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Abstract: Integrated Catchment Modelling aims to simulate jointly urban drainage systems,
wastewater treatment plant and rivers. The effect of rainfall input uncertainties in the modelling
of individual urban drainage systems has been discussed in several studies already. However,
this influence changes when simultaneously simulating several urban drainage subsystems and
their impact on receiving water quality. This study investigates the effect of the characteristics of
rainfall inputs on a large-scale integrated catchment simulator for dissolved oxygen predictions in the
River Dommel (The Netherlands). Rainfall products were generated with varying time-aggregation
(10, 30 and 60 min) deriving from different sources of data with increasing spatial information:
(1) Homogeneous rainfall from a single rain gauge; (2) block kriging from 13 rain gauges; (3) averaged
C-Band radar estimation and (4) kriging with external drift combining radar and rain gauge data with
change of spatial support. The influence of the different rainfall inputs was observed at combined
sewer overflows (CSO) and dissolved oxygen (DO) dynamics in the river. Comparison of the
simulations with river monitoring data showed a low sensitivity to temporal aggregation of rainfall
inputs and a relevant impact of the spatial scale with a link to the storm characteristics to CSO and
DO concentration in the receiving water.

Keywords: Integrated Catchment Modelling; geostatistics; rainfall; spatiotemporal variability; water
quality modelling

1. Introduction

Integrated Catchment Modelling (ICM) is a key tool in the assessment of environmental impacts
of urban water drainage on river ecosystems [1]. ICM aims to represent the link between the
relevant sub-systems affecting receiving water quality dynamics. This is often done by jointly
simulating urban drainage systems, Wastewater Treatment Plants (WWTP), rural hydrology and
river processes [2,3]. The simulation of Dissolved Oxygen (DO) in urbanised rivers is of interest to
guide in the decision-making process of environmental management studies. Those simulators allow
estimating the effect of corrective measures prior to their adoption. However, the complexity of water
quality dynamics and the systematic deficit of observed data result in predictions from such modelling
studies presenting a significant degree of uncertainty [4,5].
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Rainfall is one of the main driving forces for water pollution dynamics in urbanised catchments.
Large urban water systems often produce discharges from partially treated WWTP effluents and
combined sewer overflow structures (CSO) under severe storm events. These discharges impact on the
chemical and ecological status of the receiving surface waters. When modelling water quality processes,
it is necessary to represent the urban pollution load, which is heavily linked to rainfall–runoff dynamics.
Several studies have addressed the effect of rainfall input errors in the behaviour of individual urban
drainage systems and detailed hydrodynamic modelling. It has been reported that the uncertainties
of rainfall input data contribute less to the total uncertainty in urban runoff estimation for a small
urban drainage system (~180 ha), compared with flow measurement errors [6]. A comprehensive
sensitivity analysis of modelled flow in individual urban drainage systems (200–800 ha) for varying
rainfall spatiotemporal resolutions was presented in [7]. This study showed that the impact of rainfall
errors rapidly decreases with catchment area size, and discussed the strong link between temporal and
spatial effects. The impact of rainfall dataset selection in the calibration of hydrodynamic models is
recognised as significant [8].

Nevertheless, when modelling receiving water quality dynamics, urban drainage simulators are
often conceptualised through spatially lumped model structures [9,10]. Lumped urban rainfall–runoff
models reduce significantly the simulator’s computational cost. Accuracy of modelled outflow
variables is expected to be sufficient for the application at large-scale water quality modelling and
real time control of drainage systems [11]. These lumped model structures further distort the effect
of uncertainties in rainfall measurement data, especially those associated with the in-catchment
micro spatial and temporal scales. Also, urban wastewater systems are often composed by several
connected sewer networks across municipal areas (e.g., centralised wastewater treatment layouts),
and the distances between those connected catchments are often beyond the de-correlation length of
convective storm events [12]. This means that spatial and temporal scales of rainfall processes can
affect in different manner the individual and the total catchment system [13].

Little research has been conducted on the effect of rainfall input characteristics at integrated
catchment scale and their impact on water quality dynamic simulations. The total contribution of
rainfall errors to water quality modelling uncertainties is expected to be moderate [14]; however,
it is important to characterise the desired properties of rainfall input datasets when modelling water
quality processes of large-scale urban systems.

The present work investigates the effect of the spatiotemporal variability of selected rainfall inputs
on the prediction of dissolved oxygen dynamics in an urbanised river catchment. It aims to ascertain
whether uncertainties induced by the miss-representation of the rainfall field at the municipal scale are
transferred to the simulation of dissolved oxygen dynamics at a sensitive river section. This paper
describes the process to characterise the urban drainage and river time-space scales and a procedure to
generate rainfall estimations at catchment-area spatial support with increasing spatial and temporal
resolutions. The performance of a large-scale conceptual integrated catchment model was compared
against monitoring data. This provided insights on the optimal selection of rainfall data sources in
large lowland urban water systems for dissolved oxygen assessment.

The effects of the rainfall input selection are discussed by contrasting model output with observed
patterns at CSO and dissolved oxygen concentrations in the river.

2. Materials and Methods

2.1. System and Data Description

The Dommel River is a relatively small river (4–30 m3/s) representative of a lowland water
system located in the south of The Netherlands. Several municipalities are connected to this water
system (~4500 ha) emitting their excess water through ~200 CSO structures into the receiving water
body. Also, a WWTP with a capacity of 750,000 PE is discharging its effluent into the river. The river
suffers from acute oxygen depletion events under severe storm conditions, which impacts its ecological
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status. Figure 1 depicts the physical layout of the Dommel water system, along with the rain gauge
network, the Dutch weather C-Band Radar network and the geographical layout of connected draining
urban areas.

Water 2017, 9, 926  3 of 21 

 

rain gauge network, the Dutch weather C-Band Radar network and the geographical layout of 
connected draining urban areas. 

 
Figure 1. The Dommel water system and the distribution of the main urban contributing areas. 
Location of rain gauges, C-Band radar stations and river monitoring stations. 

River data were obtained at a monitoring station (black star in Figure 1) located roughly 17 km 
downstream of the WWTP (water-depth, velocity and Dissolved Oxygen (DO) concentration). DO 
measurements were taken by an online probe located in the river, with a sampling frequency of 10 
min. The measuring station is periodically maintained and calibrated. Manual data inspection was 
performed to validate time series by the water authority of the river. Time series for Combined Sewer 
Overflow (CSO) discharges were estimated from water depth monitoring data at the main structures 
(although those estimations can contain significant level of uncertainties). The WWTP operator 
provided water quantity and quality data of the influent-effluent. More information about the data 
set can be found at [9]. In total, three years of data were obtained (2011–2013). 

Measured rainfall data were obtained from three sources: (1) An automatic rain gauge network 
from the Dutch Meteorological agency (KNMI). One station was deployed close to the civil airport of 
the city of Eindhoven (KNMI_370 in Figure 1) and six more were found within a radius of 70 km from 
the centre of catchment (those rain gauges add very limited information since most rainfall processes 
have shorter decorrelation lengths, but were used to constrain the interpolation process in drainage 
areas located in the limits of the catchment). KNMI automatic rain gauges use a floating device and 
an electronic register, providing a high accuracy, measuring frequency and resolution (1% of the 
rainfall rate-1 min-0.02 mm/h). These stations are calibrated and maintained regularly; (2) A local 
network of tipping bucket rain gauges (resolution 0.15 mm). This network is composed of six stations 
managed by the Water Board de Dommel (the public company responsible for the water quality in 
this river) and the municipality of Eindhoven. Rain gauge stations are located within the urban area 
of several municipalities (Figure 1); (3) Single polarisation C-Band radar rainfall estimations from the 
composite of the KNMI. These rainfall estimates are provided at a resolution of 1 km2 and 5-min 
accumulation. The estimated radar rainfall is further bias-corrected by the KNMI (from 3-h and 1-
day rain gauge data) in order to eliminate the systematic errors present in the raw radar data [15] 
(Figure 1, provides distances to the two KNMI radars). 

The urban system connected to the studied section of the river Dommel is composed of 
approximately 29 contributing urbanised areas (Figure 1), which are characteristics of a low land area 
with high in-sewer storage and low slopes. Catchment areas were extracted manually from a land-
use GIS database. This catchment comprises a rural area of ~800 km2, which contributes to the base-
flow of the river. The rural catchment is mainly composed of forestry and low intensity agricultural 
areas. The system is characterised by mild slopes and it is naturally drained. Section 2.5 contains 

Figure 1. The Dommel water system and the distribution of the main urban contributing areas. Location
of rain gauges, C-Band radar stations and river monitoring stations.

River data were obtained at a monitoring station (black star in Figure 1) located roughly 17 km
downstream of the WWTP (water-depth, velocity and Dissolved Oxygen (DO) concentration). DO
measurements were taken by an online probe located in the river, with a sampling frequency of
10 min. The measuring station is periodically maintained and calibrated. Manual data inspection
was performed to validate time series by the water authority of the river. Time series for Combined
Sewer Overflow (CSO) discharges were estimated from water depth monitoring data at the main
structures (although those estimations can contain significant level of uncertainties). The WWTP
operator provided water quantity and quality data of the influent-effluent. More information about
the data set can be found at [9]. In total, three years of data were obtained (2011–2013).

Measured rainfall data were obtained from three sources: (1) An automatic rain gauge network
from the Dutch Meteorological agency (KNMI). One station was deployed close to the civil airport of
the city of Eindhoven (KNMI_370 in Figure 1) and six more were found within a radius of 70 km from
the centre of catchment (those rain gauges add very limited information since most rainfall processes
have shorter decorrelation lengths, but were used to constrain the interpolation process in drainage
areas located in the limits of the catchment). KNMI automatic rain gauges use a floating device and an
electronic register, providing a high accuracy, measuring frequency and resolution (1% of the rainfall
rate-1 min-0.02 mm/h). These stations are calibrated and maintained regularly; (2) A local network of
tipping bucket rain gauges (resolution 0.15 mm). This network is composed of six stations managed
by the Water Board de Dommel (the public company responsible for the water quality in this river)
and the municipality of Eindhoven. Rain gauge stations are located within the urban area of several
municipalities (Figure 1); (3) Single polarisation C-Band radar rainfall estimations from the composite
of the KNMI. These rainfall estimates are provided at a resolution of 1 km2 and 5-min accumulation.
The estimated radar rainfall is further bias-corrected by the KNMI (from 3-h and 1-day rain gauge
data) in order to eliminate the systematic errors present in the raw radar data [15] (Figure 1, provides
distances to the two KNMI radars).

The urban system connected to the studied section of the river Dommel is composed of
approximately 29 contributing urbanised areas (Figure 1), which are characteristics of a low land
area with high in-sewer storage and low slopes. Catchment areas were extracted manually from a
land-use GIS database. This catchment comprises a rural area of ~800 km2, which contributes to
the base-flow of the river. The rural catchment is mainly composed of forestry and low intensity
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agricultural areas. The system is characterised by mild slopes and it is naturally drained. Section 2.5
contains further description of the system under study, attending in detail to the relevant characteristic
spatiotemporal scales.

2.2. Description of the Model Structure

An integrated catchment model (ICM) was developed with the purpose to simulate water quality
dynamics (dissolved oxygen and ammonium) in the river Dommel. A previous version can be found
at [9] along with a detailed description of the monitoring data needed for its development and the
calibration process (in a dataset from 2001 to 2010). The ICM consists of: An urban drainage routine,
which was conceptualised as a set of lumped rainfall–runoff models representing the 29 urban systems
of the Dommel area. A tank-in-series scheme served to simplify the hydraulic routing network to the
WWTP. A total of ~200 CSO structures were reduced to 35 clusters representing the spatial locations
of the most relevant discharge structures. The WWTP model’s characteristics and calibration are
described in detail in [9]. This model represents three biological lines and a storm-bypass section.
The link of state variables at the boundary urban drainage—WWTP were produced using an stochastic
generator [13]. A river sub-model, which is composed of a flow propagation scheme, was modelled
through a hydrological storage–discharge model (tank-in-series scheme). This was calibrated based on
river flow and depth measurements over one year (2012) using CSO and WWTP discharge measured
data and hydrologically derived base-flow as inputs. The calibration scheme produced a Nash–Sutcliffe
efficiency at calibration/validation of 0.92/0.84. Further description of this scheme can be found in [16].
The water quality routine was conceptualised, assuming completely stirred reactor-like river sections
(with section lengths between 800–3000 m).

Figure 2 provides a scheme of the link between subsystems and the processes accounted for in the
water quantity and quality routines. Within the river model section a graphical scheme summarises
the water quality processes used to simulate dissolved oxygen dynamics. This included the balance
between a three-phase layout (atmosphere, water volume and sediment), fractionation of biological
oxygen demand (BOD) in dissolved/particulate and fast/slow biodegradability, respiration from
macrophyte biomass (primary producers) and nitrification–denitrification. The main source term in
the DO dynamic balance is the reaeration process (KLT), which depends on water turbulence, depth
and temperature. Meanwhile, consumption is generated by oxidation of fast and slow biodegradable
matter in the sediment/suspended fraction (kd1, kd2 and kBODs) and from the nitrification process
(knit). The sedimentation of organic matter was also considered (Vs1 and Vs2).
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2.3. Storm Selection

Three periods of summer were selected for a continuous modelling time window: period
(1) 10 August 2011–31 August 2011 (21 days), period (2) 5 July 2012–4 August 2012 (30 days) and
period (3) 25 July 2013–19 August 2013 (25 days). Summer storm impacts are considered critical for the
dissolved oxygen content in urban rivers. These events often couple several critical factors: Firstly,
high temperatures lead to a lower oxygen saturation point at the water mass (which consequently
produces a lower initial DO concentration during the event). High temperatures also lead to faster
biodegradability rates at the sediment bed in the river. Secondly a low base-flow level reduces the
buffering capacity of the river.

As water quality-related processes exhibit a significant inertia (e.g., biological masses at the waste
water treatment works can take stabilisation times up to weeks-months), the initial conditions for each
simulated period were extracted from one-year of previous continuous simulation (using the rain
gauge KNMI_370 as input).

A total of seven rainfall events were selected within the three periods (which induced oxygen
levels at the river monitoring station lower than 3 mg/L). A summary of the storm characteristics can
be found in Table 1. Rainfall maximum intensity and accumulated depth were calculated using 5 rain
gauge stations located within the boundaries of the Dommel system (maximum distance-to-centre
18 km). Rainfall variability and measuring errors induced dispersion in the chosen parameters, thus
the mean value and one standard deviation are provided as r(±σ). Visual and quantitative assessment
of rain gauge time series did not show systematic deviations.

Table 1. Storm characteristics. Rainfall volume and maximum intensity computed from five rain
gauges within the Eindhoven catchment. ADWP stands for antecedent dry weather period length.
D refers to the duration of the rainfall in minutes. All variables were calculated from the 10-min
accumulated time series.

Event Code Period Storm Time Window Rainfall
Depth (mm)

Max
Intensity
(mm/h)

D (min) ADWP
(days)

1 1 18 August 2011 14:00–18
August 2011 21:00 7.9 (±5.4) 3.1 (±2.1) 170 4

2 1 22 August 2011 21:00–23
August 2011 14:00 30.8 (±10.1) 17.8 (±6.9) 270 3

3 1 26 August 2011 06:00–26
August 2011 14:00 7.1 (±2.2) 5.8 (±2.1) 100 2.5

4 2 11 July 2012 10:00–11 July
2012 22:00 24.7 (±12.3) 7.6 (±3.8) 320 2

5 2 28 July 2012 17:00–28 July
2012 20:00 9.6 (±3.0) 7.9 (±2.0) 30 3.5

6 3 27 July 2013 05:00–28 July
2013 03:00 33.5 (±6.4) 17.6 (±5.4) 220 2

7 3 11 August 2013 11:00–11
August 2013 23:00 11.4 (±1.9) 6.5 (±0.8) 150 4

2.4. Generation of Rainfall Estimations

Rain gauge/disdrometer networks are usually considered the most reliable data source for
rainfall measurements at urban scale. However, these networks present low spatial densities, thus
the significance of punctual measurements decreases when extrapolating measurements to ungauged
locations. On the other hand, weather radar rainfall estimations can represent the spatial structure of
storm processes (at the cost of lower accuracy). When possible, both data sources should be merged to
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provide rainfall measurements respecting both punctual rain gauge measurements and radar spatial
structure [17,18].

The allocation of rainfall inputs from measured locations to the model of an individual draining
area is generally done based on the modeller’s expertise. This defines a time-accumulation scale
in which the rainfall estimations will be generated. This time step definition is constrained by data
technical specifications (lower limit) and by the dynamics of the modelled process (upper limit).
Manual/automatic quality checks are performed to assign reliable time-windows to each dataset.
Then a selection of these measured points is used to generalise values to the rest of the catchment.
This is often done by simple spatial association as using Thiessen polygons, distance-averaging
schemes or through geostatistical methods. A geostatistical interpolation scheme was used in this
work since it allows accounting for the spatial structure of the rainfall process and it facilitates the
merging process of different data sources.

When generating rainfall predictions, an often-neglected factor is the spatial support of the
estimation. In this case, the studied ICM was composed of several individual lumped rainfall-runoff
model structures. These models spatially aggregate the internal connected areas. Thus, the rainfall
input should be representative for the full domain and not only of an arbitrary internal location.
Although measurements provided by rain gauge networks are of point values, rainfall predictions
should be performed over a certain area. This is often referred to as change of block spatial support [19].

Figure 3 depicts the strategies followed to generate predictions by interpolating a set of sampled
points from the rainfall map. In Figure 3a a direct use of the measurements of a single rain gauge to all
catchments Figure 3b rainfall estimations at catchment’s area (B) are rendered from a block kriging
scheme from n point samples (Section 2.4.1) in Figure 3c the estimated rainfall is extracted from a
weighted average of the radar pixels covered by the catchment Figure 3d presents the case in which
radar measurements are used as an external covariate within the area support to refine an interpolation
from n rain gauges (point-to-block kriging with external drift, Section 2.4.2). The simplification of
spatial rainfall description through point or block estimates will not always contribute significantly
to the rainfall predictive accuracy. Its influence depends on the spatial variability of the observed
field and the size of the support area. In other words, a highly correlated spatial field would be well
approximated by a point estimate. However, spatial variability of rainfall may become increasingly
relevant at large draining areas subjected to highly convective storm conditions.
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Figure 3. Rainfall estimations under change of spatial support from different data sources: (a) Single
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area B; (d) Merged product between n rain gauges and the radar map through a kriging with external
drift estimation under change of spatial support.

Rainfall input time series were generated using four data sources:

1. Single rain gauge (BK1_T): Using only the most reliable rain gauge (KNMI_370 in Figure 1).
This rain gauge was selected to generate homogeneous rainfall fields, which simulates the case
in which data is only present at a single location inside the catchment area.
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2. Block kriging of all available rain gauges (BKall_T): Use of the full rain gauge network to
generate predictions from an Ordinary Kriging model at the spatial support of each draining area
(Section 2.4.1).

3. Averaged radar quantitative estimation (ARadar_T): Spatial weighted average of the gridded
radar-derived rainfall estimations (resolution 1 km2) for each draining area.

4. Kriging with external drift (UBK_T): Use of the full rain gauge network and radar rainfall
estimated field as a covariate. Predictions were rendered at spatial support of draining areas
(Section 2.4.1).

Rainfall input time series were generated by varying the accumulated time step T (10, 30 and
60 min), for each of the four data sources, thus rendering 12 different products for each of the
29 individual rainfall–runoff model catchments.

2.4.1. Ordinary Kriging with Change of Spatial Support

Kriging is a well-known geostatistical technique [20] which is widely used to generate estimations
of continuously spatially distributed variables at non-sampled locations, taking into account the spatial
structure exhibited by the variable.

Let r(x0) be the rainfall intensity at a certain non-sampled location x0. This can be approximated
by a linear combination of, i = 1, . . . , n observed values at nearby locations, r(xi):

r̂(x0) =
n

∑
i=1

wi(x0)·r(xi), (1)

where wi denotes a set of local weights. Ordinary Kriging stems from the assumption that the process
is Gaussian and has a constant and unknown mean value or E[r(x0)] = E[r(xi)] = m. Forcing the
estimation to be unbiased; E[ε(x0)] = E[r(x0)− r̂(x0)] = 0 and minimising the prediction’s variance
leads to the derivation of the kriging system, which in matrix form is:[

w
µ

]
=

[
Cij 1
1T 0

]−1

·
[

Ci0
1

]
, (2)

in which µ refers to the Lagrange multiplier (used on the minimisation of the variance), Cij ∈ Rnxn to
the covariance matrix between data points, Ci0 ∈ Rnx1 covariance vector between each of the measured
points at the estimation’s location and 1 ∈ Rnx1 a vector of ones.

Block kriging usually denotes a variation of the kriging system in which the target is not a point
estimate but a spatial averaged prediction within a certain area domain, B. This is computed as:

r(B) =
1
|B| ∑

j|j∈B
rj; (3)

in this case, the covariance structure changes to the point-to-block covariance, or:

C̃i,B = Cov(rB, ri) = E[rBri]− E[rB]·E[ri] =
1
|B| ∑

j|j∈B
Cij, (4)

which represents the average covariance between the location i and all the possible locations within
the block B. Thus the kriging system accounting for the estimation at block level is:[

wB
µ

]
=

[
Cij 1
1T 0

]−1

·
[

C̃iB
1

]
; (5)
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by solving wB(x0) and using it as the weights for the Equation (1), it is possible to generate estimations
at the target support area.

2.4.2. Kriging with External Drift (KED) with Change of Spatial Support

Ordinary kriging is analogous to a Gaussian process model with an unknown but constant
mean field. However, additional variables that are correlated to the targeted process (and extensively
measured) can be used to further refine the spatial model. Regression kriging and Kriging with external
drift cover this problem. This involves assuming a spatial model, which has a deterministic mean m(x)
and a stochastic component ε(x):

r(x) = m(x) + ε(x) (6)

m(x) =
p

∑
k=0

βk·qk(x), (7)

and in which the mean field is linearly related to a set of k = 1, . . . , p external variables qk(x) through
a set of weights βk (also referred as regression coefficients). In Regression Kriging, the mean field
is first fitted, and the field of stochastic residuals ε(x) is interpolated though Simple or Ordinary
Kriging. On the other hand, Kriging with External Drift (KED) includes the regression process within
the solution of kriging system. Thus, predictions on KED are also performed as a linear combination
of the values at observed locations:

r̂(x0) =
n

∑
i=1

wKED
i ·r(xi), (8)

in which the weight values are obtained by solving the KED equation system ∀i ∈ {1, . . . , n}:

∑n
i=1 wKED

i ·Cij + µ0 + ∑
p
k=1 µk·qk(xi) = Ci0

∑n
i=1 wKED

i ·qk(xi) = qk(x0)

∑n
i=1 wKED

i = 1
. (9)

Radar-reflectivity derived rainfall maps were the only covariate used in this study. Therefore, the
solution of the KED system in matrix notation with radar as an extra covariate could be expressed as: wKED

µ0

µ1

 =

 Cij 1 Ri
1T 0 0
RT

i 0 0


−1

·

 Ci0
1

R(x0)

, (10)

in which µ0 and µ1 are the Lagrange multipliers, RT
i = {R(x1), R(x2), . . . , R(xn)} a row vector of the

radar values associated to the observed locations, Cij the covariance matrix between sampled points
and Ci0 ∈ Rnx1 the covariance vector between each of the measured points and the targeted location.

As discussed in the case of Ordinary Kriging, the objective estimation should be done at an area
block support. Thus the equations were adapted in an analogous manner: wKED

B
µ0

µ1

 =

 Cij 1 Ri
1T 0 0
RT

i 0 0


−1

·

 C̃iB
1

R(xB)

; (11)

the covariance matrix should represent the point-to-block covariance (C̃iB). The radar covariate was
averaged within the block area:

R(xB) =
1
|B| ∑

j|j∈B
R(xj); (12)
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this step facilitates the implementation of the kriging system, and it is consistent since the deterministic
mean (in Equation (7)) is calculated through a linear application. Thus, averaging the covariate
beforehand is equivalent to performing predictions at each location and later spatially averaging them.

2.4.3. Rainfall Spatial Correlation

The covariance used in Equations (5) and (11) represents the spatial structure exhibited by the
measured process. This was expressed in terms of a semivariogram structure, which in this case is
related to the covariance as:

γ
(

xi, xj
)
= C0 − C

(
xi, xj

)
, (13)

where C0 = Var(r(x)) (total variance). An empirical semivariogram was computed from the rain gauge
dataset. This should ideally be computed independently at each time step (as temporal autocorrelation
was neglected). However, in most cases, the urban scale rain gauge network does not present enough
spatial density to compute a reliable semivariogram structure per time step. Therefore the rain field
was assumed to be stationary of second order, isotropic and was computed as time-lumped, obtaining
an averaged structure for each storm process in the form:

γ̂(h) =
1

2m

m

∑
t=1

1
N(h)·s2

t (r)

N(h)

∑
i=1

[R(ui, t)− R(ui + h, t)]2, (14)

for which N(h) is the number of sampled pairs located at distance h =
∣∣xi − xj

∣∣ (Euclidean distance).
The semivariogram was time-averaged over each selected independent storm process and normalised
by the variance of the rainfall variable at each time step s2

t (r).
The empirical semivariogram is a cloud of discrete points relating space lag (h) and semivariance.

In order to generate a continuous spatial correlation map, a valid functional representation
(experimental semivariogram) was fitted. An exponential structure was used in this case:

γ(h) =


0 i f h = 0

c0 + c·
(

1− e
−3|h|

φ

)
i f h > 0

, (15)

where c is the partial sill, c0 is the nugget effect and φ the effective range or de-correlation distance
(distance at which the semivariogram value reaches the 95% of the total sill). No relevant nugget was
found in a preliminary study and therefore it was excluded from the semivariogram model (this is in
agreement with the findings of [21]).

2.5. Characterisation of the Water System

This section attends exclusively to the definition of the spatial and temporal scales characterising
the water system under study. This is directed to improve the generalisation potential of the results
(by allowing comparison with other systems).

2.5.1. Spatial Scales

Figure 1 shows the geographical location of the different municipalities connected to the Dommel
catchment. The system is composed by 29 individual drainage areas, which are scattered over an
area of roughly 25 × 30 km. The distance from the different urban drainage systems along with their
drained area morphology plays a role on the sensitivity to rainfall spatial scales (e.g., a highly clustered
system could be sufficiently represented with a few sampled locations, while a sparse one may require
a more detailed spatial description). Figure 4 introduces the main spatial dimensions of this system.
The lower triangular matrix displays the distance between centroids of the catchment areas, the area
Ai in km2 is shown in the diagonal, while the upper triangular matrix introduces a ranking metric
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of importance between area couples (normalized
√

Ai·Aj). This ranking metric shows the clustering
effect exerted by the biggest municipal area (Eindhoven).Water 2017, 9, 926  10 of 21 
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A global characteristic spatial scale was computed as a weighted average of the
centroid-to-centroid distances plus the average area length scale, expressed as:

L̂c =
∑i>j

[
dij +

√
Ai +

√
Aj

]
·
√

Ai·Aj

∑i>j[
√

Ai·Aj]
= 14.8 km, (16)

where Ai is the area of the ith catchment and dij is the distance between the centroids i and j. This metric
aims at accounting for the distances between connected areas, giving an increased importance to larger
area couples. This provides an estimated catchment characteristic scale that can be used to diagnose
the system’s behaviour against rainfall processes with different correlation scales.

2.5.2. Temporal Scales

A characterisation of the system’s reaction time was extracted from observed datasets at the rain
gauge network, CSO structures, WWTP and river. Table 2 provides a summary for the characteristic
temporal scales. Additionally, the accumulated discharged volume from the CSO structures and the
minimum DO level in the river linked to each storm process are shown. This provides an insight on
the impact mechanism of each event and on the reaction patterns of the system.
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Table 2. Characteristic time scales. Calculated as the delay time between the main rainfall peak
and the maximum discharge for; (1) the sum of combined sewer overflows (CSO); (2) the time to
reach maximum flow capacity at the treatment works (WWTP) and (3) the time of stabilisation of the
dissolved oxygen minimum river level (DO, measured ~17 km downstream of the WWTP).

Delay from Rainfall
Maximum Intensity (h)

Event Code Storm Time Window CSO WWTP DO CSO Volume
(m3)

Min DO
Level (g/m3)

1 18 August 2011 14:00–18
August 2011 21:00 2 h 5 h 28 h 119.6 × 103 1.3

2 22 August 2011 21:00–23
August 2011 14:00 1 h 2 h 13 h 573.1 × 103 0.7

3 26 August 2011 06:00–26
August 2011 14:00 - 4 h 23 h 3.7 × 103 0.8 *

4 11 July 2012 10:00–11 July
2012 22:00 3 h 3 h 23 h 157.4 × 103 2.8

5 28 July 2012 17:00–28 July
2012 20:00 1 h 1 h 25 h 20.8 × 103 0.8

6 27 July 2013 05:00–28 July
2013 03:00 2 h 3 h 18 h 103.3 × 103 0.6

7 11 August 2013 11:00–11
August 2013 23:00 - 3 h 14 h 0.45 × 103 1.6

Note: * Storm event 3 was not an independent process. The DO concentration in the river was affected by a previous
storm event. This explains the low minimum DO associated with an event with low CSO discharge volume.

3. Results

3.1. Urban Drainage Dynamics

The effect of rainfall input source (space–time variability) in the urban drainage dynamics is
illustrated by the comparison of the four most relevant internal variables: (1) Maximum estimated
rainfall intensity in the catchment; (2) accumulated rainfall depth; (3) maximum discharge at the CSO
and (4) accumulated discharged volume. The estimated rainfall intensity and accumulated depth
describes differences in the rainfall input at each catchment. Each of those inputs were propagated
through the urban drainage sub-model, and subsequently rendered the pollutant load in the river
system. The urban drainage response is characterised by the CSO dynamics, described by the maximum
flow peak and the accumulated discharged volume. Figure 5 shows the effect of rainfall input on
the urban drainage system of Valkenswaard (Figure 1). This municipality is an especially illustrative
example since it is located ~12 km from the rain gauge KNMI_370 (the source of the BK1 product)
and represents a relevant contribution to the total discharged volume (2nd largest connected area).
This example allows the observation of the joint effect of time and space variability. The selected time
aggregation influences the estimated maximum rainfall intensity, which however does not propagate to
the estimation of total rainfall volume and to the CSO simulation. A certain effect of time-aggregation
at the interpolated rainfall products (BKall and UBK) can be observed. However, this difference is
relatively small compared with the exhibited by the selected spatial data sources. The use of a single
rain gauge input, BK1 creates an appreciable deviation in the computation of CSO dynamics in most of
the rainfall processes studied when compared with monitoring data (Figure A1). Differences between
the other three products (BKall, UBK and ARadar) are less apparent.



Water 2017, 9, 926 12 of 21

Water 2017, 9, 926  11 of 21 

 

6 
27 July 2013 05:00–28 July 

2013 03:00 
2 h 3 h 18 h 103.3 × 103 0.6 

7 
11 August 2013 11:00–11 

August 2013 23:00 
- 3 h 14 h 0.45 × 103 1.6 

Note: * Storm event 3 was not an independent process. The DO concentration in the river was affected 
by a previous storm event. This explains the low minimum DO associated with an event with low 
CSO discharge volume. 

3. Results 

3.1. Urban Drainage Dynamics 

The effect of rainfall input source (space–time variability) in the urban drainage dynamics is 
illustrated by the comparison of the four most relevant internal variables: (1) Maximum estimated 
rainfall intensity in the catchment; (2) accumulated rainfall depth; (3) maximum discharge at the CSO 
and (4) accumulated discharged volume. The estimated rainfall intensity and accumulated depth 
describes differences in the rainfall input at each catchment. Each of those inputs were propagated 
through the urban drainage sub-model, and subsequently rendered the pollutant load in the river 
system. The urban drainage response is characterised by the CSO dynamics, described by the 
maximum flow peak and the accumulated discharged volume. Figure 5 shows the effect of rainfall 
input on the urban drainage system of Valkenswaard (Figure 1). This municipality is an especially 
illustrative example since it is located ~12 km from the rain gauge KNMI_370 (the source of the BK1 
product) and represents a relevant contribution to the total discharged volume (2nd largest connected 
area). This example allows the observation of the joint effect of time and space variability. The 
selected time aggregation influences the estimated maximum rainfall intensity, which however does 
not propagate to the estimation of total rainfall volume and to the CSO simulation. A certain effect of 
time-aggregation at the interpolated rainfall products (BKall and UBK) can be observed. However, 
this difference is relatively small compared with the exhibited by the selected spatial data sources. 
The use of a single rain gauge input, BK1 creates an appreciable deviation in the computation of CSO 
dynamics in most of the rainfall processes studied when compared with monitoring data (Figure A1). 
Differences between the other three products (BKall, UBK and ARadar) are less apparent. 

 
Figure 5. Rainfall input and urban drainage response for the municipality of Valkenswaard. Each 
graph depicts the effect of the four rainfall products rendered at different time accumulation steps. 
From left to right; maximum rainfall intensity, accumulated rainfall depth, maximum CSO flow and 
accumulated CSO volume. 

Figure 5. Rainfall input and urban drainage response for the municipality of Valkenswaard. Each
graph depicts the effect of the four rainfall products rendered at different time accumulation steps.
From left to right; maximum rainfall intensity, accumulated rainfall depth, maximum CSO flow and
accumulated CSO volume.

The time–space rainfall input variations were decoupled to display the effect in all urban drainage
catchments connected to the water system. Figure 6 shows the effect of variations of the spatial product
(at fixed 60 min time aggregation) for each catchment (represented by their connected areas in abscises).
The rainfall intensity and depth provided by the product BK1 produces a distortion of the rainfall map,
which can be appreciated in events 1, 2 and 5 (Figure 6). Although in some cases like in Storm 6 or
Storm 7, BK1 can be representative of the mean of the process, it generally induces a deviation into
the rainfall input description with respect to the rest of the products shown in this work. This error is
not systematic and it is linked to the homogeneity of the rainfall process (if the central rain gauge is
representative for the overall spatial domain or not). In consequence, these differences in the rainfall
quantification due to spatial data variation affects the CSO simulated dynamics, Event 1 and 4 in
Figure 5 are a good example of this phenomenon in which BK1 underestimates first and overestimates
later the total rain volume and this is consequently transferred to the accumulated CSO volume.
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Figure 7 shows the effect of the selection of time-aggregation level at each urban drainage system
(using the ARadar spatial data source as fixed input). Here it can be seen how the selection of a
certain time aggregation (10–60 min) impacts on the estimation of the maximum rainfall intensity.
However those differences do not propagate to the computation of accumulated rainfall volume and
in consequence to the simulation of CSO discharges.
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3.2. Rainfall Estimation Variability

The spatial characteristics of the observed rainfall processes under study were estimated by
the use of a time-averaged empirical semivariogram (as described in the methods section). Table 3
shows the fitted range and sill parameters for each storm process depending on the time-aggregation
level. This describes the correlation structure present in the rainfall process. A large range indicates a
spatially homogeneous rainfall process. This was used in order to relate the rainfall input influence
with its spatial correlation and the characteristic scale of the catchment. The increase in accumulation
time of the rainfall input produced a more spatially correlated map (seen by the increase in range).
This was to be expected since aggregating on time acts as smoothing of the process. Additionally,
Figure 8 shows the accumulated rainfall depth map at 24 h from the start of each storm. This represents
the storm main path, which describes the total rainfall volume spatial distribution.
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Table 3. Fitted parameters sill and range (φ, in km) for an averaged exponential semivariogram model.

T Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 Event 7

(min) Sill φ Sill φ Sill φ Sill φ Sill φ Sill φ Sill φ

10′ 0.87 17.6 0.69 15.8 0.93 18.8 0.87 13.6 0.4 5.3 0.31 26.7 0.64 12.7
30′ 0.86 24.7 0.88 24.5 0.87 25.2 0.87 25.0 0.83 23.4 0.90 26.4 0.91 26.4
60′ 1.13 43.6 1.16 45.5 1.09 40.8 1.15 45.3 1.14 44.4 1.08 40.1 1.07 39.4

3.3. Rainfall Input Effect on Dissolved Oxygen Dynamics

In order to assess the effect of rainfall input in dissolved oxygen simulations, modelled time-series
were compared against existing monitoring data. Table 4 presents the residuals between the minimum
oxygen level observed and modelled at all storm-input combinations. Minimum oxygen simulated
level is highly relevant in practice since it captures the magnitude of impact at the receiving water
body and is directly related to the pollution load in the system (which is driven by the rainfall process).
Table 5 shows the root-mean-squared-error (rmse) between simulated-observed time series from the
beginning of the storm event until 5 days later when the DO concentration is recovered (except in the
case of Event 2, which overlapped partially with Event 3). The performance indicators for dissolved
oxygen show that the effect of time-accumulation of the rainfall input is negligible.

Table 4. Observed–modelled residual for the minimum dissolved oxygen concentration (g/m3).

Rainfall Input Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 Event 7

BK1_10′ −3.9 −1 −1.4 1.2 −2.15 −0.49 −1.1
BK1_30′ −3.9 −1 −1.4 1.2 −2.15 −0.49 −1.2
BK1_60′ −3.9 −1 −1.4 1.2 −2.15 −0.49 −1

BKall_10′ −1.25 −0.76 −1.3 −0.05 −1.8 −0.38 −1.15
Bkall_30′ −1.25 −0.67 −1.21 −0.2 −1.5 −0.38 −1.1
Bkall_60′ −1.25 −0.58 −1.1 −0.2 −1.35 −0.38 −1.05

UBK_10′ −1.3 −0.49 −1.09 0.55 −1.74 −0.4 −1.2
UBK_30′ −1.28 −0.52 −1.09 0.65 −1.5 −0.4 −1.25
UBK_60′ −1.28 −0.51 −1.09 0.65 −1.4 −0.4 −1.2

ARadar_10′ −1.26 −0.71 −1.2 1.05 −0.9 −0.37 −1.4
ARadar_30′ −1.26 −0.72 −1.2 1.06 −0.9 −0.37 −1.4
ARadar_60′ −1.26 −0.72 −1.2 1.06 −0.9 −0.37 −1.3

Table 5. Observed–modelled RMSE for dissolved oxygen concentration (five days).

Rainfall Input Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 Event 7

BK1_10′ 1.58 1.27 1.2 1.9 1.85 0.98 1.15
BK1_30′ 1.58 1.27 1.2 1.92 1.87 0.99 1.15
BK1_60′ 1.57 1.26 1.18 1.94 1.86 1 1.14

BKall_10v 1.16 0.99 0.54 0.88 1.76 0.96 1.2
Bkall_30′ 1.12 0.95 0.44 0.87 1.58 0.98 1.18
Bkall_60′ 1.12 0.91 0.31 0.89 1.51 0.98 1.17

UBK_10′ 0.99 0.88 0.2 1.1 1.61 0.96 1.07
UBK_30′ 1 0.87 0.15 1.15 1.81 0.95 1.1
UBK_60′ 0.99 0.88 0.17 1.14 1.69 0.95 1.14

ARadar_10′ 1.07 0.98 0.64 1.47 1.28 1.26 1.16
ARadar_30′ 1.07 0.97 0.6 1.51 1.28 1.25 1.16
ARadar_60′ 1.1 0.97 0.57 1.51 1.28 1.26 1.16
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Figure 9 presents a graphical comparison between dissolved oxygen (DO) river observations and
modelled series at each spatial data source selection (fixed 60-min time accumulation). The graph
considers the three time period simulations, as described at Table 1.
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It can be seen how the effect of rainfall selection had a varying impact depending on the storm
process. This is linked to the mechanism of DO depletion of each event and on the characteristics of
the rainfall process. For instance, storms from period (1) and (2) exhibit differences due to the spatial
data selection in both the DO depletion depth and recovery duration. However, the events occurring
in period (3) show very little sensitivity to the selected rainfall input. In the case of Event 7 this can be
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explained by the fact that CSO volumes were low (see Table 2). Thus the DO depletion was likely not
due to CSOs but rather to the discharge from the WWTP (which filters the effect of time-space) or by
unaccounted processes not included in the model structure. Event 6, on the other hand, presented a
rainfall event for which the rain gauge KNMI370 was a good representation of the main contributing
urban areas (as appreciated in Figure 6).

4. Discussion

Figures 5 and 6 show the deviation generated by the homogenous rainfall source (BK1) for the
rainfall estimation (depth and intensity), which was consequently transferred to the CSO discharge
patterns. There is a clear difference between predictions rendered by a homogenous rainfall data
source (BK1) and the results stemming from the use of extra spatial information either the extended
rain gauge network (BKall), radar spatial predictions (ARadar) or a merged product rain gauge-radar
(UBK). Varying the time aggregation of rainfall products (at 10, 30 or 60 min) influenced the maximum
estimated rainfall peak. However, this difference was not transferred to the estimated total rainfall
volume (depth) and to the CSO-DO dynamics. Figure 7 shows that the influence of time aggregation on
CSO patterns is almost negligible when modelling discharged volumes and that this is generalizable
to all catchments under study. This is explained by the nature of the urban drainage system, which as
described, is characterised by low slopes and large in-sewer storage. Thus, the behaviour of CSO spills
is dominated by the rainfall volume and not by its dynamic component. A direct link between the
rainfall characteristics (maximum intensity, total volume, average correlation range) and the sensitivity
of dissolved oxygen to rainfall events could not be established. Therefore, the characterisation of
the spatial scales at the measured rainfall intensity maps (through the semivariogram calculation)
is insufficient to ascertain their effect on the integrated model DO output variability (since this is
sensitive to rainfall volume and not to intensity). Figure 8 shows the accumulated rainfall volume
spatial distribution of the rainfall events. It can be appreciated how the storm cell “path” can play an
important role in the process since its variability occurs within the spatial scale of the catchment system.
Thus, the spatial distribution of storm processes should be included in synthetic rain generators used
for design and test purposes (as described in [22]). A slightly higher influence of the time-step is
observed at both kriging inputs BKall and UBK (for modelling CSO discharge). This was due to the
nature of the interpolation process: the performance is known to decrease at short time scales [17]
(lower than 30′).

The effect of time aggregation of the rainfall field in DO dynamics is negligible. This is shown in
Table 4 in which the variation of the modelled-observed minimum oxygen level residual is practically
insensitive to the variation in time. This effect is explained by the fact that DO dynamics in the system
are mainly affected by the WWTP effluent and by the total CSO discharged volume. Both of them
seem to be relatively insensitive to rainfall input time accumulation (between 10–60 min). Additionally,
DO processes present a significant inertia with respect to the rainfall process (15–28 h, as shown in
Table 2), which acts like a high-frequency filter of the CSO dynamics.

This study intends to describe the interaction of a large-scale integrated urban catchment model
and the rainfall input characteristics. It is relevant to mention that such integrated modelling studies
are subjected to several sources of uncertainties (which are not independent). The water quality model
applied has not been calibrated for the studied time series, due to the fact that the main goal of this
study is the observation of changes due to input data source. Therefore several errors can be observed
in the simulated time series. First, there is a systematic underestimation of DO depletion processes
of 1–0.5 mg/L (which could be indicative of a wrong description of the urban-WWTP pollutant
concentration load). Additionally the DO simulations reacted slightly faster (1–8 h) than observed in
the measured data, which can be indicative of a wrong timing effect in CSO-WWTP effluent simulation
(since the hydraulics in the system were calibrated). Those errors however are not expected to have an
influence on the conclusions of this study.
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Examples of similar studies are scarce as of yet due to the complexity of creating a fully integrated
catchment study and the lack of sufficient monitoring data in those systems. However, partial studies
on the effect of input errors in similar systems can be found in [23], which described the sensitivity of
a river model to several sources of uncertainties, indicating that 60% of DO simulation variability is
explained by the input data. However, this considered variations in pollution load inputs from urban
systems and not directly on rainfall. A full uncertainty quantification scheme was proposed for a small
integrated system in [4], but only accounting for urban drainage and WWTP outputs (not receiving
water), and reported that rainfall uncertainties had a contribution of 15–20% to uncertainties in BOD
loads from a sewer and WWTP effluents. Freni et al. [24] reported in a fully integrated example for a
small-scale river system that DO river concentration is highly sensitive to the upstream subsystem
outputs (in this case urban drainage discharges). Those studies report a relative sensitivity of DO or
related variables to the input description. Thus, reducing the errors in the rainfall input data set could
influence the ability to simulate DO patterns. The findings of this study aim to describe the relevant
characteristics that the input data source should have when modelling DO in a large urban integrated
water system, which can be used to direct further monitoring and modelling efforts in this system or
in similar ones.

5. Conclusions

This work addresses the influence of rainfall input spatial and temporal characteristics in the
modelling of dissolved oxygen patterns in a large lowland integrated urban water system. The effect
of varying the rainfall process description by using different accumulation time scales and different
rainfall measurement sources was investigated. A total of 12 rainfall input products were tested for
seven storm events, which generated significant oxygen depletion events in the receiving water body.
Rainfall inputs were generated at three time-accumulation levels (10, 30 and 60 min) and using four
different rainfall sources: (1) A single rain gauge (BK1), (2) a block kriging interpolation from 13 rain
gauges (BKall), (3) radar-derived rainfall composites from the KNMI (ARadar) and (4) the results of
kriging with external drift merging of rain gauges and radar (UBK). All estimations were generated at
the spatial support of the individual connected urban drainage networks.

The tested rainfall time-accumulation level did not influence the modelled dissolved oxygen
patterns in the river. Although it influenced the maximum estimated rainfall intensity, the effect on
rainfall-accumulated volumes was very limited (with the exception of kriging based products, which
exhibited a minor influence of time accumulation). This effect was not propagated to simulated CSO
dynamics at the urban system in most cases and therefore the effect on DO dynamics was negligible.
It was found that the use of a single rainfall point measurement generates a non-systematic deviation
in the simulated CSO series (although the measurement was located 5 km from the main contributing
urban catchment). This misrepresentation has the potential to affect DO dynamics. No relevant
difference was found in the use of radar estimations or a network of rain gauges in the system.

The results obtained in this study can only be generalised to similar systems with an equivalent
mechanistic relationship urban, WWTP and river. Nevertheless, we present a detailed description
of the process followed to: (1) Characterise the rainfall process and the system’s response patterns;
(2) generate rainfall inputs at the spatial support of the target catchment and (3) assess the sensitivity
of the model to the characteristics of rainfall input. This process can be followed in other integrated
catchment studies in order to identify the desired characteristics of rainfall input datasets for each
selected system variable.
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