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Abstract: A grid-based version of the Soil and Water Assessment Tool (SWAT) model, SWATgrid,
was developed to perform simulations on a regularized grid with a modified routing algorithm
to allow interaction between grid cells. However, SWATgrid remains largely untested with little
understanding of the impact of user-defined grid cell size. Moreover, increases in computation
time effectively preclude direct calibration of SWATgrid. To gain insight into defining appropriate
strategies for future development and application of SWATgrid, this research considers the simulated
differences between commonly-employed hydrologic response unit (HRU)-based and grid-based
SWAT models and the implications of resolution on their simulation and calibrated parameter
values for a Midwestern, agricultural watershed. Results indicate that: (1) the gridded approach
underpredicted simulated streamflow between 5% and 50% relative to the baseline model, depending
upon the input spatial resolution and routing algorithm implemented; (2) gridded models generally
underpredicted total phosphorous and sediment loads while overpredicting nitrate load; and (3)
ranges of values of optimized model parameters remained similar up to 90 m. Results from this
analysis should help in defining future applications of the SWATgrid model and the effects of differing
spatial resolution of the model input data.

Keywords: SWATgrid; SWAT; hydrologic modeling; data resolution; landscape routing

1. Introduction

A critical repercussion of agroecosystem growth is the deterioration of water quality from
nonpoint source pollution derived from locations that cannot be ascribed spatially in the landscape [1].
Transport of nitrogen (N) and phosphorous (P) [2—4], sediment [5] and pesticides [6] is responsible
for a range of adverse impacts on human and environmental conditions [7], constituting the primary
source for impairment of rivers and streams in the United States [8]. Given the difficulty in identifying
and controlling nonpoint source pollution, traditional monitoring and regulatory strategies, such as
point-based monitoring, are difficult. Further, attempts to test possible management solutions are
encumbered by cost, uncertainty and potential lack of participation.

Hydrologic models provide the capability to represent and predict natural processes, especially
where observations are limited, thereby aiding in scenario analysis of system response to the
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implementation of nonpoint source control measures. Accordingly, there is a need to understand the
accuracy and fidelity of these models in representing known processes to improve the predictive
certainty for a range of intended applications. Uncertainty in hydrologic models is attributed
to a combination of measurement error, systematic error, natural variation, model uncertainty;,
subjective judgement and inherent randomness [9-11]. Therefore, efforts to improve the capability of
hydrologic models to effectively capture and mathematically represent natural processes in a physically
meaningful way necessitates continuing adaptation and refinement of methodology.

River basins and watersheds are common boundaries of most hydrologic models focused on
nonpoint source pollution, as they provide an integrated response of natural and anthropogenic
processes [12]. Reviews of several hydrologic models underscore differences in the choice of
discretization and model complexity to capture system response [13-15]. Mathematical representation
of physical processes depends on the level of discretization used and should reflect the scale of interest
of the intended application. Discretization can be defined either temporally or spatially and seeks
to relate the modeled scale to observation and process scales [16]. Changes in scale may require
development of new mathematical models and approaches. Based on data availability, hydrologic
models generally adopt a daily time step, although effects of temporal scale are not well understood [17].
Simple, lumped approaches often are appropriate spatially and can produce comparable results to
more detailed, complex approaches depending upon the application [18,19]. However, many simple
hydrologic models lack necessary physical processes and management scenarios essential for modeling
the associated transformation and transport of nonpoint source pollution [12]. Balancing the need for
explicitly modeling spatial processes with data availability and computational cost is thus an ongoing
research issue [20]. Calibration of the model is of equal importance, as it may contribute to improved
results or may mask deficiencies in simulations [21].

The Soil and Water Assessment Tool (SWAT) is a continuous-time, distributed-parameter
model, capable of simulating hydrology and water quality at the watershed scale [22]. According
to Wellen et al. [15], SWAT is the most commonly-used model for distributed watershed nutrient
modeling and has been used in a wide range of applications [23]. SWAT predominantly relies upon
discretizing landscapes based on common soil, land use and slope characteristics, known as hydrologic
response units (HRUs). While the HRU approach provides a simple, computationally-efficient
framework, processes modeled on HRUs are lumped and therefore spatially disconnected, as they are
routed directly to subbasin outlets. This was identified as a key weakness of the model by Gassman [23]
and Douglas-Mankin et al. [24], among others. This lack of definition of landscape position makes
implementation of spatially-targeted management difficult to incorporate in the model.

Although readily accessible in the SWAT model framework, few studies have evaluated modified
discretization or routing beyond standard HRU routing through subbasin networks [20,25-28].
To overcome the spatial limitations of the HRU approach, a grid-based version of the SWAT model,
SWATgrid [29], was developed to perform landscape simulation on a regularized grid [30] and employ
a modified landscape routing algorithm developed by Volk et al. [31] and Arnold et al. [20] to spatially
connect grids during routing. While other gridded hydrologic models exist, few incorporate detailed
management, plant growth and water quality algorithms intrinsic to SWAT.

Rathjens et al. [29] found the approach was able to simulate streamflow reasonably well. However,
SWATgrid remains largely untested, with little understanding of the impact of user-defined model
spatial resolution. Previous studies have been conducted at spatial resolutions of 100 m or greater
and have not considered watersheds with artificially drained by subsurface tiles ubiquitous to
poorly-drained agricultural landscape, such as the U.S. Midwestern agricultural systems [29,30,32].
Unfortunately, computational overhead is significant for SWATgrid, effectively precluding direct
calibration and necessitating strategies such as parameter transfer from HRU-based SWAT models [33].
Parameters have been shown to exhibit scale dependency [34], so correct characterization of their
distributions at various resolutions is critical prior to transfer.
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Use of subbasins is the most commonly-employed spatial discretization approach in watershed
modeling [15]; however, input data are generally initially available in gridded raster format prior to
reconceptualization. Typical spatial input data include a digital elevation model (DEM), land use and
soils. For hydrologic modeling, modifying the resolution of a DEM is considered the most impactful
as it affects watershed delineation, slopes and channel length, while land use and soil classification
primarily modify flow partitioning [35]. Several studies have assessed the impact of DEM resolution
on hydrology and water quality predictions with SWAT. Runoff, sediment and nutrients were found to
decrease with coarser resolution by Cho and Lee [36], Chaubey et al. [37] and Ghaffari et al. [38], due
to smoothing of average watershed slope. Conversely, Chaplot [39], Lin et al. [40], Shen et al. [41] and
Zhang et al. [42] identified minimal change in flow while water quality variables remained impacted.

Research focused on the impacts of resolution on SWAT has not yet extended beyond the standard
HRU-based approach. The overall goal of this study was to test the efficacy of the SWATgrid approach
while gaining insight into its sensitivity to user-defined spatial input resolution. Accordingly, three
objectives were considered: (1) identifying a target resolution range for SWATgrid applications
to maximize predictive accuracy while minimizing computation time; (2) comparing SWATgrid
simulations to HRU simulations; and (3) identifying differences in calibrated parameter ranges for
varying resolutions. Future SWAT applications, such as identifying critical source areas or testing best
management practices, may require greater spatial detail [43] than afforded by subbasin discretization.
The grid-based approach offers one possibility to capture such spatial details in order to develop
effective land management options for reducing losses of nonpoint source pollutants.

2. Materials and Methods

To accomplish the objectives of this study, several models were created using multiple input
data resolutions for both the SWAT and SWATgrid. SWAT HRU models used the standard SWAT
routing methods, while SWATgrid models (GRID) implemented both standard and landscape routing.
This enabled a more rigorous comparison of HRU- and GRID-based methodologies by isolating both
the effects of the landscape routing and, in turn, the gridded spatial representation of the landscape.
Therefore, for each resolution considered, three separate model simulations were assessed: (1)
HRU-based spatial representation with standard routing (HRU); (2) GRID-based spatial representation
with landscape routing (GRID-LAND or LAND); and (3) GRID-based spatial representation with
standard routing (GRID-STD or STD).

2.1. Study Location

The Cedar Creek Watershed (CCW) is located in the southwestern region of the St. Joseph
River Basin in northeastern Indiana. Covering approximately 707 km?, the CCW drains two HUC
(Hydrologic Unit Code) 10 subwatersheds (0410000306 and 0410000307). A monitoring network
was established in the northern CCW subbasin in 2002 as part of the United States Department of
Agriculture’s Agricultural Research Service’s (USDA-ARS) Source Water Protection Project (SWPP)
and Conservation Effect Assessment Project (CEAP), and it is shown in Figure 1. The topography
is characterized by slopes of 2% to 10% with an overall gradient towards the southeastern outlet.
Soils were formed from compacted glacial till and fluvial materials with silt loam, silty clay loam and
clay loam textures. The CCW is primarily agricultural, with corn and soybean rotational planting,
although winter wheat, oats, alfalfa and pasture are also present [44—46]. Due to oversaturation of
soils and the prevalence of agricultural land, tile drainage is commonly employed throughout the
watershed. Climatic conditions for the CCW include historical average temperatures from —1 to 28 °C
with 940 mm of annual precipitation. For this study, two weather stations were used, one in the lower
center of the watershed and a second outside the watershed boundary to the north. Station data were
obtained from the USDA SWAT climate dataset <ars.usda.gov/Research/docs.htm?docid=19388>.
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Figure 1. Cedar Creek Watershed characteristics: (a) elevation (National Elevation Data (NED) 30 m)
with the stream and precipitation gauging stations shown; (b) soil hydrologic group (State Soil
Geographic (STATSGO) 250 m); and (c) land use (reclassified from NASS 2010 Crop Data Layer
(CDL) 30 m).

2.2. The SWAT Model

The SWAT model is a continuous-time, semi-distributed, process-based river basin model [22].
Inclusion of hydrology, weather, crop growth, soil, nutrient, pesticide and agricultural management
components allows SWAT to predict the impact of various agricultural management scenarios on
hydrology and water quality. Fundamentally, the model is hydrologically driven, based upon the
water balance of an individual landscape unit:

t
SWi=SW+ Y (R;— Q; — ET, — P — QR)), @
i=1

where SW is the soil water content, R is precipitation, Q is surface runoff, ET is evapotranspiration,
P is percolation and QR is return flow in units of mm for each day, i. Each landscape unit consists of a
possible snow layer, a soil profile divided into multiple layers and a shallow and deep aquifer.
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Standard SWAT Routing

Hydrologic processes are first simulated at the landscape (HRU) level and subsequently routed
at the subbasin level where each subbasin has an associated reach. Landscape discretization into
HRUs provides a simple framework for simulation, but also represents a significant limitation of
the model. Spatial connectivity and interactions among HRUs are ignored, instead aggregating the
cumulative output of each spatially discontinuous HRU group at the subwatershed outlet, which is
then directly routed to the channel. Water balance equations are applied at the HRU level. For complete
documentation, see Neitsch et al. [47].

2.3. SWATgrid

SWATgrid differs from HRU-based SWAT models in two key ways: (1) use of gridded, discretized
landscape units and (2) linking these landscape unit grids and routing surface runoff, lateral subsurface
and shallow groundwater flow. Gridded landscape units effectively function as both an HRU and
subbasin and take advantage of standard SWAT landscape simulation algorithms.

As part of SWATgrid, Rathjens and Oppelt [30] developed an approach that utilizes the
Topographic Parameterization (TOPAZ [48]) tool to generate gridded landscape units. The grids
allow for spatial connectivity during the routing phase as they are at a defined location, as opposed
to HRUs, which are not. Landscape routing is then implemented through these grids adapted from
the approach used by Volk et al. [31] and Arnold et al. [20]. Spatial position for each grid is calculated
from a modified topographic index adapted from the TOPMODEL (Topography Based Hydrologic
Model) framework:

A .

A —ln<W>Vz =1,.,n, (2)
where A; is the upslope contributing area per unit contour length (m), B; is the topographic slope
angle, K; is mean saturated hydraulic conductivity (m/day) and Z; is the soil depth (m) for each grid
cell i. As the index approaches one, it approximates a valley or floodplain and near zero, a divide.
Effectively, the index partitions flow on a given grid cell between channelized and landscape flow.
In SWATgrid, the flow separation index is normalized for either abrupt or gradual channel heads and
is adjusted by the drainage density of the watershed to capture channel head locations more accurately.
Thus, when the adjusted flow separation index is zero, there is only landscape flow, and conversely
when it is one, the flow is completely channelized. For an in-depth description of the SWATgrid,
see Rathjens et al. [29].

2.4. Baseline Model

An initial 30-m spatial resolution model was developed and calibrated to serve as a baseline for
comparison of model simulations across resolutions. The 30-m resolution was nominally selected as
the finest scale considered, given that it is common for most spatial datasets used in SWAT modeling
(e.g., National Elevation Data (NED), National Land Cover Database (NLCD)). The watershed was
delineated using a 30-m digital elevation model (DEM) from the NED. Land use and soil properties
were obtained from the Crop Data Layer (CDL, 2010) from the National Agricultural Statistics Service
(NASS) at 30 m and State Soil Geographic (STATSGO) Dataset at 250 m, respectively. STATSGO data
were selected given their native grid structure provided by the SWAT soils database and relatively
fewer soil classes than other soil databases (e.g., SSURGO—Soil Survey Geographic Database) , which
facilitate ease of writing the manually intensive SWATgrid input files. STATSGO data were resampled
by the nearest neighbor approach to 30 m prior to rescaling at coarser resolutions. Various CDL
agricultural land use categories constituting less than 1% of the watershed area (e.g., pumpkins) were
reclassified to general agriculture.

The model was forced with precipitation and temperature data from 1990 to 2010 from the United
States Department of Agriculture (USDA) Agricultural Research Service (ARS) SWAT U.S. Climate
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Dataset stations C120200 and C123207. Discharge data for calibration and validation at the watershed
outlet were obtained from the United States Geological Survey (USGS) Water Data Server for Station
Number 04180000, Cedar Creek near Cedarville, IN, over the same period. Geographic input datasets
are shown in Figure 1.

Delineation and initial model parameterization were achieved using the ArcSWAT interface with
the input datasets previously described. Based on previous experience in modeling this watershed,
1000 ha were used to define the minimum area necessary for channel formation. As SWATgrid evaluates
all unique possible combinations of land use and soil types in the model, the HRU threshold for soils
and land use was set to 0%. Watershed delineation produced 43 subbasins consisting of 1082 HRUs.

Several initial parameters values were specified in accordance with previous research in similar
agricultural watersheds, as well as using expert knowledge, including previously published SWAT
modeling studies from this area. Management parameters were specified to fit dominant expected
scenarios for a corn and soybean rotation, as shown in Table 1 (see [49] for details). Additionally,
given the prominence of tile drained agricultural landscapes in the Midwest [50], tile drainage
was implemented in each HRU comprised of a corn-soybean rotation located on poorly- or very
poorly-drained soils (soil hydrologic Groups C and D, respectively). The modifications required for
tile drains are summarized in Table 2 (see [51] for details). Additionally, to allow water to drain into
the tiles, the curve number parameters were adjusted by assuming that each C or D class soil would
behave as one class above its level. Finally, the SWAT baseflow recession constant (ALPHA_BF) was
estimated using the SWAT Baseflow Filter Program [52,53] and set to 0.0321.

Based on previous SWAT research in Northern Indiana [54], six basin level parameters,
summarized in Table 3, were specified for model calibration. By selecting basin level, rather than
distributed parameters, calibration was applied in a consistent way to all models, regardless of varying
HRU relative area between different resolutions and model types. A multi-algorithm, genetically
adaptive multi-objective method (AMALGAM) [55] was adapted for use with SWAT input and output
data structure. Calibration was performed with monthly simulations between 1990 and 2010. The first
four years were used for model warm up, while 1994 to 2003 and 2004 to 2010 were used for calibration
and validation. Five thousand simulations were sampled and evaluated over 50 generations. Parameter
optimization was constrained by maximizing Nash—Sutcliffe efficiency (NSE [56]).

Table 1. Agricultural management implemented in models.

Management Strategy

Date Operation
22 April N Application !
22 April Atrazine 2
6 May Cultivator
Corn Year 6 May Planting
6 June N Application 3
14 October Harvesting
15 October Killing
24 May Zero Till
24 May Planting
7 October Harvesting
Soybean Year 8 October Killing
15 October P Application *
1 November Chisel

Notes: ! Anhydrous of 53 kg/ha (N of 43 kg/ha); % atrazine of 2.2 kg/ha; 3 urea of 284 kg/ha (N of 131 kg/ha);
4 Diammonium phosphate (DAP) (P205) of 123 kg/ha (P of 54 kg /ha).
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Table 2. Tile drainage parameters implemented on rotational corn and soybean land use with poorly-
or very poorly-drained soils.

Parameter Definition Value
DDRAIN (mm) Depth from surface to tile drains 1000
TDRAIN (h) Time to drain to field capacity 24
GDRAIN (h) Drainage lag time 48
DEP_IMP (mm) Depth from surface to impervious layer 1200
ITDRN (flag) Drainage routine (1 indicates ‘new’ routine) 1

RE (mm) Effective drain radius 20
SDRAIN (mm) Distance between tile drains 20,000
DRAIN_CO (mm/day) Drainage coefficient 10

PC (mm/h) Pump capacity 0
LATKSATF Multiplication factor for lateral conductivity 1.2

Table 3. Calibrated parameters for the 30-m baseline hydrological response unit (HRU) model.

Parameter Definition Units Range Default Calibrated
SFTMP snowfall temperature °C —5to5 1 0.18
SURLAG surface runoff lag coefficient day 05t02 4 0.50
SMTMP snow melt base temperature °C —5to5 0.5 2.46
TIMP snow pack temperature lag factor - 0.01to1 1 1.00
SMFMX maximum melt factor mm H,O/°C 1to 10 45 6.54
SMFMN minimum melt factor mm H,O/°C 1to 10 45 1.00

2.5. Resampling Approach

The SWATgrid model was run at spatial resolutions of 30, 60, 90, 150, 250, 500 and 1000 m.
Resolution of the input data has numerous implications in watershed simulations. However, the
primary focus here is to select a scale that captures a realistic system response while achieving viable
computational time, rather than extensively evaluate the implications of the spatial detail of input data.
Land use, soil and topography data were resampled from 30-m base data for each set of conditions.
Nearest neighbor resampling was used to preserve the “hard” classes of land use and soils. Similar
to other research [57,58], resampling was achieved by bicubic convolution to provide a smoothly
interpolated DEM that retains peaks and depressions in the dataset, which is critical in watershed
delineation and channel definition. Resampled soil and land use data in the Cedar Creek Watershed
had a <2% difference in proportional watershed area between the finest and coarsest resolutions for all
classes, even though actual area changed across resolutions.

2.6. Simulation Effects

Input data at 30-m resolution were used to create a baseline SWAT model and calibrated as
previously described. Parameters from this baseline model were then transferred to lower resolution
HRU and GRID models. By maintaining a constant parameter set applied at the basin level, the effects
of resolution and routing type were better isolated. Each HRU and GRID model at 30, 60, 90, 150, 250,
500 and 1000 m (14 total) was run during the same period used for the 30-m baseline model calibration.
The same SWAT version (Ver. 574) was used for both HRU and GRID models. HRU models were only
run with standard routing, while GRID models were simulated twice, once with landscape routing
and once with standard routing used in HRU-based delineation.

Predictive uncertainty derived from varying the input data resolution and model type was based

on relative error (RE): ) )
RE — >Mbase = St j &)

S imbuse

where Sinyp,, is the simulated value from the calibrated, baseline model and Sim;; is the simulated
value from the coarsened dataset of resolution i (30, 60, 90 m, ... ) and model j (HRU, GRID-STD,
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GRID-LAND). Simulated values refer to flow at the watershed outlet. A baseline model was
used rather than USGS-measured streamflow to focus the analysis on differences between the
modeling approaches.

2.7. Calibration Effects

Given the significant computation time required by the GRID models, the calibration procedures
involved calibrating a standard SWAT HRU-based model and transferring the parameters [33].
As SWATgrid resolution is user defined, it is important to understand the effect of modifying input
resolution on calibrated parameter values. Therefore, for the six basin-level parameters used for
calibration, HRU models were calibrated individually at all tested resolutions, and resulting parameter
values were compared over the final 1000 simulations using the same calibration approach described
for the baseline model.

3. Results and Discussion

3.1. Baseline Model Calibration

Summary statistics are shown in Table 4 for the calibration of six parameters using an adapted
AMALGAM code for SWAT. The 30-m baseline model was run 5000 times; however, parameters
and the optimized objective function value began to converge after approximately 2000 simulations.
While several calibrated parameter sets produced equally acceptable results relative to the objective
function, known as equifinality [59], the mean of the parameters of the last 100 simulations was selected
for calibration.

Table 4. Monthly calibration and validation results for flow.

Maetric Calibration Validation
Monthly NSE 0.80 0.80
Observed Mean (m?/s) 7.48 8.67
Simulated Mean (m?3/s) 7.13 8.66
1000 - —— Observed
o~ | ---- Simulated
2 |
8 %] |
2 "
O 600 -
L
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e
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Figure 2. Comparison of observed and simulated monthly flow at the watershed outlet for the baseline
30-m Cedar Creek HRU model. Calibration period is 1994 to 2003, and the validation is 2004 to 2010.

Applying this parameter set to the model generated a similar monthly flow at the outlet when
compared to measured discharge. The hydrographs in Figure 2 illustrate this correspondence and
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further highlight the temporal congruity of the observed and simulated flow. There are periods of both
over- and under-estimation of flow during both high and low flow events. Monthly NSE was 0.8 for
both the calibration (1994 to 2003) and validation (2004 to 2010) periods and was considered satisfactory.
Similarly, mean simulated and observed flows were in agreement with a slight underprediction in
mean flow by the model.

3.2. Watershed Delineation

Watershed boundaries differed as a function of both the delineation method (ArcSWAT vs.
TOPAZ) and resolution. In general, watershed area tended to decrease with a coarsening of grid size
over the range of resolutions considered; however, the decrease was not consistent over all steps, as
shown in Table 5. While both Cotter et al. [60] and Chaubey et al. [37] similarly found a decreasing
watershed area with increasing grid size, Brasington and Richards [61] and Wu et al. [62] were unable
to identify any trend in delineated area due to being associated with modifying the spatial resolution.
The lack of trend in this analysis is a byproduct of site-specific characteristics and boundary effects of
the DEM aggregation approach and cannot be generalized.

Table 5. Model input characteristics based on spatial input resolution.

Resolution HRU Watershed HRU GRID Watershed GRID GRID Simulation
(m) Area (km?) Subbasins Area (km?) Cells Time (min)
30 700.4 43 - - -
60 682.7 41 - - -
90 683.1 42 701.7 86,635 6456
150 623.1 35 624.4 27,253 693
250 748.4 45 744.8 11,916 149
500 629.5 29 635.3 2451 12
1000 390.0 17 385.0 385 1

Resampling the DEM resulted in regions in the southwestern portion of the CCW shifting in
and out of the watershed. While a significant loss in watershed area was incurred at the 1000-m
resolution, overall differences in watershed area varied between 1 and 125 km? across other resolutions.
The discrepancy in total watershed area between ArcSWAT and TOPAZ was 18.6 km? at 90 m, although
values near 1 km? were more frequent, where TOPAZ delineated area tended to be larger. Distributions
of soils and land use classifications by percent of watershed area remained relatively constant between
spatial resolutions and did not exceed a 2% difference for any soil or land use class, although this
is largely watershed dependent. Higher resolution soils data and more diverse agricultural systems
would likely show a greater change in relative area with changing resolution. Moreover, providing
higher resolution soils data, in particular, will likely effect the model predictions, and therefore, the
choice of input data should reflect the goals and required accuracy of a given study.

Simulation time for GRID models is a significant limitation when compared to the HRU
approach and can require approximately 500 times the computation time and storage in its current
implementation [20]. As each grid cell in the GRID approach is effectively both an HRU and subbasin,
computational time is greatly increased as spatial connections are made between all surrounding
grids. Therefore, total simulation time is a function of both user-defined spatial resolution and the
total watershed area. For the range of models created for the Cedar Creek Watershed, simulation
time increased exponentially with finer resolutions, ranging from approximately 68 s for a 1000-m
resolution model to 4.5 days for 90 m (Intel Core i5-2400 CPU@3.10 GHz, 4 GB RAM). Simulations
were not possible for the 30- and 60-m GRID models. Specifically, a virtual memory error occurred
while allocating and reserving necessary virtual memory for grids and their subsequent spatial routing
connections used by SWAT. This is significant for any potential applications of the current formulation
of SWATgrid, as it effectively limits simulations over large regions at fine resolution. In this study, 30-
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and 60-m results are consequently not evaluated. Future efforts to parallelize the code could potentially
resolve this issue.

3.3. Simulation Effects

Simulated flow at the Cedar Creek Watershed outlet was lower for both GRID models than for
HRU models, although hydrograph rise and recession were similar. The GRID models with landscape
routing had consistently lower flows, while GRID models with standard routing more closely matched
the magnitude predicted by HRU models (Figure 3a). These results suggest that both discretization
and routing contribute to the difference in hydrologic predictions. However, given the disagreement
in magnitude of the GRID model with landscape routing compared to the HRU model, it appears
that routing plays a more significant role in these results. Other investigations of the GRID approach
with landscape routing yielded better agreement in hydrologic predictions, although peaks were
underestimated [29,32]. It should be noted that re-calibration at each resolution is recommended for
the alternative routing used by the GRID approach rather than direct parameter transfer when possible,
but was not used here to directly compare differences due to model structure and input data resolution
only. While the HRU-based calibration may offer preliminary parameter values, separate calibration
would likely improve the ability of the GRID approach to predict measured flow.

1000 ——HRU

-+ = GRID-LAND
GRID-STD

5 800

£

> 600

5

L

2 400

-

g

o

= 200

— - -GRID-LAND .- (b)
GRID-STD 2

N
a o
S S

1 1
\

5]

o

\
7

o
o
.\‘
4
/

Absolute Flow Difference (m?/s)
\

O T T 1 T T
X S &
F S F ¢ \&,5\ SR

Figure 3. Hydrologic simulations for 90-m resolution models’ (a) monthly hydrographs and (b) average
monthly absolute flow difference relative to the HRU model.



Water 2017, 9, 272 11 0f 20

While surface runoff was similar between the model types, subsurface flows were quite different.
Notably, tile flow, groundwater flow in the shallow aquifer, aquifer recharge, percolation and water
yield had greater than 40-mm differences from the HRU models. The large quantity of subsurface flows
and aquifer recharge may be one potential cause of lower average flows and decreased peak discharge.
For the GRID models, subsurface flows are intrinsically linked to the flow separation index used in
landscape routing. In its current form, the flow separation index is static; however, relative saturation
of a watershed is dynamic. As shown in the seasonal comparison of absolute flow differences between
models (Figure 3b), the greater disagreement during the wet months is likely a result of the index
prescribing too much landscape flow, rather than channelized flow, during a time when the soil is
expected to be highly saturated. A dynamic flow separation index may address this issue.

Models’ results were also evaluated in terms of relative error compared to the baseline 30-m HRU
model for both flow and water quality. Relative error, average annual discharge and average flow rate
shown in Figure 4 and Table 6 indicate that the models follow a similar trend, but that the magnitude
of the relative error differs. For the HRU approach, the differences in flow range from <1% to 38.2%
and remain under 1% relative error until 90 m. The two GRID approaches follow similar trends with
a decrease in relative error from 90- to 250-m spatial resolution, followed by a marked increase in
error from 500- to 1000-m resolution. Maximum relative error occurred at 1000 m for all models and
a minimum at 90 for HRU, 500 for GRID-LAND and 250 m GRID-STD models, respectively. These
differences indicate that discretization and routing do not have a uniform effect on model output, but
are both contributing to error. It is likely that decreased flows in the GRID models is due in part to
the landscape routing approach moving water from grid to grid, rather than directly to the channel
as with standard routing. This allows more opportunity for water to be used in evapotranspiration,
infiltration and otherwise be diverted from becoming channelized flow.
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Figure 4. Average relative model error as compared to the 30-m Cedar Creek HRU model.
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Table 6. Average annual predictions based on resolution and model type.

Model Flow * Flow Nitrate Nitrate Total P Total P Sediment Sediment
(m?) (mm) (Mg) (kg/ha) (Mg) (kg/ha) (Mg) (kg/ha)

30 HRU 245 350 1910 27.3 229 3.27 197,400 2820
60 HRU 244 357 1524 22.3 150 2.20 159,100 2330
90 HRU 244 357 1531 224 135 1.97 128,200 1880
150 HRU 216 346 1204 19.3 105 1.68 73,200 1170
250 HRU 279 372 1534 20.5 114 1.53 83,700 1120
500 HRU 238 378 1371 21.8 82 1.30 57,600 915
1000 HRU 146 375 772 19.8 45 1.15 3100 796
90 STD 191 272 1817 25.9 97 1.39 64,200 915
150 STD 195 313 1639 26.3 78 1.24 49,000 785
250 STD 237 318 1988 26.7 80 1.07 46,900 630
500 STD 211 332 1784 28.1 59 0.93 34,100 536
1000 STD 135 350 924 24.0 33 0.86 17,900 465
90 LAND 119 170 1796 25.6 97 1.39 64,200 915
150 LAND 128 206 1623 26.0 78 1.25 49,000 785
250 LAND 169 227 1969 26.4 80 1.08 47,000 631
500 LAND 178 280 1761 27.7 59 0.94 34,100 537
1000 LAND 112 292 915 23.8 33 0.86 1800 467

Note: T Millions (1 x 10°).

Differences in predicted water quality were based on their primary hydrologic transport
mechanism. Nitrate relative error trends were similar to flow error given the close link between
its mobilization in surface and subsurface flow. Higher nitrate relative error for the HRU models
(18% to 29% for HRU, —1% to 13% for GRID-LAND, —3% to 12% GRID-STD) is likely tied to the
differences in subsurface flow. In particular, on average, GRID models tended to predict higher nitrate
loads relative to the HRU models (22 kg/ha/year HRU, 26 kg/ha/year GRID). Given that (1) soil water
content controls nitrogen mineralization within the SWAT model and (2) subsurface water transport
and processes were higher for the GRID models (e.g., higher tile flow of 6 mm/year GRID-LAND and
9 mm/year GRID-STD), relatively higher predicted nitrate export of the GRID models is expected.
For all models, total phosphorous and sediment slowly increased in relative error with coarsening
resolution, where the results of GRID models had a higher relative error (maximum relative error of
65% HRU, 74% GRID for total phosphorous; 72% HRU, 83% GRID for sediment). Phosphorous and
sediment transport are more closely linked to transport via surface runoff; thus, the lower runoff of the
GRID models (203 mm /year HRU, 184 mm/year GRID) is expected to drive these quantities down
compared to the HRU models and increase relative error. The nearly identical relative error between
the two GRID approaches for water quality variables is due to a lack of modified nutrient and sediment
algorithms to complement the grid-based spatial discretization, which is a known limitation of the
current landscape routing approach [20,31]. Furthermore, water quality variables were evaluated at
the landscape phase of the simulation, rather than the quantity transported to the watershed outlet,
diminishing the effects of the transport mechanism between the GRID approaches.

3.4. Spatial Considerations

Defining an appropriate resolution for simulation is a function of both terrain complexity and
topographic attributes [62] for a particular modeled area. These characteristics are related to the
input elevation, soils and land use data. As noted previously, other SWAT researchers have found
resolution to have little effect on flow [39-41,60] or decrease with increasing spatial resolution [36,37]
and have suggested a range of appropriate resolutions for HRU-based simulations. The curve number
methodology was commonly referred to as a limiting factor in studies where no effect was found on
flow (because it is unaffected by slope or the area simulated [40,63]), which is particularly critical for
aggregation of DEM data products. Other approaches where slope is explicitly considered, such as
TOPMODEL, have found greater flow with coarser spatial resolution [61]. Reducing the resolution
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of DEMs reduces mean slope and increases slope lengths [37,40,62] and can significantly affect
topographic indices [61,64]. From Table 7, slope also decreased with reduced resolution.

Table 7. Selected average input characteristics based on resolution and model type.

Model Area (km?) Mean Slope Mean CN2 Mean USLE-LS
30 HRU 700 0.278 76.7 0.432
60 HRU 683 0.201 75.8 0.304
90 HRU 683 0.016 75.8 0.244
150 HRU 623 0.012 76.4 0.183
250 HRU 748 0.008 75.6 0.139
500 HRU 630 0.005 76.0 0.110

1000 HRU 390 0.003 75.8 0.093

90 GRID 702 0.210 73.7 0.439
150 GRID 624 0.017 73.5 0.317
250 GRID 745 0.012 72.7 0.215
500 GRID 635 0.008 72.8 0.146
1000 GRID 385 0.005 723 0.110

The LS (Slope Length and Steepness) factor used in Universal Soil Loss Equation calculations,
and to a lesser extent, the curve number also decreased with reduced spatial resolution (Table 7).
These values directly relate to the movement and transport of nutrients and sediment, so reduced
values contribute to the lower quantities of sediment and nutrients predicted by these models.
Accordingly, even when minimal effects on flow occur, resolution still significantly affects water
quality predictions [39-41,65]. While the recommended coarsest resolution ranges between 100 and
500 m [37-39,42,60], results of this analysis are restricted by the inability to simulate SWATgrid at higher
resolutions and the choice of relatively coarse STATGO soils data. Although the results suggest 100 m
may be appropriate for Cedar Creek and similar Midwestern watersheds, more research is needed.

Changes in total watershed area between modeled resolutions is expected to contribute to
differences in predictions, where increasing area should lead to increasing flow and nutrient loads.
While lower flow was observed on a unit basis for the GRID models (Figures 3 and 4), the relationship
between flow and total watershed area was examined for all resolutions of each model type (Figure 5).
Although the HRU and GRID-STD approaches follow an expected monotonic relationship of increasing
flow with increasing area, for the GRID-LAND approach, this relationship is less pronounced. The key
difference between approaches is the use of the flow separation index. Frequency plots of the flow
separation index by resolution (Figure 6) show the shift from lower values to high values as resolution
is reduced. Given that there are fewer pixels to generate flow at coarser resolution, the flow separation
index increases in order to generate more channelized flow. Thus, the GRID-LAND approach relies on
both watershed area and the magnitude and distribution of the flow separation index. While previous
research has found this index to be highly sensitive to resolution [61] and difficult to validate [29],
these results suggest that the GRID-LAND approach responds appropriately by increasing the amount
of water that is channelized to account for the smaller number of available grid cells.

The final comparison between models considers the spatial characteristics of simulated output.
The primary advantage of SWATgrid, relative to the HRU-based approach, is the ability to simulate
and interpret results in a spatially-explicit manner. Results are considered qualitatively, given that
models were not individually calibrated. Output for the three model types is shown Figure 7 for
surface runoff (SURQ), lateral flow (LATQ) and groundwater flow (GWQ). Results are presented at the
scale of model routing, which is the subbasin level for HRU models and the grid cell for GRID models.
Much more spatial detail is observable in the GRID models. Surface runoff is related to soil type,
where soils with higher infiltration rates (A and B type soils) show lower runoff. The steeper areas
in the watershed around channels show greater runoff than flat areas. Banding seen in the northern
regions of the maps is due to precipitation gauge distribution. Unlike surface flow, lateral flow is



Water 2017, 9, 272

14 of 20

mostly higher in areas of high infiltration and is lower in very flat channelized regions. Groundwater
flow is similarly higher in regions of higher infiltration and is much lower in agricultural areas due to
the prevalence of tile drainage.
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Figure 5. Effect of area on average annual total stream flow for each model approach.
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SURQ (mm) LATQ(mm)

Figure 7. Spatial output for selected annual average surface runoff (SURQ), lateral flow (LATQ) and
groundwater flow (GWQ) for all model types at 90-m resolution. Values plotted at the unit of transport
(i.e., subbasins and grid cells) at the scale maximize visual contrast. STD, standard.

Observed networked flow patterns for the GRID-LAND model are not present in the GRID-STD
where landscape routing is removed, as there is no connection of flow components between grid cells.
Very high values were observed for some cells of the GRID models, which are the aggregation of
landscape flow from several cells. This seems to have occurred in a relatively small fraction of the
total cells and had previously been observed and discussed by Rathjens et al. [29]. Overall, the results
demonstrate that not only does landscape position matter in simulation, but the spatial distribution of
land use and soils is also important.

While the SWATgrid model provides capability to perform simulations in a more spatially-meaningful
way, several challenges to broader use remain. In particular, as current computational requirements
effectively impede calibration and scenario analysis, applications should focus on spatial analysis for
small watersheds (<500 km?), where only a few model runs are necessary and high resolution data can
be used as needed. Implementation should reflect modeling needs with the understanding of the
advantages and limitations afforded by the SWATgrid approach.

3.5. Calibration Effects

Computational restrictions for the SWATgrid model necessitate transferring calibrated parameters
from a standard HRU-based model [33]. Each HRU model developed at 30, 60, 90, 150, 250, 500 and
1000 m was calibrated independently for 5000 total simulations as previously described. The values
of the objective function (NSE) were within 5% of each other from 30 to 150 m and then declined
thereafter. As the model was calibrated to flow at the outlet, delineated watershed area had a large
role in determining the optimized NSE value due to the principles previously examined in the
preceding sections.
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Individual parameter ranges from calibration simulations are shown in Figure 8. For all six
calibrated parameters, values tended to be similar in the 30 to 90 m range. This suggests, specific to this
model and study area, that parameters may be transferable up to 90 m. However, the scale dependency
of parameters must be carefully considered for each model application, as they are often dependent on
how landscape representation is aggregated [34]. Previous research has similarly identified a spatial
input range of up to 100 m as suitable for watershed modeling [37,60,61,66], although it is empirically
based. While response varied by parameter, trends emerged in accordance with expected watershed
response. For snow-related parameters for resolutions coarser than 90 m, values trended toward less
snow and more water available. For these regions, there is less area to generate flow, with the exception
of the 250-m model. Accordingly, the 250-m model shows an opposite trend towards creating and
preserving snow, thus lowering flow at the outlet.
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Figure 8. Calibrated parameter ranges by resolution for: (a) snowfall temperature (SFTMP); (b) snow
melt temperature (SMTMP); (c) snow minimum melt factor (SMFMN); (d) snow maximum melt factor
(SMEMX); (e) snow pack temperature lag factor (TIMP); and (f) surface runoff lag coefficient (SURLAG).
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While only six parameters were calibrated in this study, the problem of equifinality does not
necessarily support inclusion of additional parameters; however, it is similarly difficult to exclude
parameters to explicitly minimize equifinality. Therefore, it is important to select appropriate sets of
parameter values for calibration that are directly related to the simulated variable being calibrated and
that are identified via sensitivity analysis. Understanding how these parameters function in the context
of the model framework, as well as their interactions is fundamental to performing a sound calibration.

4. Conclusions

Current SWAT applications utilizing the standard HRU-based approach are limited by the absence
of a spatially-explicit landscape position for HRUs. SWATgrid, a gridded approach that utilizes a
modified routing algorithm to allow interaction between grid cells, was developed to overcome this
limitation. However, SWATgrid remains largely untested with limited understanding of the effects of
user-defined input data resolution on simulation results. Further, computational overhead introduced
by SWATgrid restricts direct calibration, instead relying on parameter transfer from HRU-based
models. To better capture and understand SWATgrid simulations, three objectives were considered:
(1) identifying an appropriate resolution for SWATgrid simulations; (2) comparing SWATgrid to
commonly-used HRU-based SWAT models; and (3) evaluating the effect of input resolution on
model calibration.

Several SWAT models were tested over a range of resolutions with HRU-based, as well as
GRID-based approaches, with and without a modified routing technique. Corresponding to each
objective, it was found that: (1) flow and water quality simulated outputs tended to decrease
with reduced resolution; (2) the SWATgrid approach underpredicted flows and some nutrients;
underprediction was greater when using modified routing; and (3) calibrated parameter ranges showed
some stability below 90 m. Another key finding was a simulation limit for the GRID approach as a
function of both watershed area and grid cell size, which for the watershed tested was 90 m. Differences
between HRU-based and GRID models was due to differences in subsurface flows and increased
opportunity for loss of water to hydrologic landscape processes in the GRID-LAND approach. Further,
the different routing techniques employed by the models likely necessitate separate calibrations, rather
than parameter transfer from HRU-based to GRID models, although the transfer may serve as an
initial estimate.

Overall, these findings underscore the need for future testing and possible improvements to the
SWATgrid approach. However, it is important to recognize that based on the design of this study, the
output of the SWATgrid-based models is not necessarily incorrect, but rather different from HRU-based
simulations, which were directly calibrated at the 30-m level. In its current state, SWATgrid is most
useful in simulating relatively small watersheds (<500 km?) where it is beneficial to capture spatial
detail and interaction. As SWATgrid models at 30 and 60 m were not simulated, it is difficult to explicitly
define an appropriate scale, although 90 m may be appropriate for watersheds similar to Cedar Creek.
Future efforts should focus on a more in-depth analysis of the drivers and causes of simulation
differences between SWAT modeling approaches at other locations, improving the calculation and
use of the flow separation index, testing the model at higher resolution, using higher resolution
soils data and working to improve the computational efficiency of the SWATgrid model. A hybrid
approach that utilizes HRU-based SWAT to identify critical subbasins and subsequently modeling
these subbasins with the GRID approach may offer an opportunity to synergistically capitalize on
the strengths while minimizing the weaknesses of both approaches. Although the choice of model
structure and resolution inherently remains a function of the intended application, results from this
study can provide guidelines to identify an appropriate approach for future SWATgrid applications in
similar regions.
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