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Abstract: Potential impacts of climate change on the streamflow of the Bernam River Basin in Malaysia
are assessed using ten Global Climate Models (GCMs) under three Representative Concentration
Pathways (RCP4.5, RCP6.0 and RCP8.5). A graphical user interface was developed that integrates all
of the common procedures of assessing climate change impacts, to generate high resolution climate
variables (e.g., rainfall, temperature, etc.) at the local scale from large-scale climate models. These
are linked in one executable module to generate future climate sequences that can be used as inputs
to various models, including hydrological and crop models. The generated outputs were used as
inputs to the SWAT hydrological model to simulate the hydrological processes. The evaluation
results indicated that the model performed well for the watershed with a monthly R2, Nash–Sutcliffe
Efficiency (NSE) and Percent Bias (PBIAS) values of 0.67, 0.62 and −9.4 and 0.62, 0.61 and −4.2 for
the calibration and validation periods, respectively. The multi-model projections show an increase in
future temperature (tmax and tmin) in all respective scenarios, up to an average of 2.5 ◦C for under the
worst-case scenario (RC8.5). Rainfall is also predicted to change with clear variations between the dry
and wet season. Streamflow projections also followed rainfall pattern to a great extent with a distinct
change between the dry and wet season possibly due to the increase in evapotranspiration in the
watershed. In principle, the interface can be customized for the application to other watersheds by
incorporating GCMs’ baseline data and their corresponding future data for those particular stations
in the new watershed. Methodological limitations of the study are also discussed.
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1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) and other researchers have reported
compelling concerns revolving around the impact of climate change on our societies [1–3]. Climate
change is a global phenomenon exhibited by three prominent signals, that is: (1) global average
temperatures are gradually increasing; (2) changes in global rainfall patterns; and (3) rising of sea
levels. One of the major impacts of this phenomenon is on local water resource availability, whose
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impact will be felt by many sectors, including agriculture. According to the recent Fifth Assessment
Report by IPCC, the increase in temperature and warm trends will continue across most of the Southeast
Asia region in the current century and that water is expected to be a major challenge because of the
corresponding demand for it and lack of adaptive capacity to the impacts [4]. In Malaysia, climate
change-related policies are still underway, and most of the climate knowledge is largely inferred from
the Southeast Asia region due to limited local studies [5,6]. Effective adaptation measures require
good understanding of local changes taking into account the projections provided by global climate
models. Nowadays, basin-wide hydrologic investigations are becoming a basis for the implementation
of robust adaptation strategies [7,8]. This contribution assesses the effects of climate change on the
hydrological flows of the Upper Bernam River Basin in Malaysia.

Rice is an important staple food for a large section of the people, and yet, its water demand is
relatively high, accounting for over 80% of the country’s water resources [9,10]. The country’s rice
self-sufficiency policy of 85% is sustained through practicing the double-cropping method, which
requires constant supply of paddy water in the command areas at all times. Most of the rice farming
systems are run-of-the-river systems and depend largely on direct river flows. Due to insufficient
flows in certain periods, cultivation of paddy is usually staggered in phases to ensure constant supply
of water on rice fields. However, it is a well-known fact that in many run-of-the-river irrigation
schemes, water demand seldom matches the unreliable streamflows of rivers. In the past, this has led
to difficulties in allocating irrigation water to paddy farmers. The Bernam River Basin is one important
basin that supports paddy irrigation. The future outlook of climate change may thus pose serious
implications on water resources for future paddy production in this basin. A previous study assessed
only the impact of future land use changes on the flow of this river [11]. Assessment that also accounts
for climate change is therefore critical for planning and management of future water allocations.

To do this, information derived from Global Climate Models (GCMs) is currently the most suitable
in assessing both past and future likely changes in climate scenarios [12]. This climate information
is then used as input to drive hydrologic and water demand models. Long-term locally-observed
climate data are also required to validate climate model outputs to capture local conditions. However,
direct application of GCM outputs to any model for subsequent assessment of impact is discouraged
in climate studies because of resolution issues. GCMs run their simulations on large scales to account
for various grids across the globe. Yet, the hydrologic system or cropping system of interest is affected
by local climatic conditions [2,13]. The Bernam River Basin, for instance, is covered within an area of
1.2◦ × 1.0◦ longitude and latitude, whereas a GCM typically takes about 2.8◦ × 2.8◦ longitude and
latitude. To overcome this issue, downscaling is adopted, a process of bringing down the climate
information from GCM to hydrologic scales to produce outputs of higher resolution, which are more
realistic with the local scale before assessing the risks associated with the future hydrologic scenarios.

Several downscaling techniques have advanced over the past two decades, evolving from two
major schemes; dynamic downscaling and statistical downscaling techniques. The dynamic technique
is often viewed as a mini-GCM because it attempts to simulate local climate variables by reducing
the horizontal area covered (typically around 25 by 25 km or even smaller) using the same boundary
conditions as the driving GCM. Although they produce high resolution climate data, they have not been
widely adopted because of the costs and complexities involved in running this type of technique [14] in
order to capture local- or regional-scale climate variables. Statistical downscaling techniques, involving
methods such as, weather typing procedures, transfer functions and stochastic weather generators,
are the most popular methods used in climate change studies today [2,15]. They produce future
climate scenarios based on a statistical relationship between climate variables at one or more GCM
grid points with the variable of interest at a particular station. They are adopted because they are
relatively inexpensive to apply and also give point climate data at a specific site of interest [16]. A more
inclusive review of these approaches as relates to hydrologic impact assessment is covered by [7]. Each
method has its merits and demerits, and the choice will depend largely on the purpose of the study,
the availability of observed data, the scale of required data (daily or monthly, etc.) and the size of the
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study area. In areas where there are no readily-available regional climate model outputs, such as in
Malaysia, the change factor or delta method is widely used [7] on the GCM outputs for hydrological
and crop modeling studies [2,17–19].

Carbon emission scenarios are the main forcings in driving climate models. Scenarios are pictures
or images of how the world is likely to evolve in the future in terms of greenhouse gas [20]. In the
present study, we use the latest scenarios, called Representative Concentration Pathways (RCPs), which
have rarely been applied in Malaysia. RCPs offer a better understanding in terms of the concentration
of future greenhouse gases for running climate models than previous scenarios [21,22]. The downscaled
simulation outputs are then applied in a separate hydrologic model to develop future hydrologic
scenarios for a particular river basin. The Soil and Water Assessment Tool (SWAT) is a widely-applied
model in assessing hydrologic impacts. Global SWAT model applications are summarized in the work
of [23].

The main hydrologic impact of interest in this study is the monthly flows of the Bernam River
Basin as a main source of water for the large irrigation scheme in the basin. However, generating
future climate scenarios is still a challenge, as it involves several steps before outputs can be employed
in impact assessments. In this study, a simple graphical user interface was developed that integrates all
of the procedures of assessing climate change impacts, which includes GCMs and scenarios’ selection,
downscaling procedures, climate projections. These procedures are linked in one executable module to
generate future climate sequences that can be used as inputs to various models including hydrological
and crop models. The core objective of the study, therefore, is to investigate the potential effects of
climate change on the flows of the Bernam River Basin using the projections of the 5th Assessment
Report of the IPCC. This involves: (1) evaluating the performance of the SWAT model for the
simulation of flows in the Bernam River Basin; (2) developing an interface for the rapid simulation of
climate variables (e.g., rainfall, temperature, etc.) at the local scale from large-scale climate models;
(3) evaluating future changes in rainfall and temperature patterns in the basin; and (4) investigating
future changes in the flow scenarios of the basin. The results will be used as input in a decision support
system for modeling water allocation and planning for a run-of-the-river irrigation scheme under
climate change impacts in Malaysia.

2. Materials and Methods

2.1. The Watershed

The Upper Bernam River watershed is located at the boundary between the States of Perak
and Selangor (Figure 1). The river covers a basin area of 1097 km2 stretching about 127 km before
discharging into the Malacca Strait. The watershed has a mean elevation of about 950 m above sea level
(m a.s.l.). The lowest point is situated at 201 m a.s.l. at the Bernam River gauging station No. 3813411,
and the highest point is 1800 m a.s.l. at the edge of Pahang State. The river flow routes through
sections of a large forest complex, oil palm, rubber and paddy farms. The watershed has a humid
tropic climate that is largely characterized by the two predominant rainfall seasons [24], the Southwest
Monsoon and the Northeast Monsoon. In the agricultural context, these have generally been defined
as the “dry season” (January–June) and the “wet season” (July–December), respectively. The average
annual rainfall over the watershed is 2545 mm, which is concentrated mostly between September and
December and to a limited extent in April–May. Generally, maximum and minimum temperatures
are fairly constant throughout the year in Malaysia with the mean values of 31.5 ◦C and 22.3 ◦C,
respectively [25].
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the dry season, rice cultivation has been re-staggered into four Irrigation Service Areas (ISAs I, II, III 
and IV) beginning from January (ISA I) through to June (ISA IV). The cycle is repeated for the wet 
season from July (ISA I) through to October (ISA IV) before the heavy rains begins. Water is diverted 
at the Bernam headworks, conveyed by canal systems and distributed in-field by several tertiary 
canals. Flow records at the SKC station have relatively long records dating as far back as the 1960s. 
The streamflow is high during the wet season and declines during the dry season, and reports on 
potential water shortages and rationing are common during the latter period. In the past, the rice 
scheme suffered frequent water shortages due to: (1) water shortages during the dry season months; 
(2) constraints to the delivery of water and timing; and (3) water management practices that led to 
inefficient use of water. Therefore, knowledge of future streamflow is indispensable for this scheme 
in order to minimize its proneness to likely future drought conditions. 

2.2. The Study Framework 

This study has combined three aspects: firstly, developing a MATLAB-based interface for rapid 
simulation of climate variables at the local scale from large-scale climate models; secondly, for input 
to a hydrological model, assessment of climate change impacts on the statistically downscaled climate 
variables (rainfall and temperature); and lastly, assessment of the response of the river’s hydrologic 
system to changes on downscaled climate variables. The methodological framework followed for the 
study is shown in Figure 2 and involves: (i) the preparation of spatial and climate data into SWAT 
format; (ii) model setup, including watershed delineation and Hydrologic Response Units (HRUs) 
definition; (iii) model calibration and validation; (iv) downscaling of climate variables; and (v) 
application into the hydrologic model. 

Figure 1. Map of study area: Upper Bernam watershed, Malaysia.

Agriculture is the dominant type of land use within the basin with over 60% of the land being
used for forest, oil palm, rubber and paddy rice production. The river is the major source of irrigation
water for the Tanjung Karang Rice Irrigation Scheme (TAKRIS), located near the watershed. TAKRIS
is the 4th largest rice scheme in the country with approximately 19,800 hectares planted with rice all
year round under the double-cropping planting system. Because of low flows in the Bernam runoff
during the dry season, rice cultivation has been re-staggered into four Irrigation Service Areas (ISAs I,
II, III and IV) beginning from January (ISA I) through to June (ISA IV). The cycle is repeated for the
wet season from July (ISA I) through to October (ISA IV) before the heavy rains begins. Water is
diverted at the Bernam headworks, conveyed by canal systems and distributed in-field by several
tertiary canals. Flow records at the SKC station have relatively long records dating as far back as the
1960s. The streamflow is high during the wet season and declines during the dry season, and reports
on potential water shortages and rationing are common during the latter period. In the past, the rice
scheme suffered frequent water shortages due to: (1) water shortages during the dry season months;
(2) constraints to the delivery of water and timing; and (3) water management practices that led to
inefficient use of water. Therefore, knowledge of future streamflow is indispensable for this scheme in
order to minimize its proneness to likely future drought conditions.

2.2. The Study Framework

This study has combined three aspects: firstly, developing a MATLAB-based interface for rapid
simulation of climate variables at the local scale from large-scale climate models; secondly, for input to
a hydrological model, assessment of climate change impacts on the statistically downscaled climate
variables (rainfall and temperature); and lastly, assessment of the response of the river’s hydrologic
system to changes on downscaled climate variables. The methodological framework followed for
the study is shown in Figure 2 and involves: (i) the preparation of spatial and climate data into
SWAT format; (ii) model setup, including watershed delineation and Hydrologic Response Units
(HRUs) definition; (iii) model calibration and validation; (iv) downscaling of climate variables;
and (v) application into the hydrologic model.



Water 2017, 9, 226 5 of 23

Water 2017, 9, 226  5 of 22 

 

 
Figure 2. Framework of the study for the assessment of climate change impacts on future flows of the 
Bernam River Basin. NS, Nash–Sutcliffe; PBIAS, Percent Bias. 

2.3. Data Source 

The SWAT model requires observed climate and spatial data to force the rainfall-runoff 
simulation process. Detailed information about the data used in this study, including the data type 
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Observed climate data in the watershed area are largely of poor quality due to a series of years 
of missing values. For this reason, a gridded daily hydro-meteorological dataset developed in a 
separate study [26], covering the whole Peninsular Malaysia, was used in this study. The variables 

Figure 2. Framework of the study for the assessment of climate change impacts on future flows of the
Bernam River Basin. NS, Nash–Sutcliffe; PBIAS, Percent Bias.

2.3. Data Source

The SWAT model requires observed climate and spatial data to force the rainfall-runoff simulation
process. Detailed information about the data used in this study, including the data type and their
source, is presented in Table 1.

Table 1. Summary of the input dataset for flow modeling of Bernam River Basin.

Data Data Source Data Description

Digital Elevation
Model (DEM) DIVA-GIS (GIS Data Depository Organization) Elevation, overland, channel

slopes, boundary

Soils Map Department of Agriculture (DOA) Soil classification and properties

Land Use Map Department of Agriculture (DOA) Land use classification: cropland,
forest, pastures, etc.

Climate Data Department of Irrigation and Drainage (DID) Daily rainfall, maximum and
minimum temperature (1976–2005)

Streamflow Department of Irrigation and Drainage (DID) Daily stream outflow (1975–2006)

Observed climate data in the watershed area are largely of poor quality due to a series of years of
missing values. For this reason, a gridded daily hydro-meteorological dataset developed in a separate
study [26], covering the whole Peninsular Malaysia, was used in this study. The variables used include
daily rainfall (mm/day) and daily air temperatures (◦C) (maximum and minimum). The data are
gridded from daily observed data at a spatial resolution of approximately 5 km based on Angular
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Distance Weighting (ADW) procedure, which performs relatively better in areas with sparse data,
like in Malaysia. The gridded data were developed using observed data obtained from different
sources, including the automatic data logger and the telemetry network database of the Department of
Irrigation and Drainage (DID) and the Malaysia Meteorological Department (MMD). A small amount
of data was also obtained from the publicly accessible Global Summary of the Day (GSOD) archive
and the Global Energy and Water Balance Experiment (GEWEX) research program Asian Monsoon
Experiment (GAME) archive. The data were checked for quality using several levels of data quality
control, including discarding daily observations with statistics not supported by long-term MMD key
stations and also station series with less than 40 rain days and more than 247 rain days, as well as
annual amounts not consistent with long-term records. A detailed overview of the data processing,
quality control and the methodology used in the data development is given by [26,27]. The final
processed data used in this study were requested and obtained from the Department of Irrigation and
Drainage (DID) of Malaysia. Eight existing stations of rainfall and two for temperature located within
the watershed were considered to represent the historical spatial climate of the basin. The gridded
data were extracted from the DID database based on the coordinates of these stations from January
1976 to December 2005. For rainfall, a threshold value of 0.5 mm was applied in order to remove small
rainfall amounts.

Spatial information used in the model includes watershed land cover/land use, soils and the
Digital Elevation Model (DEM). The DEM data corresponding to the study area were obtained from
DIVA-GIS (www.diva-gis.org), DIVA-GIS is a free computer program for mapping and geographic
data analysis (GIS). The DEM was re-sampled to 30-m resolution and used to apportion the basin into
23 sub-basins and 145 HRUs and generate drainage patterns based on the spatial data distribution
within the watershed (Figure 3). The elevation in the Bernam River basin ranges from 201 m in the
lower plains to 1800 m in the upper region.
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Soil and land use maps of 2002 were obtained from the Department of Agriculture (DOA) as
jpeg and were digitized into vector format using ArcGIS10.1. The land use map distinguishes eight
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land use classes, with forest (53.5%), oil palm (21.7%) and rubber (18.1%) being dominant in the
study area. Soil properties such as soil depth, texture and water holding capacity were obtained from
several sources for the SWAT database [28,29]. Details on land use and soil distribution are shown in
Figure 4b,c.
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Figure 4. Spatial input data in the SWAT model for Bernam River Basin, including: (a) Digital
Elevation Model (DEM) at 30-m resolution; (b) reclassified land use dataset; (c) soils dataset from DOA;
(d) sub-basins’ partition.

Daily streamflow records (m3/s) at the Bernam River gauging station No. 3813411, located at the
outlet of Sub-basin 16, were obtained from the same department (DID). The station has long enough
flow records, but only the segment from January 1976 to December 2005, corresponding to the climate
data, was used in the study. Missing values of discharge were filled using long-term averages of
the station.

Future climate projections over the Upper Bernam watershed were extracted from ten Global
Climate Models (GCMs) obtained from the Program for Climate Model Diagnosis and Inter-comparison
(PCMDI) (http://pcmdi3.llnl.gov/esgcet/home.htm). GCMs were selected on the basis of: (1) the
availability of the climate variables on a daily time scale for both baseline and future runs; and
(2) addressing of inherent uncertainties in climate models. Three emission scenarios, namely the
medium stabilization scenario (RCP4.5), the medium-high scenario (RCP6.0) and the very high scenario
(RCP8.5), were selected on the basis of the high social development index exhibited by Malaysia based

http://pcmdi3.llnl.gov/esgcet/home.htm
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on a UNEP study [30]. However, at the time of downloading these data, the very-low forcing scenario
(RCP2.6) was not available due to technical issues when changing from the old gateway to the new
official site. Table 2 gives an overview of the GCMs used in this study.

Table 2. List of Global Climate Models used in this study.

Organization GCM
Resolution

Latitude Longitude

Canadian Centre for Climate Modelling and Analysis CanESM2 2.8 2.8

National Center for Atmospheric Research CCSM4 1.25 0.94

Centre National de Recherches Météorologiques/Centre Européen de
Recherche et Formation Avancée en CalculScientifique CNRM-CM5 1.4 1.4

Commonwealth Scientific and Industrial Research Organization in
collaboration with Queensland Climate Change Centre of Excellence CSIRO 1.8 1.8

NOAA Geophysical Fluid Dynamics Laboratory GFDL-ESM2G 2.5 2.0

NOAA Geophysical Fluid Dynamics Laboratory GFDL-ESM2M 2.5 2.0

Met Office Hadley Centre HadGEM2-CC 1.88 1.25

Met Office Hadley Centre HadGEM2-ES 1.88 1.25

Max-Planck-Institutfür Meteorologie (Max Planck Institute for Meteorology) MPI-ESM-LR 1.88 1.87

Meteorological Research Institute MRI-CGCM3 1.1 1.1

Notes: Canadian Earth System Model (CanESM2); Community Climate System Model (CCSM4); Centre National
de RecherchesMétéorologiques/Centre Européen de Recherche et Formation Avancée en CalculScientifique
(CNRM-CM5); Commonwealth Scientific and Industrial Research Organization (CSIRO); Coupled Global Climate
Model (CGCM3); Max Planck Institute for Meteorology (MPI-M), the new Earth system model (MPI-ESM-LR);
Hadley Global Environment Model 2—Earth System (HadGEM2-ES); Hadley Global Environment Model 2—Carbon
Cycle (HadGEM2-CC); Earth System Models using Generalized Ocean Layer Dynamics (ESM2G); Earth System
Models using the Modular Ocean Model (GFDL-ESM2M).

2.4. The SWAT Model

The SWAT model, a product of the United States Department of Agriculture (USDA), is one
of the hydrological models used by several researchers and agencies for water resource planning,
which has contributed significantly in many scientific fields globally, including climate change
assessments [18,31]. The extensive support from model developers through sufficient documentations
on its use, annual seminars and continuous improvements by its users are some of the reasons
that motivate its world-wide adoption, including this study. The model is a continuous-time,
semi-distributed, process-based river basin model for simulation of the impact of land management
practices and natural factors on water, sediment and nonpoint source pollution in large watersheds [32].
The key components for the SWAT model consist of; hydrology, weather, sedimentation, nutrients,
crop growth, agricultural management and stream routing [33]. In this study, the focus is only on the
hydrologic component of the model. SWAT offers spatial details of the watershed by way of dividing
the watershed into several smaller units called sub-basins. The sub-basins are further divided into
homogenous standardized units known as ‘Hydrologic Response Units’ (HRUs) characterized by
uniform soil-land use and slope representing a unique hydrologic response [34]. Water balance is the
main driving force behind the SWAT model, as it affects many of the processes, including plant growth
and movement of sediments and other components. Soil water content is computed using the water
balance equation (Equation (1)).

SWt = SW0 +
t

∑
i=1

(
Rday − Qsurf − Ea − Wseep − Qgw

)
(1)

where SWt denotes the soil water content (mm), SW0 denotes the initial soil water content in day i
(mm), t denotes the time (days), Rday is the amount of precipitation in day i (mm), Qsurf denotes the
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amount of surface runoff in day i (mm), Ea is the amount of evapotranspiration in day i (mm), Wseep is
the amount of percolation/seepage in day i (mm) and Qgw is the amount of return flow in day i (mm).

The surface runoff for each HRU is then simulated by the model by solving the water-budget
components comprised of rainfall, runoff, evapotranspiration, percolation and return flow from the
subsurface and groundwater flow and then aggregating this for the entire basin [33]. The model then
gives discharge simulation outputs at each sub-basin and the whole basin at the outlet specified by
the user. The surface daily discharge is estimated using the Soil Conservation Service (SCS) curve
number method. Evapotranspiration is also computed using either the Hargreaves, Priestley–Taylor
or the Penman–Monteith methods. Channel flow is predicted using either the variable coefficient
method [35] or the Muskingum method. Further details on SWAT operation and the driving algorithms
may be found in [36] and other user manuals. The basic assumption on the use of SWAT for climate
change impact assessment is that land cover and soil properties and their hydrological behavior remain
unchanged in the future.

2.5. Model Setup, Calibration and Validation

Model setup involves creating necessary working folders and databases to store all of the data for
running the model. The latest ArcSWAT 2012, a GIS-based version, was used in this study to setup the
model and is freely available to the public through the SWAT website. Model setup was accomplished
using the spatial data and gridded climate datasets described earlier as inputs for the setup phase,
shown in Figure 4.

Model calibration is the process of selecting the most suitable parameters for running a model to a
given set of local conditions to reduce prediction uncertainty; whereas, model validation is the process
of demonstrating that a given model is capable of making sufficiently accurate predictions based on
the purpose of the project [36]. The SWAT Calibration and Uncertainty Programs tool (SWAT-CUP)
developed by [37] was employed for model calibration, validation and sensitivity analysis. Among
the four calibration methods found within SWAT-CUP, the Sequential Uncertainty Fitting algorithm
(SUFI-2) was chosen because it can be run with several parameters (e.g., CN2, ALPHA_BF, ESCO,
GW_REVAP, CH_N2, SOL_BD, GW_DELAY, GWQMN, CH_K2—see Table 8) in the smallest number of
model runs to achieve good prediction uncertainty ranges [38,39], which is an important characteristic
for computationally-demanding models [39]. The SUFI-2 approach combines both calibration and
uncertainty analysis to find parameter uncertainties. The uncertainty reflects all sources of uncertainties,
including those of the model itself, the driving variables (such as rainfall), parameters and input data.
The detailed conceptual basis of SUFI-2 can be found in [38].

Generally, hydrological models require a “warm-up” period, defined as the time the model
will run before starting to generate the actual outputs, in order to eliminate the initial bias. In this
study, the monthly discharge records were split into two datasets for model calibration (1981–1998)
and validation (1999–2006). The periods 1976–1980 and 1994–1998 were used as “warm-up” periods
for calibration and validation purposes, respectively, to allow the model to initiate the hydrological
parameters. Nine parameters as relates to streamflow, subsurface and base flow were selected for
model calibration against monthly streamflow, and are presented in Section 3.3.1. Their initial ranges
were considered based on information from other similar studies [11,18,40] and the SWAT user guide.
Ranges were adjusted using the three qualifiers (r_relative, a_absolute and v_substitute) to capture
the hydrological process of the basin. SUFI-2 was then run with 500 runs, and the statistical and
uncertainty measures were calculated and new parameter ranges generated. The new final parameter
values were obtained at the optimal objective functions and became the parameter range to be used for
model validation with no further changes.

2.6. Model Prediction Evaluation

The model was evaluated on the basis of the statistical relationship between the simulated and
observed flow outputs. The SUFI-2 allows for use of several objective functions; for this study, three
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objective functions were used for evaluating the model. The determination coefficient, R2 (Equation (2)),
is used to evaluate the correlation between the simulated and observed flow data, with a range from
−1 to 1 [41,42]. Nash–Sutcliffe Efficiency (NSE) (Equation (3)), which is widely used in hydrological
studies, measures how well the plot of simulated versus observed data fit the 1:1 line [40]. Values of
NSE closer to 1 indicate better model performance. The Percent Bias (PBIAS), which measures the
average tendency of the simulated data becoming more or less than their observed counterparts, was
calculated using Equation (4) [43]. Model prediction evaluation was categorized as satisfactory if R2

and NSE are >0.5 and PBIAS < ±25, based on [44] the criteria.

R2 =
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∗ (100)
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(
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i

)
 (4)

The notations Psim
i and Pobs

i denote simulated and observed flows, respectively; Pmean denotes the
mean of the observed flow; and n denotes the total number of flow observations.

2.7. Graphical User Interface for Generating Future Climate Data

2.7.1. Future Climate Data

Future projections of rainfall and temperature (maximum and minimum) data were extracted
from 10 GCMs (shown in Section 2.3) and three carbon scenarios (RCP4.5, 6.0 and 8.5), obtained from
the Program for Climate Model Diagnosis and Inter-comparison (PCMDI). GCM grid points were
selected on the basis of climate stations’ coordinates within the watershed. GCMs’ grid points whose
latitude and longitude are nearest to these stations were considered. Each GCM has four grid points,
and in this study, all stations in the Bernam River watershed fit within a single grid cell in all of the
GCMs used.

2.7.2. Graphical User-Interface Development

It is acknowledged in climate change assessment studies that most GCMs are inherently poor in
simulating some of the climate variables compared to others, and therefore, their outputs cannot be
used directly in hydrologic modeling studies [45,46]. For this reason, downscaling is used to bridge
this gap in impact assessment studies. However, downscaling is still a complex and time-consuming
task for many water users who are laymen in this field. In this study, a hydro-meteorological graphical
user interface was developed that integrates all of the common procedures of assessing climate change
impacts, which includes GCMs and scenarios selection, downscaling procedures, climate projections
and linking with the SWAT hydrological model.

The interface is based on the delta method (also referred to as delta change factor methodology)
as a statistical downscaling algorithm to create high resolution future rainfall and temperature
projections at the station scale. It is an ordinary bias correction method, which is used in many
climate change impact assessment studies to reduce the bias between the observed station data and
GCMs’ outputs [47,48]. The methodology modifies the observed daily time series of the climate
variables by adding and/or multiplying monthly mean changes of GCM outputs using the adjusting
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formulas. The adjusted formulas for modified daily temperature maximum (tasmax) and temperature
minimum (tasmin) are expressed by Equations (5) and (6), and the modified daily rainfall is expressed
by Equations (7) and (8). A baseline or control period is established from which to compare the future
periods. A baseline period of 1960–1990 is suggested by the World Meteorological Organization for
climate change studies. However, due to the lack of good quality data in the study area prior to 1976,
the current study adopted 1976–2005 as a baseline period corresponding to the SWAT calibration and
validation period.

Change factors for the GCM grid-box encompassing the catchment area are calculated for
each month in the future years relative to the baseline. In the case of rainfall, relative changes
of future rainfall are employed, and absolute changes from the baseline period are used for the case of
temperature. Future climate sequences are then generated from the interface by perturbing the baseline
observed series using change factors derived from mean projected changes in that particular variable
from climate models. The advantage of this tool is that it reduces the task of downscaling from the
part of users who may be laymen and also allows the speed of application of climate scenarios at the
local scale. The tool can also be customized for the application to other geographical areas by simply
incorporating observed data for those new stations and their corresponding baseline and future GCMs’
outputs for computing change factors. Moreover, these change factors can always be updated quickly
as simulations from new GCMs and emission scenarios become available in the future. The delta
method has been applied widely in hydrological and crop water demand studies around the world,
including South Korea [17,19,49].

Pdelta =
(
Pfuture/Pcontrol

)
monthly (5)

Pfuture,daily = Pobserved,daily x Pdelta (6)

Tdelta =
(
Tfuture − Tcontrol

)
monthly (7)

Tfuture,daily = Tobserved,daily + Tdelta (8)

where the notations P and T imply rainfall and temperature, respectively, the subscripts are as follows:
delta,daily denotes the downscaled daily variable using the delta method; observed,daily denotes
daily observations; future denotes the average monthly of GCM output for the future period; control
denotes the average monthly of GCM output for the control or baseline period.

The user-friendly interface is implemented in MATLAB and its Graphical User Interface
Development Environment (GUIDE). The interface is based on a mouse-driven approach with pop-up
windows, pull-down menus and button controls. The advantage of using MATLAB is its computational
capability, since climate change studies involve large amount of datasets that require file handling, data
extraction, data processing and computations. It has support for read and write assorted data formats,
with many built-in computational functions, and can create data visualizations. Several scripted
functions were developed for the GCMs with each running under any of the three RCP scenarios
(RCP4.5, RCP6.0 and RCP8.5). The interface is a separate executable module, and the large amount of
GCMs data is contained in the MATLAB database, allowing for rapid replacement or upgrading as
new climate scenarios and/or GCMs become available. Figure 5 shows the main dialog window for
generating the perturbed future climate data for use as input variables in the validated SWAT model.
The step-by-step flowchart for simulating daily climate sequences within the interface is presented
in Figure 6.
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3. Results and Discussion

3.1. User-Interface Operation and Outputs

The previous figure (Figure 5) shows the dialog window for simulating daily sequences of climate
variables using the interface. To run a simulation, the user selects the station, variable of interest, GCM,
RCP scenario and simulation period using the drop-down buttons. The “Time Series Generation”
button will appear green, implying that simulation has been achieved, and a confirmation window
will appear. Simulated outputs can be derived either from a single GCM or ensemble projection under
a selected RCP emission scenario. Available outputs are on daily and monthly time series, can be
selected for viewing under the “Analysis and Statistics” button as pop-up tables and graphs and
can be saved in Excel format for SWAT inputs. Figures 7 and 8 show outputs examples of future
climate variables’ (temperature and rainfall) time series generated using the interface for input into the
validated SWAT model.
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3.2. Future Climate Change Scenarios

Future rainfall and temperature (tmax and tmin) variables generated from the interface and analysis
of future changes for GCM-scenario combinations with respect to the baseline were done using the
‘period change’ approach of 30-year monthly time segments centered on three prescribed future periods
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of the 2020s (2010–2039), 2050s (2050–2069) and the 2080s (2070–2099). Statistics of the projected outputs
for different future periods are summarized and presented in the tables and figures.

3.2.1. Projected Temperature

Table 3 and Figure 9 show annual changes in temperature (tmax and tmin) ensemble projections
from ten models in the future under RCP4.5, RCP6.0 and RCP8.5. The tmax is projected to increase in
all scenarios’ future periods. The projected increases in tmax of the multi-model ensemble for the three
future periods range from 0.7–1.6 ◦C, 0.5–1.9 ◦C and 0.8–3.3 ◦C, under RCP4.5, RCP6.0 and RCP8.5,
respectively. Similarly, the mean annual tmin is also predicted to increase by a range of 0.7–1.8 ◦C under
RCP4.5, from 0.5 to 1.9 ◦C under RCP6.0 and from 0.8 to 3.4 ◦C under RCP8.5 for the same periods.
The largest monthly mean changes are observed during the dry season months (February–June) in
all scenarios, with the most severe scenario, RCP8.5, recording significant increases of up to 3.7 ◦C
for both tmax and tmin. Figure 10 shows output of the temperature maximum (tmax) projections by
individual GCMs generated from the interface. There is a general consensus in all models with respect
to temperature increases in the future under all three emission scenarios. This implies that the Bernam
River watershed will experience warmer periods in the future, especially during the dry season months.
These future changes are consistent with the IPCC findings for the Southeast Asia region [1,4].

Table 3. Annual changes in future tmax, tmin and rainfall under the RCP45, 60 and 85 scenarios.

Periods
Annual Changes Corresponding to Scenarios

RCP4.5 RCP6.0 RCP8.5

Maximum temperature (◦C)
2020s 0.7 0.5 0.8
2050s 1.3 1.1 1.9
2080s 1.6 1.9 3.3

Minimum temperature (◦C)
2020s 0.7 0.6 0.9
2050s 1.4 1.2 2.0
2080s 1.8 1.9 3.4
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3.2.2. Projected Mean Rainfall

Table 4 shows future changes in rainfall amounts between the two agricultural seasons (dry and
wet) from the ensemble projections of the 10 GCMs, while Figure 11 shows specific monthly changes.
There is a clear divide in predicted future rainfall amounts between the two seasons, with the dry
season receiving reduced rainfall compared to the wet season for all of the scenarios. For the dry
season, the average changes are −2.4%, −3.2% and −3.7% under RCP4.5, 6.0 and 8.5, respectively.
The decrease ranges from −0.4% (RCP4.5) in the 2020s period to −7.1% in the 2080s under the most
severe scenario (RCP8.5); whereas, the average changes in the wet season are 1.0%, 0.8% and 2.4%
for RCP4.5, 6.0 and 8.5, respectively, with a range of 0.2% (RCP4.5 and 6.0) in the 2050s to 2.7% in the
2080s (RCP8.5).

Table 4. Annual changes in future rainfall under the RCP45, 60 and 85 scenarios.

Periods
Annual Changes Corresponding to Scenarios

RCP4.5 RCP6.0 RCP8.5

Average change (Dry season) −2.4 −3.2 −3.7
2020s −0.4 −1.8 −0.7
2050s −3.2 −1.8 −3.3
2080s −3.6 −6.1 −7.1

Average change (Wet season) 1.0 0.8 2.4
2020s 2.0 2.5 2.7
2050s 0.2 0.2 1.8
2080s 0.9 −0.4 2.7

Average change (Annual)
2020s 0.8 0.4 1.0
2050s 0.2 0.2 1.8
2080s 0.9 −0.4 2.7

Note: Rice farming seasons: (1) dry season: (January–June); (2) wet season: (July–December).
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From Figure 11, it can be seen that rainfall fluctuates between the months in all three scenarios
and future periods. Most of the dry season months (January, February, March and June) show a
decreasing trend in rainfall for most future periods and scenarios, with the exception of April and
May. The largest decrease is 14.8% in the 2020s (RCP4.5), 23% (RCP6.0) and 29% (RCP8.5) during the
2080s period. The months April and May are predicted to have reasonable amounts of rainfall due to
the Southwest Monsoon, which normally dominates the dry season period (January–June), but has a
marked influence during these two months. Rainfall is predicted to increase during the wet season
months especially from September to December, with the exception of July and August. The largest
increase is 34.3% in October of the 2080s under the RCP8.5 scenario. This trend could lead to the
occurrence of more frequent flood events corresponding to the current situation.

Based on the multi-model projections, the results indicate the overall average changes in annual
rainfall of 0.8%, 0.4%, 1.0% for the 2020s, 0.2%, 0.2%, 1.8% for the 2050s and 0.9%, −0.4%, 2.7% for the
2080s under the RCP4.5, 6.0 and 8.5 scenarios. This means that GCMs’ projected rainfall will result in
an increase at the end of the current century. The results are consistent with [6], which indicated that
future rainfall will slightly increase within the Johor River Basin (JRB) as a result of locally projected
climate from GCMs. There was no observed apparent difference among the eight stations in the basin
with respect to future temperature and rainfall changes, possibly due to the small size of the watershed
size (1097 km2), where all of the stations were within one GCM grid cell; however, a significant
difference can be expected when comparing with other watershed areas.

3.3. Hydrological Impacts of Climate Change

3.3.1. Model Calibration and Validation

Historical gridded hydro-meteorological data from eight stations (in the case of rainfall) and
two stations (in the case of temperature) were used to setup the SWAT model for the baseline period
(1976–2005). Sensitivity analysis was performed to guide the calibration process and in identifying
parameters that have significant impact on the streamflow. Table 5 presents the nine parameters in
decreasing order of sensitivity that are influential in the Bernam streamflow. The SWAT-CUP parallel
processing option was installed to accelerate the process of calibration by decreasing the overall time
for processing.

Table 5. SWAT parameter changes during calibration stage.

Rank Parameters Description File
Final Parameter Range

Min Max

1 CN2 (SCS curve number) .mgt −0.3000 0.3000
2 ALPHA_BF (Baseflow alpha factor) .gw 0.0000 1.0000
3 ESCO (Soil evaporation compensation factor) .hru 0.0000 1.0000
4 GW_REVAP (Groundwater revap coefficient) .gw 0.0000 0.4000
5 CH_N2 (Manning’s value for main channel) .rte 0.0000 0.3000
6 SOL_BD (Soil bulk density) .sol −0.0270 0.3000
7 GW_DELAY (Groundwater delay) .gw 30.000 450.00
8 GWQMN (Threshold water depth in the shallow aquifer for flow) .gw 0.0000 1.8800
9 CH_K2 (Channel effective hydraulic conductivity) .rte 4.0000 130.00

Average monthly observed streamflow values were compared with the simulated values to the
calibrate parameters of the model. Results on the calibration period (1981–1998) are slightly better
than during the validation period (1999–2000), as shown in Figure 12. Generally, the calibrated results
are satisfactory, with R2, NSE and PBIAS values of 0.67, 0.62 and −9.4 and 0.62, 0.61 and −4.2 for the
validation period. Observed and simulated monthly flows matched reasonably well for the calibration
period. The results show slight over-prediction of flows in some months after further adjustments had
been done on base and subsurface flow-related parameters. The model was able to capture some of
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the peak flow events although with some over-prediction in certain periods. Model validation was
performed using eight years (1999–2006) of streamflow subset data. Validation results also show a
good match between observed and simulated flow values at SKC station. However, it is noted that
the validation result for the simulated monthly streamflow highly deviated from the observed values
especially at Month Numbers 10–13 and also at Month Numbers 83–96. It is not surprising to see
this scenario, as part of the reason could be that these months had gross missing values, which were
estimated using long-term averages of the station. In addition, studies also show that often times,
statistical values during the validation period rarely get higher than those for the calibration period for
the simple reason that parameters have been optimized for the calibration period, which could likely
be the reason for this case [50,51]. Overall model performance results are acceptable, as suggested by
the [44] evaluation criteria and can reasonably be applied for hydrological impact in the basin.
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3.3.2. Streamflow Changes Corresponding to Future Scenarios

The downscaled rainfall and temperature outputs from the interface were used as inputs to
the validated SWAT model to explore the responses of the Bernam streamflow in the future years.
The 25 simulation results are presented as changes relative to the baseline period. The effect of emission
scenarios was analyzed by combining all runs made with the same emission scenarios irrespective
of the GCM. Table 6 presents the average future changes in seasonal streamflow under the RCP4.5,
6.0 and 8.5 scenarios based on multi-model projections. A clear change is observed between the dry
and wet season in terms of future streamflow in the Bernam River basin. The average changes under
RCP4.5, 6.0 and 8.5 are −1.5%, −2.8% and −4.3%, respectively, during the dry season. Generally,
all future periods show a decreasing trend in streamflow during this season, with a significant decrease
(−6.6%) occurring in the late century (2080s) of the RCP8.5 scenario. The wet season, on the other
hand, is predicted to receive more rainfall with average changes of 4.4%, 5.0% and 9.4% for RCP4.5,
6.0 and 8.5, respectively. The maximum increase (11.4%) is predicted to occur in the 2080s under the
worst-case scenario (RCP8.5). This is consistent with the predicted monthly changes in rainfall and
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temperature patterns in the future. The predicted increase in temperature would likely result in the
increase in evapotranspiration and interfere with the decrease in streamflow directly.

Figure 13 presents monthly fluctuations of streamflow during future periods under all three
scenarios. For most scenarios, the streamflow showed a decreasing trend during January, February
and March (with the exception of April and May) and in June, July and August. The increase during
April and May represents the Southwest Monsoon rainfall that usually comes during these months,
although, to a limited extent. The greatest flow decrease is 12.3% in the 2050s (RCP4.5), 14.4% (RCP6.0)
and 24.8% (RCP8.5) during the 2080s period. The remaining months of the wet season (September,
October, November and December) show an increasing trend in streamflow following the Northeast
Monsoon rainfall during these months. The most significant mitigation and adaptation activity could
include flood control, especially for the rice fields during the harvesting period, which require less
rainfall water. The overall future annual streamflow projections show a slight increase of 2.5% and
4.4% in the 2020s under RCP4.5 and RCP6.0, respectively, with almost no change in the other periods
(2050s and 2080s), while the changes under RCP8.5 are between 3.1%, 0.5% and 1.3% for the 2020s,
2050s and 2080s, respectively.

Table 6. Annual changes in future streamflow under the RCP45, 60 and 85 scenarios.

Periods
Seasonal Changes Corresponding to Scenarios

RCP4.5 RCP6.0 RCP8.5

Dry season −1.5 −2.8 −4.3
2020s 1.1 1.3 −0.9
2050s −3.6 −6.4 −5.3
2080s −2.0 −3.4 −6.6

Wet season 4.4 5.0 9.4
2020s 5.2 9.5 8.5
2050s 3.9 0.0 8.4
2080s 4.3 5.3 11.4

Annual
2020s 2.5 4.4 3.1
2050s −0.8 −4.0 0.5
2080s 0.1 0.5 1.3

Note: Rice farming seasons: (1) dry season: (January–June); (2) wet season: (July–December).
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4. Methodological Limitations

The methodologies developed in this study, which have linked gridded meteorological data,
climate models’ outputs and hydrological modeling, have several limitations. The SWAT model
evaluation for the simulation of future streamflow scenarios of the Bernam River watershed was based
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on gridded hydro-meteorological data (rainfall, temperature: minimum and maximum) developed
for the whole of Peninsular Malaysia. However, this may not truly represent the actual data for the
watershed as reflected in the model evaluation results obtained. Another source of uncertainty could
be the lack of daily data for the other climate variables, including wind speed, relative humidity and
solar radiation. These variables are usually generated using the internal SWAT stochastic weather
generator based on their monthly records. Although gridded data are widely used for generating new
data from GCM outputs [52], a more detailed assessment would need to consider all of the climate
variables and realistic station data.

Linked to this is the technique of downscaling. A popular approach using change factors (or the
delta method) was used in this study to modify daily temperature and rainfall time series in order
to remove the bias between observed station data and future data from GCMs over the watershed.
However, this approach represents another source of uncertainty. This approach assumes that the
temporal rainfall and temperature pattern are identical in the future. It does not adjust future rainfall
occurrence and distribution. Future studies should consider employing regression-based and stochastic
weather generators, which would allow more detailed analysis of climate change impacts.

Land use/cover is another source of uncertainty on the future streamflow of this basin. In this
study, the impact of climate change on future streamflow was based on the hypothesis that land
use is stationary in the future. However, land use change is generally considered one of the main
factors affecting the rainfall-runoff relationship. A previous study by [11] was performed using five
scenarios to identify the effect of mixed land use change on the streamflow of the Bernam River basin.
The results showed that land use changes are responsible for the increase in the annual flow depth
between 8% and 39% during high flow months and decreases between 3% and 32% during low flow
months, thus the need for best management practices as mitigative measures on future changes in land
use on flow quantity. Table 1 and Figure 3 in [11] also show that the land use in this basin is changing
based on data from 1984 to 2009. To-date, for instance, land use for oil palm has increase from 18.4% to
21.7% and rubber from 12.8% to 18.1%. Therefore, in our future studies, multiple GCMs and scenarios
(including RCP2.6) and other downscaling methods would be employed to assess water shortage and
allocation taking into account land use change scenarios within the basin. It is believed that the change
of land use in the future will have a corresponding impact on streamflow.

5. Conclusions

The impact of climate change on the flows of the Upper Bernam River Basin in Malaysia was
studied using the SWAT hydrological model. A graphical user interface was developed that integrates
all of the common procedures of assessing climate change impacts, based on the delta method,
to quickly simulate climate variables (e.g., rainfall, temperature, etc.) at the local scale from large-scale
climate models. The interface is run with ten GCMs under three climate forcings. The tool was
modified to generate future daily sequences by perturbing the baseline observed series using change
factors derived from mean projected changes for that particular variable from climate models.

Climate variables influential for streamflow (mainly rainfall and temperature) were generated
from the interface on the basis of the ten GCMs under RCP4.5, RCP6.0 and RCP8.5 and used as inputs
to the SWAT hydrological model. This modeling study was carried out for the periods 2010–2039,
2050–2069 and 2070–2099 relative to the baseline period (1976–2005). The analysis was done on the
basis of the rice farming seasons; dry (January–June) and wet (July–December). The evaluation results
indicated that the hydrological model performed acceptably well in the study watershed with monthly
R2, NSE and PBIAS values of 0.67, 0.62 and −9.4 and 0.62, 0.61 and −4.2 for the calibration and
validation periods, respectively.

The multi-model projections indicated that the Upper Bernam River basin is likely to become
warmer and wetter during some months in the future. Temperature is projected to increase in all
respective scenarios. The largest monthly mean changes are observed during the dry season months
(February–June) in all scenarios and are more significant under the most severe scenario, RCP8.5.
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Changes in rainfall showed variation between the two agricultural seasons (dry and wet) from the
ensemble projections of the 10 GCMs. The dry season indicated a shortage in future rainfall with
average changes of −2.4%, −3.2% and −3.7% under RCP4.5, 6.0 and 8.5, respectively. The wet season,
on the other hand, is predicted to be wetter with average changes of about 1.0%, 0.8% and 2.4% for
RCP4.5, 6.0 and 8.5, respectively. Overall annual future rainfall is likely to increase slightly with no
significant changes from the baseline, although the monthly changes might affect rice water availability
during the dry season and flooding in the wet season.

Streamflow projections followed that of rainfall to a great extent with a distinct change between
the dry and wet season. Generally, all future periods show a decreasing trend in streamflow during
this season and an increasing pattern in the wet season. The significant decrease (−6.6%) occurs under
the RCP8.5 scenario in the late century (2080s), while a significant increase of 11.4% occurs in the same
future period under the same scenario. On the basis of these results, it can be inferred that the water
resource of the Bernam River Basin may be sufficient up to the end of the century, since the projected
decreases are counteracted by the increases. However, the basin may experience tremendous pressure
due to low flows during the dry season and flooding during the wet season. Thus, it necessitates
integrated water resources solutions to ensure water availability for rice production at all times and
mitigative measures against flooding risk. It can be concluded that the interface is user friendly and can,
in principle, be customized for application to other geographical areas or catchments by incorporating
baseline data for those particular stations of the new catchment area and their corresponding GCMs’
outputs, for the quick generation of climate variables for hydrological assessment and/or as inputs to
crop models.
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