational sliding as the wetting front advances downward.
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This vulnerability is heightened if dynamic forces are applied during slope wetting [7]. The following
section presents the computational results for this paper’s methodology.

7. Results and Discussion

7.1. Data Input for Runoff Simulation

Table 1 lists the hydraulic characteristics of the slope chosen for the numerical example.
Figure 6 depicts the geometry of the slope controlling the runoff characteristics.

Table 1. Runoff data.

Slope (S) Roughness
Csdoeff. (N) Length (L, m) Width (b, m) Rainfall (w, m s−1)

1/3 (β = 18.43◦) 0.20 270 50 Variable with time (see Figure 7)
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The rainfall input applied in this example follows a United States Department of Agriculture’s
(USDA) National Resources Conservation Service (NRCS) type I distribution over a 24-h duration.
The total depth of rainfall over its 24-h duration equals 0.40 m in this example. Figure 7 depicts
the hyetograph of the rainfall event applied in this example. The maximum rainfall occurs at time
9.9 h with a depth of rainfall equal to 0.030 m falling over a 6-min interval, which is the time interval
employed to construct the graph of Figure 7.
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The computational length step ∆x was chosen to be equal to 10 m, for k = M = 30 steps.
The computational time step ∆t was made equal to 10 s for the numerical stability of the runoff
computations (see Equation (22)). A shorter length step ∆x would produce a more refined spatial
resolution. It would require, however, a shorter time step. For example, a ∆x = 1 m would require
a ∆t < 1 second. The shortest temporal resolution for rainfall available was ∆t = 10 s, which is
consistent with the choice of ∆x = 10 m.

7.2. Data Input for Simulation of Infiltration

Table 2 lists the soil characteristics employed in this paper’s computational example.

Table 2. Soil properties.

Porosity (n) Volumetric Water
Content (v0)

Wetting-Front Water
Tension (ψ f , m)

Hydraulic Conductivity
(Ksat, m s−1)

0.30 0.10 0.10 1.39 × 10−6

7.3. The Elapsed Time (tP) of Rainfall Required to Initiate Runoff on the Slope

Figure 8 shows the graphical determination of the time tP, found by graphically solving
Equation (12). This is accomplished by finding the time when the left-hand side of Equation (12),
which represents cumulative rainfall, equals the right-hand side of Equation (12), which represents
the infiltration, as shown in Figure 8. The time tP at which ponding begins equals 9.5 h = 34,200 s.
Notice that tP only occurs 0.4 h before the time of occurrence of the maximum depth of rainfall,
which occurs at 9.9 h (see Figure 7).

Water 2017, 9, 327  13 of 16 

 

The computational length step ∆ݔ was chosen to be equal to 10 m, for ݇ = 30 = ܯ steps. The 
computational time step ∆ݐ was made equal to 10 s for the numerical stability of the runoff 
computations (see Equation (22)). A shorter length step ∆ݔ would produce a more refined spatial 
resolution. It would require, however, a shorter time step. For example, a ∆1 = ݔ m would require a ∆ݐ < 1 second. The shortest temporal resolution for rainfall available was ∆10 = ݐ s, which is 
consistent with the choice of ∆10 = ݔ m. 

7.2. Data Input for Simulation of Infiltration 

Table 2 lists the soil characteristics employed in this paper’s computational example. 

Table 2. Soil properties. 

Porosity  
 (࢔)

Volumetric Water Content 
 (૙࢜)

Wetting-Front Water Tension 
 (m ,ࢌ࣒)

Hydraulic Conductivity 
 (m s−1 ,࢚ࢇ࢙ࡷ)

0.30 0.10 0.10 1.39 × 10−6 

7.3. The Elapsed Time (ݐ௉) of Rainfall Required to Initiate Runoff on the Slope 

Figure 8 shows the graphical determination of the time ݐ௉, found by graphically solving 
Equation (12). This is accomplished by finding the time when the left-hand side of Equation (12), 
which represents cumulative rainfall, equals the right-hand side of Equation (12), which represents 
the infiltration, as shown in Figure 8. The time ݐ௉ at which ponding begins equals 9.5 h = 34,200 s. 
Notice that ݐ௉ only occurs 0.4 h before the time of occurrence of the maximum depth of rainfall, 
which occurs at 9.9 h (see Figure 7). 

 
Figure 8. Graphical determination of the time ݐ௉ = 34,200 s = 9.50 h. 

The cumulative rainfall equals the infiltration at the initiation of runoff, ഥܹ ൫ݔ, ௣൯ݐ = ,ݔ)ܨ  = (௉ݐ
0.118 m, which constitutes the initial condition for the numerical simulation of infiltration. The 
corresponding depth of infiltration ݖ௙(ݔ, (௉ݐ = ,ݔ)ܨ ݊)/(௉ݐ −  .଴) = 0.118/0.20 = 0.590 mݒ

7.4. Calculated Depth of Runoff and Depth of Infiltration 

The calculated runoff depth (ݕ) is shown in Figure 9 for times ݐᇱ = 20 (or 1/3), 100 (or 5/3), and 
870 (or 14.5) min (h) after ponding began. The latter time coincides with the end of rainfall (24 h 
after the beginning of rainfall). 

Figure 8. Graphical determination of the time tP = 34,200 s = 9.50 h.

The cumulative rainfall equals the infiltration at the initiation of runoff,
W
(

x, tp
)
= F(x, tP) = 0.118 m, which constitutes the initial condition for the numerical simulation

of infiltration. The corresponding depth of infiltration z f (x, tP) = F(x, tP)/(n− v0) = 0.118/0.20 =
0.590 m.

7.4. Calculated Depth of Runoff and Depth of Infiltration

The calculated runoff depth (y) is shown in Figure 9 for times t′ = 20 (or 1/3), 100 (or 5/3), and 870
(or 14.5) min (h) after ponding began. The latter time coincides with the end of rainfall (24 h after the
beginning of rainfall).
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Figure 9. Calculated runoff depth (y) as a function of slope station (k ) and time t′ = t− tP.

As seen in Figure 9, the runoff depth rises with an increasing distance downstream from the
slope crown (where x = 0 and y = 0 m). The time elapsed since the beginning of runoff is denoted
by t′ = t − tP, in which tP = 34,200 s = 570 min = 9.50 h. The runoff depth at t′ = 20 min occurs
during the steep rising limb of the hyetograph shown in Figure 8. The runoff depth continues to
increase until t′ = 24 min, when the rainfall reaches its maximum intensity (see Figure 7). Thereafter,
the runoff decreases, as depicted by the graphs of the runoff depth associated with t′= 100 min and
870 min. The latter time coincides with the end of rainfall, which lasts 24 h. Thereafter, the runoff
depth decreases rapidly to zero everywhere on the slope. The post-rainfall runoff depth is not shown
in Figure 9.

Figure 10 depicts the calculated depth of infiltration (z f ) for times t′ = 20 (or 1/3), 100 (or 5/3),
and 870 (or 14.5) min (h) after ponding began.
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Figure 10 shows that the depth of infiltration increases continuously over time. The depth of
infiltration increases between stations 1 and 2, the former being the station where the boundary
condition is specified. The relatively low infiltration at station 1 is due to the runoff-depth boundary
condition y = 0. Thereafter, it is seen in Figure 10 that the depth of infiltration is nearly uniform
over the remainder of the slope. The results depicted in Figure 10 establish that slope stability must
be examined between depths of penetration ranging from a few centimeters to about 1.0 m beneath
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the slope surface for the considered rainfall event. The depth of infiltration increases negligibly after
rainfall cessation because the depth of runoff vanishes rapidly without a supply of rain.

7.5. Slope Stability Analysis

The calculations for slope stability analysis presented in this section involve Equation (47) for
the factor of safety under antecedent conditions (prior to rainfall, FSac) and Equation (48) for the
factor of safety modified by infiltration (FSin f ). Table 3 lists the properties employed in the stability
analysis. The friction angle herein used is relatively low, typical of landslide debris. The antecedent
and infiltration-modified apparent cohesions correspond to 1 m and 0.05 m of soil water tension,
respectively, converted to pressure units.

Table 3. Properties for stability analysis.

Unit Weight
(γ, kN/m3)

Unit Weight
(γsat, kN/m3)

Slope Angle
(β, ◦)

Friction
Angle (φ′, ◦)

Antecedent
Cohesion *

(c′ac, kN/m2)

Infiltration-Reduced
Cohesion *
(c′r, kN/m2)

19 20 18.43 16 9.8 0.49

Note: * Apparent cohesion.

Figure 11 depicts the calculated factors of safety corresponding to antecedent conditions and to
conditions modified by infiltration. It is seen in Figure 11 that the slope with antecedent conditions
(before rainfall) is stable for various depths beneath the slope surface. The infiltration-modified slope,
however, exhibits a slip surface at a depth of the wetting front equal to 0.585 m, where the factor
of safety against translational sliding falls below 1. This slip surface is shallower than the depth of
infiltration at the initiation of runoff on the slope, which was established above to equal 0.590 m.
This means that the critical period for stability under the conditions of this example occurs when all
the rainfall infiltrates, prior to ponding. In this example, the rainfall characteristics and soil properties
determine the onset of slope failure before the beginning of runoff. Yet, slope failure could occur after
the initiation of runoff under other conditions. Notice in Figure 11 that the factor of safety decreases
with an increasing depth of the wetting front as a result of the larger body of mass that must be
supported by apparent cohesion and friction resistance. The factor of safely is slightly larger than 1
in the range of depth shown in Figure 11, which means that the reduction of the apparent cohesion
caused by the advance of the wetting front produces near limit-equilibrium slope stability across the
soil profile.
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In summary, this paper presented a new methodology for the analysis of the translational stability
of long slopes. The methodology jointly simulates the runoff and infiltration on a slope caused by
variable rainfall. Infiltration conforms to an extended formulation of the Green and Ampt infiltration
model. The slope stability analysis of this paper’s methodology takes into account the effect of the
reduction of the apparent cohesion caused by infiltration, and the increase in the soil’s unit weight
caused by a downward-moving wetting front. A computational example illustrated the application of
this paper’s methodology.
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