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Abstract: Urban water management is increasingly important given the need to maintain water
resources that comply with global and local standards of quantity and quality. The effective
management of water resources requires the optimization of financial resources without forsaking
social requirements. A number of mathematical models have been developed for this task; such
models account for all components of the Urban Water Cycle (UWC) and their interactions. The wide
range of models entails the need to understand their differences in an effort to identify their
applicability, so academic, state, and private sectors can employ them for environmental, economic,
and social ends. This article presents a description of the UWC and relevant components, a literature
review of different models developed between 1990 and 2015, and an analysis of several case studies
(applications). It was found that most applications are focused on new supply sources, mainly
rainwater. In brief, this article provides an overview of each model’s use (primarily within academia)
and potential use as a decision-making tool.

Keywords: urban water cycle; integrated management of urban water; computational models

1. Introduction

The continuous growth of urban areas across the globe is directly tied to rapid economic,
population, and infrastructure growth [1,2]. Currently, urban areas account for more than half of
the world’s population; more than 500 cities already have more than a million inhabitants [3,4]. It is
estimated that in 1900, only 9% of the world’s population lived in urban areas; by the 1980s, urban
population had increased to 40% globally. By 2000, this figure had reached 50%, and it is expected to
reach 60% by 2025 [5].

For urban populations, the importance of water cannot be overestimated. Its management is a
challenge in terms of sustainability and administration, for cities have short time frames in which to
offer the best possible water administration, wastewater collection, rainwater harvesting, and effective
water treatment without generating negative environmental, social, sanitary, or health effects [6].

Over the last two decades, computational models have gained recognition as effective tools
for addressing the aforementioned challenges. These models allow for the achievement of policy
objectives [7], evaluation of the feasibility of different solutions for specific problems [8,9], and proper
decision-making for urban water management [10].
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Historically, these models have encompassed a number of different approaches, from individual
perspectives to more holistic visions, bringing together natural water flows, piping flows, and various
subsystems (ecological, environmental, socioeconomic, and political) [11,12]. Initially developed
approximately two decades ago, these models were primarily employed to understand the behavior
and interactions of urban drainage, treatment systems, and bodies of water. Such models were
presented in Denmark in 1992 at the INTERURBA conference “Interactions between Sewers, Treatment
Plants and Receiving Waters in Urban Areas”, and they were geared toward identifying relations, impacts,
and possible controls [13,14]. At INTERURBA II in Portugal (2001), these models were expanded
to include rainwater management [15,16]. As the relations between model components and water
supply began to be captured and expressed, researchers began to concentrate their efforts on the
development of models that were more comprehensive in terms of elements and interactions [17].
In Austria, INTERURBA III took place in 2013. This iteration was titled “Modeling the urban water cycle
as integral part of the city”, and its objective was to study the interactions between models used for
management of urban water and socioeconomically feasible urban development [14].

The incorporation of all components of the Urban Water Cycle (UWC) has improved the
management of urban water resources and the development of different component systems, including
supply, treatment, distribution, consumption, wastewater collection, drainage, and quality and quantity
control of surface and groundwater sources [12,15,18–22].

As per Renouf and Kenway [23], UWC modeling was previously based on the quantitative
simulation of anthropogenic flows given by water use, along with the simulation of water flows. UWC
models factored in balances of mass, energy, and flow [9,20,24–34] until artificial-intelligence models
were implemented [35,36]. All UWC models studied in this review, however, have been adapted to
different temporal and spatial scales.

As proposed by Mitchell et al. [37], there are more than 65 commercial or free models that rely on
partial or total combinations of UWC elements. Bach et al. [15] classified them according to four levels,
each of which reflects the degree of integration: Integrated Component-based Models, Integrated
Urban Drainage Models (IUDMs) or Integrated Water Supply Models (IWSMs), Integrated Urban
Water Cycle Models (IUWCMs), and Integrated Urban Water System Models (IUWSMs).

It is crucial for researchers, academics, administrators of urban water resources, and
urban-infrastructure planners and designers to learn about these models and their varied applications
because they can be used to devise integrated solutions for the different UWC components. The use of
these models may help ensure the feasibility of solid economic investments—and establish technical
arguments—for the creation of policies and guidelines geared towards sustainability.

This article presents a review of UWC software and models designed for integrated urban water
management. This review was based on two parts: models developed between 1990 and 2015 that
included all UWC components (IUWCMs and IUWSMs) and different applications of these models
between 1990 and 2016. The paper is divided into three parts: an introduction to UWC, a description
of the models reviewed, and case studies (applications) of these models.

2. Urban Water Cycle

Based on the literature review, a blanket definition of the UWC concept can be articulated as
follows: The spatiotemporal interaction between water and hydrological processes, as well as supply,
treatment, distribution, consumption, collection, provision, and reuse carried out in urban or partially
urban areas.

This cycle has four main inputs: water, contaminants, energy, and chemicals, as can be observed
in Figure 1. The first, and most essential, for this cycle is water, which comes from two primary sources:
supply sources (e.g., surface water and/or groundwater), and precipitation. These inputs allow for
the calculation of balances and hydric consumption within the UWC [26,29,38,39]. The second input
refers to contaminants, which are closely linked to water flows, for these flows are the transportation
medium and/or input to the cycle. Contaminants enter the cycle via surface water and/or groundwater
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flows, wastewater water flows from property-related uses, treatment of wastewater flows, and, lastly,
rainwater flows associated with atmospheric water, different surfaces, and chemical use associated
with these surfaces [40].

The third input, energy, is highly consequential within the UWC because of the costs and
environmental effects attributable to greenhouse gases and the use of natural resources [41–46]. Energy
use is principally related to the function of treatment systems, water supply, and thermal water
heating [47–55]. Moreover, during wastewater treatment, biogas is produced by the digestion of
organic compounds [48,56,57].
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Figure 1. Urban Water Cycle (UWC). Adapted from [58].

The fourth and final input refers to chemicals used to treat wastewater and drinking water; special
emphasis is placed on the costs associated with chemicals in terms of the operation of these treatment
processes as well as their potential environmental and health impacts [34,59,60].

However, the cycle’s behavior, along with that of inputs, is modified by external and internal
factors involved in any process. These factors intervene both directly and indirectly within each input,
thereby increasing the entire cycle’s complexity. See Table 1 for more information on this complexity.
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Table 1. Internal and external factors of the UWC.

UWC Part UWC
Component Internal Factor External Factor Source

Water supply
subsystem

Raw-water
intake

Population,
availability, techniques

Climate, environment,
economy, geography

[61–65]Water
treatment

Population, techniques,
quantity, quality, energy

Climate, economy,
regulations, geography

Storage Population,
techniques, energy

Climate, environment,
economy, geography

Water supply
distribution

Population, techniques,
quantity, quality, energy

Economy, geography,
society, culture,
environment, regulations

Water demand Water
consumption

Population, weather,
population density, land use,
equipment, economy

Education, territory
growth, culture,
regulations

[66–71]

Wastewater and
stormwater
subsystem

Collection

Population, weather,
population density, land use,
equipment geography,
hydraulics, regulations,
public health,
environment, economy

Society, culture,
education [17,72–77]

Treatment

Land use, equipment,
geography, regulations,
public health, quality,
quantity, environment,
economy, energy

Society, culture,
education [52,53,78–81]

Receiving
Water

Equipment, geography,
regulations, public health,
quality, quantity, ecology,
environment, economy

Territory growth, type of
water-receiving body [58,82–86]

3. Description of Models of UWC Processes

To implement models for UWC management, a comprehensive understanding of these models,
their characteristics, and users’ needs must be established. Therefore, in this section, 17 models
encountered in the literature review are presented with a presentation of the spatial and temporal
characteristics, other characteristics, and simulated processes, among other aspects.

To complement the information regarding UWC models found in Table 2, important factors and
components are described below. The aquacycle sequentially simulates the balances of the UWC
processes of drinking-water supply, hydrology (precipitation and evapotranspiration), and wastewater;
these balances are established via loops that cover the entire system on a daily timescale. The amount
of “imported” water supply is the sum of the entire population’s water uses in addition to the water
utilized for irrigation and water lost due to leaks in the system. Wastewater refers to all imported water
and percolation and runoff flow rates. For its part, rainwater is runoff minus percolation and storage.
Urban Volume Quality (UVQ) is an expansion of Aquacycle. UVQ is distinguished by its simulation of
contaminants; it also assumes that there is no degradation or conversion of the evaluated contaminants
and that the user must specify concentrations, loads, and performance of treatments [29,30]. UVQ
and Aquacycle are models with grouped parameters that do not require a large amount of input data,
simplifying the use of these models.
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Table 2. Description of UWC models.

Model Type of
Model

Development Team
or Institution

Country Spatial
Scale Time Scale Platform Support

Software
Simulated Processes Model Emphasis Software Link Source
H Hd Hy C S

Aquacycle IUWCMs CRCCH Australia Pr, Ne,
GNe. Daily Windows X X X Hydric balance. www.toolkit.net.

au [29,87]

UVQ IUWCMs CSIRO Australia Pr, Ne,
GNe, Cit. Daily Windows X X X X Hydric and

contaminants balance. [30,88–91]

MIKE
URBAN IUWCMs DHI Denmark Ne, GNe,

Cit.
Hourly and
Daily Windows

ArcGIS,
MOUSE,
SWMM5,
EPANET2
MIKENET

X X X X X Hydrological balance,
hydraulic calculations.

www.
mikepoweredbydhi.
com

[92–98]

UWOT IUWCMs

The urban water
management and
hydroinformatics team
of the School of Civil
Engineering, NTUA

Greece
IndD, Pr,
Ne, GNe,
Cit.

10 min to
monthly

Windows, Linux,
Matlab (for
optimization) and
eLearning platform

X X X X

Optimization of the
development of
strategies for UWC
management

www.watershare.
eu [9,32,99–101]

WaterCress IUWCMs Richard Clark and
David Cresswell Australia Pr, Cat. Daily Windows X X X X Hydric and

contaminant balance.
www.waterselect.
com.au [25,102–105]

Sobek-Urban IUWCMs Daltares The
Netherlands

Cat, Ne,
GNe Cit.

Minutes and
seconds Windows GIS X X X X X

Hydrological balance,
hydraulic calculations,
real-time control,
water quality.

www.deltares.nl [106]

Hydro
Planner IUWCMs CSIRO Australia Ne, Cit,

Cat. Daily Windows

REsource
ALlocation
Model
(REALM), E2

X X X X Hydric balance. [28,107,108]

WaterMet2 IUWCMs Exeter University
and NTUA

Greece
and UK

Pr, GNe,
Ci. Daily Windows X X X X

Hydric and
contaminants balance,
energy, greenhouse
gases, chemical
material balance.

www.emps.exeter.
ac.uk [24,109–112]

UrbanCycle IUWCMs University of Newcastle Australia Pr, GNe,
Cit. Hourly, daily FORTRAN

DRIP,
Probabilistic
Demand
Model

X X X Hydric balance. [20,113–115]

Urban
Developer IUWCMs CRCCH Australia Pr, GNe,

Cit. Hourly, daily Windows MUSIC X X X Hydric balance. www.ewater.org.
au [33,116]

Dance4Water IUWSMs

Monash University,
University of Innsbruck,
Centre for Water
Sensitive Cities and
Melbourne Water

Australia
and Austria

Pr, Ne,
GNe, Cit. Daily Virtual, Web SWMM,

UrbanSim X X X X

Hydrological balance,
hydraulic calculation,
UWC-related social
factors

www.
dance4water.org [117–124]

www.toolkit.net.au
www.toolkit.net.au
www.mikepoweredbydhi.com
www.mikepoweredbydhi.com
www.mikepoweredbydhi.com
www.watershare.eu
www.watershare.eu
www.waterselect.com.au
www.waterselect.com.au
www.deltares.nl
www.emps.exeter.ac.uk
www.emps.exeter.ac.uk
www.ewater.org.au
www.ewater.org.au
www.dance4water.org
www.dance4water.org


Water 2017, 9, 285 6 of 29

Table 2. Cont.

Model Type of
Model

Development Team
or Institution

Country Spatial
Scale Time Scale Platform Support

Software
Simulated Processes Model Emphasis Software Link Source
H Hd Hy C S

DUWSiM IUWCMs
Lars Willuweit and John
J. O’Sullivan University
College Dublin

Ireland Ne, GNe,
Cit. Daily Microsoft Excel LARS-WG,

MOLAND X X X X Hydric and
contaminant balance. [36]

WaND-OT1 IUWCMs University of Exeter UK IndD, Pr,
Ne. Daily

Matlab Symulink,
Microsoft Excel
(VBA)

X X X Hydric balance. [32]

DMM IUWCMs or
IUWSMs

Norwegian University
of Science and
Technology

Norway Ne, Cit.
Hourly, daily,
monthly,
yearly

Microsoft Excel X X X Hydric balance energy,
greenhouse gases. [34]

Water
Balance *

IUWCMs or
IUWSMs N/A N/A Pr, Ne,

GNe, Cit.

Hourly, daily,
monthly,
yearly

SIMBOX, Matlab,
Phyton, R, Microsoft
Excel (VBA),
ABIMO,

X X X X

Hydric and
contaminant balance,
energy, greenhouse
gases, chemical and
material balance.

[26,38,39]

Urban
Metabolism *

IUWCMs or
IUWSMs N/A N/A Pr, Ne,

GNe, Cit.

Hourly, daily,
monthly,
yearly

Excel (VBA), Matlab,
Phyton, R. X X X X

Hydric and
contaminant balance,
energy, greenhouse
gases, chemical and
material balance.

[31,125–127]

LCA * IUWCMs or
IUWSMs N/A N/A Pr, Ne,

GNe, Cit.

Hourly, daily,
monthly,
yearly

Matlab, Phyton, R,
Symulink, Microsoft
Excel (VBA),
SIMAPRO, GaBi4

X X X X

Hydric and
contaminant balance,
energy, greenhouse
gases, chemical and
material balance.

[27,128,129]

Notes: H = hydrological, Hd = hydraulic, Hy = UWC hydric components, C = contaminants, S = strategies for structural management and/or nonstructural action, BMP = best
management practices, DRIP = Disaggregated Rectangular Intensity Pulse, VIBe = Virtual Infrastructure Benchmarking, CRCCH = Cooperative Research Centre of Catchment Hydrology,
CSIRO = Commonwealth Scientific Industrial and Research Organisation, DHI = Danish Hydraulic Institute, Pr = Property, Ne = neighborhood, GNe = group of neighborhoods, Cit = city,
IndD = Individual-dwelling water uses, Cat = catchment, Dance4Water = Dynamic Adaptation for eNabling City Evolution for Water, DUWSiM = Dynamic Urban Water Simulation Model,
DMM = Dynamic Metabolism Model, LCA = Life Cycle Assessment, WaterCress = Water-Community Resource Evaluation and Simulation System, UWOT = Urban Water Optioneering
Tool, UVQ = Urban Volume and Quality, IUWCM = Integrated Urban Water Cycle Models, IUWSMs = Integrated Urban Water System Models, N/A =Not applicable, VBA = Visual Basic
for Applications. *Approach does not refer to specific software.
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Originally, the Urban Water Optioneering Tool (UWOT) was proposed to improve WaND-OT1,
which simulates the interactions between drinking-water supply, wastewater, and runoff. To create
possible scenarios, UWOT has an Excel library with nine applications for microcomponents, two for
intermediate levels, and four for the top level. The conditions, operations, and design of each of these
applications can be modified [9,100].

WaterCress relies on the concept of nodes. Nodes represent the UWC’s functions, operations,
processes, and infrastructure. In total, there are 18 basic nodes, with each having a database with
quantity and quality variables [105]. In turn, these nodes are linked by flows, such as supply and
drainage. For drainage, these nodes are subdivided depending on the type of function. They are
assigned a predetermined color: pink for water diversions, blue for catchment runoff, green for
runoff from a house or urban node, gray for gray water, and black for wastewater [25,103]. With
respect to Hydro Planner, this software works with the model E2, which allows for the integrated
simulation of various components such as runoff and nutrient and sediment contamination of a
water body [107]. Hydro Planner has seven modules: (1) catchment (simulation of contaminant
and runoff processes); (2) water supply; (3) consumption; (4) rainwater (contamination and water
flow); (5) wastewater (contamination and water flow); (6) receiving water bodies (contamination
and water flow); and (7) integration (networking of modules, input and output calculations, and
graphic interface) [28,108]. WaterMet2 quantifies the UWC’s metabolism into four main subsystems:
(1) water supply (sources, treatment, and supply); (2) water demand (consumption and water uses);
(3) wastewater (separated and combined systems and wastewater treatment); and (4) water treatment
(in situ or centralized treatment).

UrbanCycle’s software is characterized by the creation of precipitation and demand data, which
can be entered by the user. The software allows for their creation via stochastic models. For rain, the
model has the Disaggregated Rectangular Intensity Pulse (DRIP); for demand, it has the Probabilistic
Demand Mode. Urban Developer is based on UrbanCycle, which presents four main characteristics:
Adaptive time-stepping allows for the simulation of different timescales, primarily as a function
of climate conditions in wet season for short periods, in dry season for an adapted period, and in
transition for an intermediary period, leading to a computational benefit in terms of calculation
time. Canvas represents the system’s graphic interface, for which a number of improvements have
been proposed from a structural perspective. Each input node is a component of the UWC, not a
system of the UWC. Furthermore, the connections or flow movements are represented by a color that
characterizes the type of flow. The configuration of input parameters allows for the modification, copy,
and elimination of these parameters (among others) by the user quickly and easily. Finally, it has
network nesting, a characteristic that allows for the linking of different spatial scales of the system
through subnetworks, which symbolize a node containing all previously established connections.

Dance4Water is based on the Virtual Infrastructure Benchmarking (VIBe) model presented by
Sitzenfrei et al. [118,119]. This model creates virtual urban environments that include digital models,
water bodies, land use, and urban infrastructure (e.g., sewage and drinking-water distribution
systems) [123,124,130,131]. This model follows a stochastic approach, using multiple layers of
cellular automata [118]. This software presents three linked modules to simulate the entire UWC.
The first module, the Urban Development Module (UDM), encompasses actions that create territorial
development resulting from population increase or urban-development plans at an annual scale. For
this purpose, UrbanSim software was created [35]. The second is the biophysical module (BMP) [122],
which represents UWC-infrastructure components and performance. Two submodules—city and
water-system generator (infrastructure) and performance assessment (performance)—were created
as part of the second module. The performance submodule uses SWMM (Storm Water Management
Model) software for hydraulic and hydrodynamic calculations that are subsequently included in
the model [117]. The third and final module is the Societal Transition Module (STM) designed for
simulating the extent and impact of society on the UWC; the STM also serves as a tool for strategic
planning [117,120,132].
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DUWSiM integrates multiple models, namely climate (LARS-WG stochastic weather generator),
land use (MOLAND—Monitoring Land Use/Cover Dynamics), and water balance in urban areas
(DUWSiM WB—Dynamic Urban Water Simulation Model Water Balance). This integration is
done via a database consisting of different input data, such as socioeconomic, geographical,
physical-infrastructure, demand, and climate factors. This database provides data for the water-balance
model, which simulates the daily flow of movement of UWC processes (drinking-water supply,
rainwater, wastewater, evapotranspiration, percolation, etc.). DMM was developed using the MS-Excel
platform, which facilitates user adaptation of the interface. Excel lets the user enter different input
values and create scenarios by modifying sustainability indicators; in Excel, calculations are performed
in intermediary files. The program has four files: (1) notes, assumptions, and guidelines; (2) user control
via an input data file (entered or calculated), for which values display particular characteristics of the
study area and concomitant consumption; (3) annual files (annual-scale calculations), which are input
data consisting of nine independent spreadsheets that are components of the UWC; and (4) comparison
of final results (this spreadsheet presents absolute or relative indicators of the performance of economic,
social, environmental, and functional factors).

MIKE URBAN independently (in parallel) simulates water supply, drainage, and wastewater
sewage; this software couples 1-D sewer modeling with 2-D overland-flow modeling. It is integrated
with the ESRI ArcGIS platform using the “geo-database” concept [95]. This assembly uses valuable
aspects of GIS, such as network topologies, global-reference coordinates, labels, spatial analysis, and
graphical functions, resulting in layers and the ability to connect layers for optimal management [98].
Sobek-Urban is an integrated software package consisting of 1DFLOW Rural-Urban-River, Overland
flow-2D, Rainfall-runoff (RR), 1DWAQ Water quality and Real-time-Control (RTC). The 1-D flow solves
the Saint-Venant equations by means of a finite difference, and the 2-D flow uses a rectangular grid
and finite difference framework [133].

4. Application of UWC Models

The application of these models has led to mixed results, perhaps a result of these models’
use for myriad purposes including: resource administration, management, and decision-making in
the development of cities to manage and control hydric resources in terms of quality and quantity,
contamination control with relation to natural resources, infrastructure planning, public-policy
evaluation, financial management, and evaluation of socioeconomic development [134]. Case studies
are discussed below.
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Table 3. Case studies involving UWC software or approaches.

Model
Case

Study Country Type of Application

WHB C SDDW EISW EIGW RC WWT BMP H F RT RR RGW EGG SF

Aquacycle

[135] USA X X
[136] Egypt X X X X
[137] Israel X X X X X
[138] Australia X X X X
[139] Australia X
[140] South Korea X
[141] South Korea X X X X
[142] Australia X X X X
[143] Germany X X X X
[144] France X X X X
[145] Ghana X X X X X
[146] Australia X X
[147] Greece X X X X X X
[39] Australia X X

[148] Spain X X X
[149] South Korea X X X X

[150,151] Australia X
[29] Australia X X X X

Urban Volume
Quality (UVQ)

[152] Australia X X X X X X
[153] Australia X X X X X
[154] Australia X X X X X X
[155] Vanuatu X X X X X X X X
[156] Australia X X X X X X
[157] Austria X X
[158] Australia X X X
[159] Mexico X X X X X
[160] South Korea X X X X
[161] Australia X X X X
[162] Australia X X X X
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Table 3. Cont.

Model
Case

Study Country Type of Application

WHB C SDDW EISW EIGW RC WWT BMP H F RT RR RGW EGG SF

Urban Volume
Quality (UVQ)

[163] UK X X X
[164] Australia X X
[142] Australia X X X X X X X
[165] Slovenia X X X
[166] Australia X X X X X
[167] UK X X X
[168] Germany X X X
[169] Slovenia X X X
[170] UK X X X X X X X
[171] Germany X X X X X X

MIKE URBAN

[172] Denmark X X
[173] India X X
[174] Denmark X X X
[175] Denmark X X
[176] Denmark X X
[177] India X
[178] Denmark X X
[179] Denmark X X
[96] Lithuania X

[180] Denmark X X
[181] Germany X X
[182] Denmark X X
[183] Sweden X

[184,185] Denmark X X
[185] Denmark X

[186,187] Bangladesh X X
[188] USA X
[189] Denmark X X
[190] Denmark X X
[191] Australia X X
[192] Japan X
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Table 3. Cont.

Model
Case

Study Country Type of Application

WHB C SDDW EISW EIGW RC WWT BMP H F RT RR RGW EGG SF

Urban Water
Optioneering Tool

(UWOT)

[193] Greece X
[194] Spain X X X X X

[195] Greece X X
[196] Greece X X X X
[197] Hypothetical X X X X X X X
[198] Greece X X X X X

[199,200] Greece X
[201] Hypothetical X X X X X X X
[202] Hypothetical X X X X X X

WaterCress

[203] Australia X X
[204] Australia X X
[205] Australia X
[105] Australia X X X X
[206] Australia X
[104] Australia X X X
[207] Australia X X X
[208] Australia X

Sobek-Urban

[209] Singapore X X
[210] The Netherlands X
[211] The Netherlands X X
[212] The Netherlands X
[213] The Netherlands X
[214] Singapore X
[215] The Netherlands X

Hydro Planner
[216] Australia X X X X X X X X X
[217] Australia X X X X
[108] Australia X X
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Table 3. Cont.

Model
Case

Study Country Type of Application

WHB C SDDW EISW EIGW RC WWT BMP H F RT RR RGW EGG SF

WaterMet2

[218] Iran X X X X X X
[219] Italia X X
[220] Norway X
[221] Unspecified X X
[222] Unspecified X X X X X X X X
[112] Norway X
[223] Iran X X
[24] Norway X X X X X X X

UrbanCycle

[113] Hypothetical X X X X X
[224] Australia X X
[225] Australia X X X
[226] Australia X X
[227] Australia X

Urban Developer [228] Hypothetical X

Dance4Water

[229] Austria X X X
[230] Australia X X X
[121] Australia X
[122] Australia X X
[231] Australia X X

WaND-OT1 [32] UK X X X X X

Dynamic Metabolism
Model (DMM)

[220] Norway X
[34,232] Norway X X X

DUWSiM
[233,234] Ireland X

[235] Australia X X X X X

Water Balance

[236] Portugal X X X X
[237] Switzerland X X
[238] USA X
[239] Cyprus X X X
[240] Switzerland X X
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Table 3. Cont.

Model
Case

Study Country Type of Application

WHB C SDDW EISW EIGW RC WWT BMP H F RT RR RGW EGG SF

Water Balance

[241] USA and Canada X X
[26] Australia X
[10] UK X X X X

[242] Germany X
[243] India X X
[244] Colombia X X X X X

Urban Metabolism

[245] Colombia X
[246] UK X X
[247] China X
[248] Canada X
[249] China X

[250] Canada X
[251] China X
[252] USA X X

Life Cycle
Assessment (LCA)

[253] Hypothetical X X
[254] Spain X X X X X
[255] Spain X X
[256] Norway X X
[59] Norway X

[257] Australia X X X X X
[258] Egypt X
[259] Australia X X
[260] Sweden X X

Notes: WHB = Water or hydrology balance of UWC for managing rainwater or wastewater, C = UWC contaminants, SDDW = Supply and demand of drinking water, EISW = Environmental
impact on surface hydric resources, EIGW = Environmental impact on groundwater resources, RC = Rainwater contamination, WWT = Wastewater treatment, BMP = Best management
practices, H = Hydraulic, F = Flooding, RT = Rainwater treatment, RR = Rainwater reuse, RGW = Reuse of gray water and sewage, EGG = Energy and greenhouse gases, SF = Social factors.
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Firstly, as can be seen in Table 3, the primary use of these tools is for calculating hydric balances
because such balances allow researchers to determine flows and/or volumes of different types
of water in the UWC. These flows are crucial insofar as they represent the cycle’s main inputs
and outputs [38]. In turn, this facilitates an understanding of water dynamics in urban areas
and facilitates the identification of the degree of interrelation during different UWC processes.
In addition, the aforementioned balances are an essential source when determining modifications of
the hydrological cycle, for the is the most disruptive force with respect to the cycle’s equilibrium [261].
In light of the realities of disruption, balances let decision-makers create scenarios for adequate hydric
resource management. Mass balances, for their part, are used to estimate contaminant loads because
of the direct relationship between water flows and contaminants [171].

Secondly, Table 3 demonstrates multiple model applications for the management, calculation,
and determination of drinking-water supply and water demand. This is attributable to the effort
to decentralize water supply and establish alternate or unconventional sources to meet populations’
water needs without ignoring environmental constraints [12]. Research has found that urban areas
face problems related to inequality, in-home contamination, economy, and infrastructure [262].
Consequently, within the most commonly employed practices, new sources include: rainwater, reuse of
gray water and wastewater, desalinization, and groundwater. To address the aforementioned aspects,
many scenarios proposed in the literature include the harvesting of rainwater and the reuse of gray
water. This allows for the conservation of hydric resources, the reduction of runoff volume, and the
reduction of wastewater and corresponding contaminant loads [263–267].

Thirdly, there is the selection and evaluation of best management practices, which are structural
and nonstructural actions aimed at minimizing the impact of urbanization on the natural hydrological
cycle [268]. These practices offer significant potential for UWC management insofar as they can be
applied to any part of the UWC, such as reduction of water demand, management of rainwater,
reduction of flooding, control of contamination, mitigation of environmental damage, evaluation of
ecological possibilities, and reduction of infrastructure investment [269]. Many other applications
are affected by the kind of software and the needs proposed by the authors (e.g., hydraulic and
flooding applications).

Finally, the software MIKE URBAN and Sobek Urban are primarily used for flooding control,
evaluation, monitoring, and optimization of drainage/sewage systems—which is a function of their
inclusion of hydraulic and hydrological calculations. It is important to add that both software programs
(notably the former) have been heavily employed around the world, although a few applications have
involved all UWC components.

Of the more infrequent approaches, social factors are salient. The primary reason for the infrequent
inclusion of social factors stems from the fact that most software programs and approaches are focused
on technical solutions. Additionally, the inclusion of social factors can be quite complex, a reflection of
social dynamics, practices, behaviors, and expectations with regard to water use [270]. This complexity
may serve as a barrier to the determination of effective water-management strategies [271]. That said,
to some extent, failing to include social factors generates a disconnect, for there is an undeniable
relationship between society and the UWC’s technical elements (Sociotechnical, see Sofoulis [272]).
Thus, there is a glaring need to develop tools that encompass social and economic factors (i.e., a
more comprehensive engagement with these factors would improve UWC planning). As posited
by Koutiva and Makropoulos [273], the use of artificial intelligence has produced tools that can be
used for social and economic factors as well as water management. According to the two authors, the
most frequently employed artificial-intelligence tools include agent-based modeling, artificial neural
networks, Bayesian belief networks, and systems dynamics modeling.

The most frequently used models are Urban Volume and Quality (UVQ), Aquacycle, and MIKE
URBAN; each accounted for more than 15 experiments in the literature. In fact, these models were
used in more than the 50% of all experiments. After these three, water-balance and life-cycle analyses
are next, with each accounting for 10 to 14 experiments (22% of all experiments). UWOT, WaterCress,
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Urban Metabolism, UrbanCycle, Sobek-Urban and Dance4Water accounted for 5 to 9 experiments each
(18% of all experiments). Finally, the remaining models accounted for 1 to 4 experiments each (10% of
all experiments).

In terms of year ranges, 60% of reported experiments were conducted between 2012 and 2016.
Between 2009 and 2011, this percentage was 20%. Between 2006 and 2008, the percentage was 11%,
and between 2003 and 2005, the percentage was 9%. This progressive increase can be attributed to
the advent of the concept of Integrated Urban Water Management (IUWM) in the mid-1990s, though
IUWM was not widely discussed and adopted until 2000 [268].

Looking at the geographical distribution of these experiments (see Figure 2; darker shading
represents more experiments and lighter shading less experiments), the applications of these tools
or methodologies have been carried out in a variety of countries. However, Australia has the most
applications (41 revealed in the literature review). In that country, Aquacycle, UVQ, WaterCress,
Hydro Planner, Urban Cycle, and Dance4Water were the most commonly used software programs.
These programs were developed by public and private entities. After Australia, the country with
the most frequent use of relevant experiments was Denmark, which conducted experiments using
MIKE URBAN, a tool developed and evaluated in the Scandinavian country. The United Kingdom
(most commonly using UVQ) and Greece (using Aquacycle and, above all, UWOT, which was
developed in Greece) each had six experiments. Other countries, such as South Korea and the United
States, had four and five experiments, respectively. There were also 24 countries with less than three
recorded experiments each (including countries from continents such as Africa, Latin America, Asia,
and Europe).
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Despite the potential for the management and administration of UWC, it is important to
mention that, by and large, the use of these tools has been concentrated in academia rather than
in decision-making environments. This is explained by a number of different factors—related
to institutions, politics, society, economics, laws, and organizations—as well as the absence of
institutionality, lack of knowledge regarding relevant tasks, and lack of long-term vision, among
others [274,275]. However, academics’ role in this situation cannot be overlooked: Most projects
related to these models are focused on obtaining data rather than constructing bridges between
investigation and social application. For instance, there is scant direct application of these models in
industrial sectors. As per Abbott [276], this is because the needs within academia and within industrial
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sectors do not always coalesce. That said, the failure to implement the solutions proposed by UWC
models hinders possible determination of the level of population acceptance, which is crucial for
establishing the success (or lack thereof) of strategies because many of the experiments discussed
herein are based on the decentralization of services and applications in situ [277].

5. Conclusions

Urban water management is a globally urgent problem and entails a host of pertinent issues
related to supplying drinking water, handling wastewater and rainwater, reducing environmental
impact and waterborne diseases, and mitigating operational and infrastructure costs. Together, these
issues pose a challenge to public administration. A deeper understanding would allow for a holistic
view of the UWC as well as the development of appropriate management strategies for water in urban
areas. In addition, this deeper understanding would help explain the dynamics and interactions of
different processes in the UWC.

The use of innovative software and approaches has gained recognition as an effective means for
meeting the aforementioned challenges. Combining software and other approaches allows one to
create a decision-making tool that integrates technical, environmental, economic, and social concepts
to quickly visualize different trends or possible scenarios. The reliance on these tools has increased
notably over the last 15 years, with examples ranging from hydric balances to artificial intelligence,
with spatial scales from individual properties to entire regions, and timescales from daily to annual.
These advances have helped incorporate as many UWC processes as possible.

These software programs or models have facilitated different applications’ employment as a
vehicle for determining new sources of supply, contamination control, reduction of the effects of
urbanization on the hydrological cycle, and efficient water use, among others. In so doing, these tools
have greatly enhanced the capacity for sustainable alternatives and boosted the ability to efficiently
manage financial and hydric resources.

The vast majority of the experiments revealed by the literature review touched on technical
solutions or regulations, for the models/approaches studied were shown to be geared towards
calculating water balances and the concentration or contaminant loads as water passes through
the cycle. Nevertheless, social and ecological factors should not be forsaken if models and their
responses are to be more comprehensive, especially in light of the close link between these factors and
the UWC [5,278].

Even though most of these tools are available online or by request from the authors, their
application has been centered in Australia and Europe, which is primarily explained by two facts. First,
model development, which is only done in these two regions, leads to their application in different
fields within these regions. Second, research and policies in these regions related to water management
in urban areas have gained traction due to the need to conserve water resources or due to the lack of
such resources.

The results described in the articles and academic theses reviewed herein demonstrate a high
potential for management of the UWC, though its greatest contribution currently is academic; the
approaches have not been applied as a decision-making tool by public or governmental entities. This
confinement to academia is a serious obstacle to the implementation of the models for economic, social,
and environmental means.

Although there are direct relationships between energy systems and different UWC processes,
several models and software programs do not include these systems, for the primary objective of
these tools is to determine strategies for managing water volume. Yet, many of these tools, when
not designed from a holistic perspective, may directly impact infrastructure-investment costs [50]
and/or lead to deleterious environmental effects in the form of greenhouse gases or high energy
consumption [52,279,280].
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Moreover, it is crucial to reinforce the usefulness of these models to evaluate the acceptance of the
results obtained and thereby solidify social appropriation of this knowledge by means of strategies
that promote implementation in decision-making contexts.

Lastly, this review allows different public and private entities to identify opportunities to use
the software and models discussed herein for the management of urban water resources. Doing so
would pave the way for the optimization of cities’ economic investments and ensure efficiency of
the systems comprising the UWC as well as an environmentally conscious urban development that
is future-oriented.

Author Contributions: This article provides a foundation for identifying components and interactions within the
Urban Water Cycle (UWC). Furthermore, this article explains the types of models and development approaches
for managing urban hydric resources. To this end, the authors describe the potential use and requisite operating
conditions of UWC models. In addition, all authors analyze case studies (model applications) to determine model
contribution (as well as place and date of implementation). Taken together, this information allows readers to
determine each model’s benefits and uses.

Conflicts of Interest: The authors declare no conflicts of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the
decision to publish the results.
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