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Abstract: Changes in river water temperatures are anticipated to have direct effects on thermal habitat
and fish population vital rates, and therefore, understanding temporal trends in water temperatures
may be necessary for predicting changes in thermal habitat and how species might respond to such
changes. However, many investigations into trends in water temperatures use regression methods
that assume long-term monotonic changes in temperature, when in fact changes are likely to be
nonmonotonic. Therefore, our objective was to highlight the need and provide an example of an
analytical method to better quantify the short-term, nonmonotonic temporal changes in thermal
habitat that are likely necessary to determine the effects of changing thermal conditions on fish
populations and communities. To achieve this objective, this study uses Bayesian dynamic linear
models (DLMs) to examine seasonal trends in river water temperatures from sites located in the
eastern and western United States, regions that have dramatically different riverine habitats and fish
communities. We estimated the annual rate of change in water temperature and found little evidence
of seasonal changes in water temperatures in the eastern U.S. We found more evidence of warming
for river sites located in the western U.S., particularly during the fall and winter seasons. Use of
DLMs provided a more detailed view of temporal dynamics in river thermal habitat compared to
more traditional methods by quantifying year-to-year changes and associated uncertainty, providing
managers with the information needed to adapt decision making to short-term changes in habitat
conditions that may be necessary for conserving aquatic resources in the face of a changing climate.

Keywords: trends; river water temperature; Bayesian estimation; dynamic linear models

1. Introduction

Water temperature is considered the “master variable” of fish habitat, affecting stream metabolism,
fish bioenergetics and structuring fish communities and the ecosystem services they support [1–3].
Changes in river water temperatures, and therefore thermal habitat, are projected to have particularly
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important effects on many freshwater communities. Predicted and recently-observed effects of
increasing water temperature on riverine fish species include range shifts towards upstream, higher
elevations [4], influences on migration timing [5,6] and changes in community structure [7]. In addition,
because temperature is a key controller of physiological processes, changes in water temperatures have
the potential to affect population vital rates, including growth and reproduction [8–10]. These effects
not only have implications for habitats and the aquatic communities they support, but are projected to
have substantial economic impacts due to the loss of recreational fisheries [11].

Given that water temperature is a fundamental property of fish habitat that will likely be affected
by a changing climate, it is important to quantify trends in water temperature in order to assess current
thermal habitat status, project future conditions and prioritize areas for protection [12]. For many
riverine fish species, this implies quantifying trends in seasonal water temperatures, specifically seasons
that correspond to periods of potential thermal stress (e.g., summer months) or that correspond to
important life history events, such as spawning [13]. For example, Isaak et al. [14] examined trends in
seasonal (spring, summer, fall and winter) river water temperatures, each of which may be important
in influencing particular life history events of stream-dwelling cold water fishes.

Several studies have examined temporal trends in river water temperatures (e.g., [14–18]), and
although a direct comparison of findings among studies is not always possible, it is evident from
these previous investigations that there is variability in how the thermal habitat of rivers change over
time and how they may be responding to drivers of water temperature, such as changes in climate.
For example, Kaushal et al. [15] found that 50% (20 out of 40) of the U.S. river sites they examined
showed statistically significant long-term linear warming trends in annual mean temperature, and
Rice and Jastram [18] found substantial variability in the direction and magnitude of trends in river
water temperature from the mid-Atlantic region, USA. It is likely that local landscape characteristics,
both natural (e.g., watershed area) and anthropogenic (e.g., land use and the presence of dams), are
responsible for at least some of the observed variability in how rivers respond to climate change [14,18].
In addition, anthropogenic land use changes and other activities can also alter water temperature
and affect the spatial and temporal distribution of thermally-suitable habitat directly. However, some
of the difficulties in making inferences about temporal trends are due to some studies attempting
to detect monotonic trends, an assumption that is likely not reasonable for river water temperature
data [17]. In addition, the statistical models often fitted to a time series dataset to detect monotonic
trends (e.g., linear regression) are sensitive to the length of the time series analyzed, with the statistical
power of detecting a trend a function of sample size. Thus, null hypothesis testing, combined with
statistical models that assume long-term monotonic trends, may obscure the ability to make inferences
about ecologically-significant changes in thermal habitat. In addition, inferences from these approaches
are limited to long-term average changes because the coefficients of the models are static, prohibiting
inferences about whether or not more recent temporal dynamics deviate from historical dynamics.
Understanding these recent dynamics may be important in the context of understanding short-term
responses of fish populations to changes in thermal habitat and for informing management decisions
within a management-relevant time frame.

Therefore, our objective was to highlight the need and provide an example of an analytical
method to better quantify the short-term, nonmonotonic temporal changes in thermal habitat that
are likely necessary to determine the effects of changing thermal conditions on fish populations and
communities. Our intent was to highlight the use of a specific analytical method for making inferences
about nonmonotonic trends in thermal habitat by analyzing time series of water temperatures from
rivers in two distinctly different areas of the U.S., and not to provide an exhaustive comparison of
potential models that could be used to make inferences about changes in thermal habitat. This study
uses Bayesian dynamic linear models (DLMs) to examine seasonal trends in river water temperatures
from the eastern and western U.S. that may be due to factors, such as climate change, given observed
increases in air temperature (e.g., [18]). Specifically, we estimated the annual rate of change in
water temperature and calculated the probability of annual increases in water temperature occurring.
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Based on previous research (e.g., [14,15]), we predicted that we would observe evidence of increasing
river water temperatures in response to climate change, particularly in the summer months. We suggest
that the combination of methods such as DLMs and Bayesian estimation provides a powerful approach
for evaluating the temporal dynamics of river water temperature within the context of fish habitat and
population management in the face of a changing climate. Even if monotonic changes are predicted,
understanding the temporal dynamics (i.e., year-to-year changes) in temperature could be important
for making predictions about the potential effects of climate change on rivers and the biological
communities they support.

2. Materials and Methods

2.1. Study Area

The study regions included two regions of the U.S., a portion of the eastern U.S. and the western
U.S., the Upper Colorado River Basin (UCRB; Figure 1). The study area in the eastern U.S. included
the native range of the eastern brook trout Salvelinus fontinalis as defined by the Eastern Brook Trout
Joint Venture [19]. See DeWeber and Wagner [20] for the details. This region was selected because the
eastern brook trout is a cold water species of concern throughout much of its native range and one
that has received considerable research and management attention within the context of the potential
effects of climate change on suitable thermal habitat [19,21]. The UCRB was selected because it differs
in climate, physiography and land use compared to the eastern U.S., and therefore, changes in the
drivers of thermal habitat, such as climate change, may differ in these two regions. In addition, fishes
of the UCRB have one of the highest levels of endemism in the U.S. with many being endangered [22].
Therefore, quantifying temporal dynamics in thermal habitat in these systems is of importance for the
conservation and management of these unique ecosystems.

Figure 1. Study map showing U.S. Geological Survey river water temperature gauge locations for both
the eastern and western (Upper Colorado River Basin) U.S. Numerical codes corresponds to the U.S.
Geological Survey gauge ID.

2.2. River Water Temperature Data

River water temperature data were obtained from the U.S. Geological Survey’s (USGS) National
Water Information System (NWIS; http://waterdata.usgs.gov/nwis). Water temperature data
consisted of daily measurements of mean water temperature, which were summarized to monthly
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means values for use in the analysis. In an effort to only include sites with sufficient data and to
reduce the effects of dams on water temperature observations, we screened the USGS gauges as
follows. First, we only included gauges with at least nine years of data. Although there was not
a minimum number of years required for our modeling approach, we decided that this length of
time series would at least provide the opportunity to examine more recent temporal trends, and it
allowed us to increase our sample size for sites located in the UCRB. Second, following the approach
of DeWeber and Wagner [20], we excluded gauges from our analysis where the nearest upstream dam
was >100 ft in height or within 5 km. The decision to only examine sites with the “minimal” influence
of impoundments was made in an effort to improve inferences about observed dynamics being related
to climate forcing and not a function of changing water management policies that may have occurred
over time. Although our analysis is focused on changes in thermal habitat in general, climate change is,
and is expected to be, a dominant driver. Our approach could easily be applied to systems under more
intensive water management practices to better elucidate their effects on thermal habitat. In fact, it has
been suggested that examining “minimally human-influenced” sites may help in elucidating climate
effects on river water temperature [16]. Although we acknowledge that we were not able to examine
truly “minimally-impacted streams”, attempts to reduce the effects of water management policies in
impoundments is likely important [14]. After applying the screening criteria, there were 17 river sites
in the eastern U.S. and seven sites in the UCRB included in the analysis (Figure 1). For sites in the
eastern U.S., data were available starting in 1968–2015, and the length of the time series for each site
range from 10 to 45 years. For the UCRB, data were available from 1980 to 2015, with the time series
length for each site ranging from 9 to 35 years.

2.3. Landscape and Land Use Data

Because both the position of a river in the landscape and catchment land use can influence water
temperature [20], we obtained landscape and land use information (2001 National Land Cover Data)
for each gauge site from the National Hydrography Dataset Plus Version 1.0 [23] in an effort to examine
correlations with estimated temporal trends. We focused on landscape predictors that are shown to
be related to river water temperature [20]. Specifically, we chose elevation, catchment area and the
proportion of urban land use in the catchment upstream of a site (Table 1). Although we could have
chosen additional landscape predictors (e.g., other land use types), they were all correlated to some
degree, so we decided to focus on a subset with well-defined mechanisms in terms of the effects on
stream water temperature.

Table 1. List of study sites, including the U.S. Geological Survey gauge ID, elevation (m), catchment
area (km2) and the proportion of urban land use in the catchment upstream of study sites.

Gauge ID Station Name Elevation Catchment Area Urban Land Use

1417500 East Branch Delaware River at Harvard, NY 301.6 1185.01 0.003
1420500 Beaver Kill River at Cooks Falls, NY 337.41 630.57 0.01
1426500 West Branch Delaware River at Hale Eddy, NY 277.84 1537.79 0.03
1427510 Delaware River at Callicoon, NY 218.65 4721.71 0.01
1428500 Delaware River at Barryville, NY 176.63 5229.46 0.01
1447500 Lehigh River at Stoddartsville, PA 428.07 220.29 0.05
1447720 Tobyhanna Creek near Blakeslee, PA 458.57 308.38 0.24
1449360 Pohopoco Creek at Kresgeville, PA 197.98 133.72 0.08
1449800 Pohopoco Creek near Parryville, PA 149.64 249.51 0.05
1463500 Delaware River at Trenton, NJ 0 17,441.1 0.24
1470779 Tulpehocken Creek near Bernville, PA 92.49 181.97 0.49
1480617 West Branch Brandywine Creek at Modena, PA 80.53 118.85 0.96
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Table 1. Cont.

Gauge ID Station Name Elevation Catchment Area Urban Land Use

1480870 East Branch Brandywine Creek at Downingtown, PA 60.78 232.15 0.54
1481000 Brandywine Creek at Chadds Ford, PA 46.53 720.55 0.52
2011400 Jackson River near Bacova, VA 482.19 409.88 0
2011500 Black Creek near Mountain Grove, VA 514.61 348.07 0.01
2011800 Jackson River, near Hot Springs, VA 425.64 894.5 0.005
9085150 Colorado River near Glenwood Springs, CO 1718.36 15,575.74 0.01
9180000 Dolores River, near Cisco, UT 1275.63 11,841.39 0
9180500 Colorado River near Cisco, UT 1243.54 61,791.09 0.02
9258980 Muddy Creek near Baggs, WY 1903.2 2474.79 0
9261000 Green River near Jensen, UT 1452 65,137 0.18
9302000 Duchesne River near Randlett, UT 1447.16 9741.67 0
9379500 San Juan River near Bluff, UT 1214.84 58,155.8 0

2.4. Statistical Modeling: Trend Estimation

Bayesian DLMs were used to examine seasonal temporal trends in river water temperature.
DLMs allows for time-varying parameters that are most strongly influenced by the current year’s
information and data from other years closest in time, as opposed to traditional linear regression
where the parameters (i.e., slope and intercept) are influenced directly by all observations [24,25].
In addition, DLMs easily accommodate missing and unequally-spaced data, which can be common for
temperature time series data, and the way the model is parameterized allows for the incorporation
of both intra-seasonal and interannual variation when assessing seasonal temporal trends. Lastly,
inferences about trends are not as dependent on the length of the time series for detecting “significant”
trends using null hypothesis testing. The DLM was parameterized as follows:

Observation equation:
yti = levelt + ψti, ψti ∼ N (0, Ψt) (1)

Systems equations:
levelt = levelt−1 + ratet + ωt1, ωt1 ∼ N (0, Ωt1) (2)

ratet = ratet−1 + ωt2, ωt2 ∼ N (0, Ωt2) (3)

where yti is seasonal river temperature observation i in year t; levelt is the mean seasonal temperature
at time t; ratet is the expected rate of change of temperature (i.e., the slope between consecutive years);
and ψti and ωtj (j = 1, 2) are the error terms for year t, which are distributed as N(0, Ψt) and N(0, Ωtj).
Diffuse priors are used for all parameters. See Wagner et al. [26] for details related to prior specification.
All models were fitted using Bayesian estimation using JAGS in the rjags package [27], run from within
R [28]. Three parallel Markov chains were run, beginning each with a different value. From a total of
70,000 samples from the posterior distribution, the first 10,000 samples of each chain were discarded,
then we retained every third sample for a total of 60,000 samples used to characterize the posterior
distributions. A separate DLM was fitted to each gauge’s time series and for each season. We used
climatological (and meteorological) definitions of seasons: spring = March, April, May; summer = June,
July, August; fall = September, October, November; and winter = December, January, February. We also
calculated the annual probabilities of increasing water temperatures as a way to present the results as
an easily communicated metric. Annual probabilities could easily be summarized in different ways;
for example, as the probability of exceeding a given species’ thermal tolerance or being higher or lower
than any other temperature value was deemed important by managers.

2.5. Statistical Modeling: Land Use Correlations

Regression trees were used to investigate potential relationships between river gauge landscape
predictors and the average annual rate of change for each gauge’s time series [29]. Although the DLMs
estimate annual rates of change in water temperature, landscape data do not exist at an annual time
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step that would allow for relating predictors to rates of change at this temporal resolution. In addition,
landscape characteristics would either change very little on an annual time-step (e.g., proportion of
urban land use in a catchment) or are static (e.g., catchment area). As such, we used the average
annual rate of change as the response variable because it summarized long-term temporal dynamics
in water temperature for each site (i.e., was a site increasing or decreasing in water temperature, on
average, over the length of the time series). We fitted regression tree models for each gauge and
season separately using the R package rpart [30]. To prevent overfitting, trees were pruned using
10-fold cross-validation.

3. Results

3.1. Temporal Trends

Temporal dynamics in water temperatures for rivers located in the eastern U.S. were variable
across space (sites) and over time, with no consistent temporal patterns among sites. Several (∼9) sites,
however, had decreasing trends in winter water temperatures over the past approximately 10 years
(Figures 2 and 3), during which time annual probabilities of increasing river water temperatures were
<0.5 (Figure 4). Annual changes in winter river water temperature ranged from −0.59 to 0.20 ◦C
(mean = −0.002 ◦C; median = 0.01 ◦C). Annual changes in river water temperature during the summer
season ranged from −1.03 to 0.244 ◦C (mean = −0.03 ◦C; median = −0.02 ◦C), and these changes were
relatively uncertain (see the Supplementary Materials). Accordingly, most sites in the eastern U.S. did
not demonstrate a consistent increase or decrease in water temperature during the summer months,
with annual probabilities of increases in water temperature varying over time (see the Supplementary
Materials). Two sites (Gauge IDs 2011500 and 1463500) did demonstrate a probability >0.5 of an
annual increase in water temperature over the most recent portion of their time series, suggesting a
recent warming trend in summer river water temperatures. A similar lack of consistent seasonal trends
in water temperature was observed for the spring and fall seasons (see the Supplementary Materials).

Figure 2. Temporal trends in winter river water temperature for sites located in the eastern U.S. (see
Figure 1 for the site map). Solid circles are observed data; solid lines are posterior mean fitted lines;
and shaded areas are 95% credible regions. Numerical codes on each panel correspond to the U.S.
Geological Survey gauge ID.
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Figure 3. Annual rates of change in winter river water temperature for sites located in the eastern
U.S. (see Figure 1 for the site map). Solid lines are posterior means, and shaded areas are 95% credible
regions. Numerical codes on each panel correspond to the U.S. Geological Survey gauge ID.

Figure 4. Annual probabilities of an increase in winter river water temperature for sites located in
the eastern U.S. (see Figure 1 for site map). Numerical codes on each panel correspond to the U.S.
Geological Survey gauge ID.
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In contrast to the eastern U.S. rivers, there was a larger proportion of sites located in the UCRB that
demonstrated increasing water temperatures in the winter (six out of six (one site did not have data
for the winter season)) and fall (six out of seven sites) seasons (Figures 5 and 6; see the Supplementary
Materials). For example, the probabilities of annual increases in water temperature were >0.5 for
the entire time series or more recent years for winter and fall (Figure 7; see the Supplementary
Materials). These patterns provide some evidence for recent warming of river water temperatures
during these seasons. Effect sizes for annual changes in river water temperatures ranged from −0.28
to 0.38 ◦C (mean = 0.03 ◦C; median = 0.02 ◦C) for winter and from −0.06 to 0.22 ◦C (mean = 0.07 ◦C;
median = 0.07 ◦C) for fall. Compared to the eastern U.S. sites, UCRB had a larger proportion of sites
(4/7) that had probabilities of annual increases in summer river water temperature >0.5 for the more
recent years or entire time series (annual changes in water temperature ranged from −0.46 to 0.42 ◦C,
mean = 0.02 ◦C, median = 0.04 ◦C; see the Supplementary Materials). There were no apparent consistent
patterns for temporal trends in spring water temperatures (see the Supplementary Materials).

Figure 5. Temporal trends in winter river water temperature for sites located in the Upper Colorado
River Basin (see Figure 1 for the site map). Solid circles are observed data; solid lines are posterior mean
fitted lines; and shaded areas are 95% credible regions. The numerical codes on each panel correspond
to the U.S. Geological Survey gauge ID.
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Figure 6. Annual rates of change in winter river water temperature for sites located in the Upper
Colorado River Basin (see Figure 1 for the site map). Solid lines are posterior means, and shaded areas
are 95% credible regions. Numerical codes on each panel correspond to the U.S. Geological Survey
gauge ID.

Figure 7. Annual probabilities of an increase in winter river water temperature for sites located in the
Upper Colorado River Basin (see Figure 1 for the site map). Numerical codes on each panel correspond
to the U.S. Geological Survey gauge ID.
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3.2. Land Use Correlations

For river sites located in the eastern U.S., the average annual rate of change ranged from −0.24
to 0.06 ◦C. Average annual rates of change range from −0.18 to 0.13 ◦C for sites located in the UCRB.
For river sites located in the eastern U.S., average elevation, watershed area and urban land use were
250 m (SD = 168 m; range = 0–515 m), 2033 km2 (SD = 4255 km2; range = 119–17,441 km2) and 19%
(SD = 28%, range = 0.0%–96%), respectively. For river sites located in the UCRB, average elevation,
watershed area and urban land use for UCRB sites were 14,432 m (SD = 301 m; range = 940–1903 m),
59,924 km2 (SD = 84,667 km2; range =2474–276,153 km2) and 0.6% (SD = 0.6%, range = 0.0%–2%),
respectively. According to the regression tree analyses, no landscape predictors were identified as
being related to the average annual rate of change for either region or for any season.

4. Discussion

Time series analysis of 17 river sites found little evidence of consistent seasonal increasing water
temperature trends in the eastern U.S. In fact, most sites showed very little evidence of warming,
based on estimated annual changes and associated uncertainty and calculated probabilities of annual
increases of warming over the period of record. In contrast to the eastern U.S., we found more evidence
of warming for river sites located in the UCRB, particularly during the fall and winter seasons. We did
not find attributes of the landscape that were related to average annual changes (trends) in river
water temperature for any season in either the eastern U.S. or the UCRB. However, land use and land
cover have been shown to correlate with water temperature trends in other studies. For example,
Rice and Jastram [18] found correlations between water temperature trends and agricultural land use
and wetland cover in the mid-Atlantic region of the U.S. Although it is well established that natural
landscape features (e.g., watershed area; [20]) and anthropogenic alterations to the landscape (e.g.,
urbanization; [31]) can influence river water temperatures, the lack of relationships to average trends
in this study may be due to several factors. Two of the likely factors that limited the ability to find
relationships, if they in fact exist, were (1) the relatively few number of sites in either region (n = 17 in
the eastern U.S. and n = 7 for the UCRB) and (2) the limited range of values of landscape characteristics
observed across our study sites. For example, the percentage of urban land use in the upstream
catchment for UCRB sites ranged from 0% to 2%, and although the percentage of urban land use
ranged from 0% to 96% for the eastern U.S. sites, land use in these study sites was also predominately
characterized by low urban land use (median percentage land use = 5%).

4.1. Effects on Fish and Fish Habitat

Although little evidence was found for increasing river water temperature at most of the sites
we examined, the highest probabilities of annual increases in river water temperature for UCRB
sites occurred during the winter months. This could be important for fishes that have critical
life-history requirements (e.g., gonadal development and spawning) that take place during these
seasons and that are temperature dependent. These effects on thermal habitat conditions could also
potentially affect critical life history events outside of the fall and winter months. For example, spring
spawning fishes could spawn earlier with shorter, warmer winters [32]. In fact, it is increasingly
recognized that understanding the seasonal variability in climate change effects may be important
when attempting to understand current dynamics and for predicting effects under future scenarios,
particularly in fish and wildlife populations [33]. For example, Kanno et al. [34] found that seasonal
patterns in air temperature and precipitation, both of which are predicted to change under climate
warming, were important drivers of survival and reproduction of eastern brook trout. In addition,
Pease and Paukert [10] estimated that for each 1 ◦C increase in river water temperature, smallmouth
bass Micropterus dolomieu consumption would increase by about 27%, and growth would increase by
about 6%. Such changes in population vital rates could have consequences for entire riverine food
webs. Although we summarized results as the probability of annual increases in water temperature, as
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previously stated, the results from the methods we present can easily be be summarized to calculate
annual probabilities of water temperatures being equal to, greater or less than any temperature
threshold that is relevant to conservation and management decision making.

4.2. Comparison with Previous Research

Our results highlight the utility of considering methods that allow for quantifying nonmonotonic
trends in important fish habitat characteristics, such as water temperature. Our results, along with
past studies, also illustrate the heterogeneity in river water temperature trends. Kaushal et al. [15]
found that 44% (7/16 rivers) of river sites located in the eastern U.S. demonstrated statistically
significant (α = 0.05) long-term (linear) annual increases in water temperature, with a majority
of rivers not changing statistically over the period of record. Even in the western U.S., where
Kaushal et al. [15] found more rivers (9/16) with statistically-significant annual increases in water
temperature, trends were not consistent among rivers, with many rivers showing no significant
changes over time and one demonstrating a significant decline in average annual water temperature.
Rice and Jastram [18] examined temporal trends in river water temperature across the Chesapeake
Bay region, U.S., a region that overlaps considerably with our eastern U.S. region. Of the 129 sites
Rice and Jastram [18] examined, 38% (49/129) had significant long-term linear trends in temperature,
with a median rate of change of 0.028 ◦C, and 6% (8/129) had significant decreasing trends in water
temperature. Taken as a whole, this system heterogeneity has important implications for generalizing
responses from a subset of rivers used in any given analysis to a region of interest.

Previous works modeling river temperatures over time have tended to use linear models, which
are still able to detect changes, but these changes reflect long-term monotonic dynamics that might not
capture meaningful smaller-scale dynamics or capture large changes that have occurred in recent time.
In fact, it has been suggested that to effectively manage aquatic resources that management needs
to adapt to changes in the physical environment [35]. The ability to adapt to changing conditions is
greatly constrained when long-term average conditions are solely evaluated. Such methodological
shortcomings serve to highlight the fact that a reliance on traditional regression methods that assume
long-term linear trends may be inadequate for detecting changes in river water temperatures (or other
habitat metrics) when non-monotonic dynamics are observed. Interestingly, for several of the UCRB
sites (e.g., Gauge IDs 9180500, 9261000, and 930200), the observed increases in winter water temperature
have occurred in recent years, with sites not showing long-term monotonic changes over the period
of record. In fact, for these three river sites, fitting a linear regression model failed to find significant
linear temporal trends in water temperature (linear regression estimates for: Gauge ID 9180500: trend
estimate β̂ ± 1 SE = 0.061 ± 0.12, p = 0.62; Gauge ID 9261000: β̂ = −0.025 ± 0.03, p = 0.42; Gauge ID
930200: β̂ = 0.020 ± 0.02, p = 0.41). In turn, these traditional methods may not provide managers and
decision makers with the necessary information to adapt to changing conditions. For example, because
predictions from DLMs use more recent information and discount older information, they have been
proven useful for making near-term predictions [36] that can be used to help inform decision making.
The potential inadequacy of traditional statistical methods is also likely particularly important when
attempting to detect trends in habitat conditions for sites with relatively short time series, since the
statistical power of these traditional regression methods is partly dependent on the length of the time
series (e.g., [18]). Use of time series models such as DLMs and related methods, as used in this study,
circumvents these issues.

5. Conclusions

Quantifying temporal trends in important fish habitat attributes, such as water temperature, is
important for understanding and predicting how fish populations and their habitat may respond
to changing environmental conditions and management actions. Because many fish habitat metrics
are affected by several often interacting natural and anthropogenic factors, the responses of habitat
conditions and, therefore, fish populations will often exhibit nonlinear patterns [17,37]. As such,
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statistical methods that accommodate nonlinear dynamics are likely to provide more insight into the
observed dynamics, providing managers with the information needed to adapt decision making to
short-term changes in habitat conditions that may be necessary for managing aquatic resources in the
face of a changing climate. Coupling DLMs with Bayesian estimation also provides the advantage of
facilitating communication between managers and between managers and stakeholders by allowing
for probabilistic statements about observed trends (e.g., the probability of an increasing (or decreasing)
change over time), something that is not possible under a frequentist paradigm.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/9/2/90/s1:
Figures S1–S18.
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