Next Article in Journal
Performance of Denitrifying Bioreactors at Reducing Agricultural Nitrogen Pollution in a Humid Subtropical Coastal Plain Climate
Previous Article in Journal
Accomplishing Water Strategy Policies in Hospitals: The Role of Management Information Systems and Managerial Styles
Article Menu
Issue 2 (February) cover image

Export Article

Open AccessArticle
Water 2017, 9(2), 109;

Contemporary and Future Characteristics of Precipitation Indices in the Kentucky River Basin

Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40546, USA
Construction Management and Engineering Department, North Dakota State University, Fargo, ND 58108, USA
Author to whom correspondence should be addressed.
Received: 31 August 2016 / Accepted: 8 February 2017 / Published: 10 February 2017
View Full-Text   |   Download PDF [5386 KB, uploaded 11 February 2017]   |  


Climatic variability can lead to large‐scale alterations in the hydrologic cycle, some of which can be characterized in terms of indices involving precipitation depth, duration and frequency. This study evaluated the spatiotemporal behavior of precipitation indices over the Kentucky River watershed for both the baseline period of 1986–2015 and late‐century time frame of 2070–2099. Historical precipitation data were collected from 16 weather stations in the watershed, while future rainfall time‐series were obtained from an ensemble of 10 Coupled Model Intercomparison Project Phase 5 (CMIP5) global circulation models under two future emission pathways: Representative Concentration Pathways (RCP) 4.5 and 8.5. Annual trends in seven precipitation indices were analyzed: total precipitation on wet days (PRCPTOT), maximum length (in days) of dry and wet periods (CDD and CWD, respectively), number of days with precipitation depth ≥20 mm (R20mm), maximum five‐day precipitation depth (RX5day), simple daily precipitation index (SDII) and standardized precipitation index (SPI, a measure of drought severity). Non‐parametric Mann–Kendall test results indicated significant trends for only ≈11% of the stationindex combinations, corresponding to generally increasing trends in PRCPTOT, CWD, R20mm and RX5day and negative trends for the others. Projected magnitudes for PRCPTOT, CDD, CWD, RX5day and SPI, indices associated with the macroweather regime, demonstrated general consistency with trends previously identified and indicated modest increases in PRCPTOT and CWD, slight decrease in CDD, mixed results for RX5day, and increased non‐drought years in the late century relative to the baseline period. Late‐century projections for the remaining indices (SDII, R20mm) demonstrated behavior counter to trends in the trends identified in the baseline period data, suggesting that these indices—which are more closely linked with the weather regime and daily GCM outputs—were relatively less robust. View Full-Text
Keywords: climate change; drought; extreme precipitation; Kentucky River Basin climate change; drought; extreme precipitation; Kentucky River Basin

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Chattopadhyay, S.; Edwards, D.R.; Yu, Y. Contemporary and Future Characteristics of Precipitation Indices in the Kentucky River Basin. Water 2017, 9, 109.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Water EISSN 2073-4441 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top