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Abstract: In this research, univariate and bivariate statistical methods were applied to rainfall,
river and piezometric level datasets belonging to 24-year time series (1986–2009). These methods,
which often are used to understand the effects of precipitation on rivers and karstic springs discharge,
have been used to assess piezometric level response to rainfall and river level fluctuations in a
porous aquifer. A rain gauge, a river level gauge and three wells, located in Central Italy along
the lower Pescara River valley in correspondence of its important alluvial aquifer, provided the
data. Statistical analysis has been used within a known hydrogeological framework, which has
been refined by mean of a photo-interpretation and a GPS survey. Water–groundwater relationships
were identified following the autocorrelation and cross-correlation analyses. Spectral analysis and
mono-fractal features of time series were assessed to provide information on multi-year variability,
data distributions, their fractal dimension and the distribution return time within the historical time
series. The statistical–mathematical results were interpreted through fieldwork that identified distinct
groundwater flowpaths within the aquifer and enabled the implementation of a conceptual model,
improving the knowledge on water resources management tools.

Keywords: alluvial aquifer; GPS survey; hydrological time series; autocorrelation; cross-correlation;
spectral analysis; mono-fractal analysis; Central Italy

1. Introduction

The careful and correct management of water resources in densely populated alluvial areas is
becoming necessary because of the groundwater depletion caused by increased exploitation associated
with demographic growth. Previous scientific research on long time series was focused mainly
on hydrogeological processes concerning relationships between precipitation and spring discharge
or river level, quite often considering fractured aquifer systems [1–6]; these analyses provided
complementary information to the hydrogeological properties of a natural system, to the transit
time through the subsurface’s unsaturated zone, and to the recharge of the aquifer, supporting the
correct implementation of hydrogeological conceptual and numerical models [7–10]. On the other
hand, the behavior analysis of long piezometric level time series was almost neglected and limited
to short periods that rarely exceeded a year (e.g., contaminated site studies). Recently, Cai and
Ofterdinger [11] evaluated the statistical relationships between two-year rainfall and piezometric
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time series logged consecutively every 15-min in fractured aquifers, while Misstear et al. [12]
deepened the relationships between well hydrographs and rainfall recharge in five-year periods
in sandy-gravel aquifers. Furthermore, the definition of relationships between piezometric level
fluctuation and its regulating factors is useful to characterize alluvial aquifers and better quantify
and manage groundwater resources, especially in dry periods when piezometric heads decrease and,
similarly, in wet periods when their increase can contribute to groundwater flooding.

Rainfall should be considered an input or independent regulating variable for the aquifer and
for the hydrographic network, as it is a key factor affecting respectively infiltration recharge and
runoff, while the river level and the groundwater piezometric level should be considered as outputs or
dependent variables. At the same time, the piezometric level cannot be considered to be independent
from the river stage, because of surface-water/groundwater interactions [3,6,13–17]. In this study,
24-year time series of rainfall, river level and groundwater piezometric level measurements,
acquired every three days, were analyzed with various univariate and bivariate statistical methods,
including autocorrelation, cross-correlation, and spectral analyses. In addition, the residual component
of the data has been elaborated to deepen the random relationships between the variables. The analyses
were undertaken in order to evaluate memory effects, the delay of piezometric level response to
rainfall [18] and river head changes, and the periodical components of the time series. The methods
developed by Mangin [1] can describe the capability of the unsaturated and saturated zones of the
aquifer in filtering, amplifying or attenuating and, accordingly, transforming the input functions
(rainfall ajd river level) into the output functions (piezometric level).

In addition to the standard statistical analyses, the feasibility of using fractal tools [19,20]
to characterize the variability of rainfall, hydrometric data and piezometric level of selected wells
was explored. These methods for the analysis of hydrogeological data are unusual in the literature;
Yu et al. [21] used the fractal analysis to relate piezometry data only to the geological profile and not to
other hydrological time series. In this research, a mono-fractal analysis, based on the Box-Counting
and Cantor-Dust methods, was carried out [22–24], and then some indications on events return time
(DRT) were given.

The methodology is applied to an alluvial aquifer located in the Italian Central Adriatic area
(Figure 1). The paper is subdivided in four sections: in the “Study Area” section, the territory is
described from the geological, morphological and hydrogeological point of view. In the sections
“Datasets” and “Methods” the time series and the statistical–mathematical analysis methods are
illustrated. In Section 4, “Results”, the most significant results are shown. The final sections
“Discussion” and “Conclusions” offer a wide result comparative analysis in which relationships
with the hydrological and hydrogeological contests are described and criticisms and future research
development are outlined.
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Figure 1. (Top) The study area; and (Bottom) the hydrogeological framework and the monitoring 
network are shown (see Table 1 for initials and abbreviations). 

Table 1. Topographical data and type of monitored sites. 

Name ID Type 
Elevation 
(m a.s.l.) 

Distance from 
River (m) 

Distance from  
Sea (km) 

Spoltore Sp Rain gauge 165.00 2650 4.4 
Surricchio Su Well 18.10 250 8.3 

Sanità Sa Well 8.68 170 4.1 
De Nicola DN Well 11.68 1960 3.7 

Pescara S. Teresa PST Hydrometer 4.51 0 7.0 

2. Study Area 

The studied alluvial aquifers are located between the Apennine Mountains and the Adriatic 
Sea. The more elevated areas in this sector are constituted of Mio-Pliocenic terrigenous 
pelitic-arenaceous and pelitic-marly deposits [25–27]. The alluvial aquifers are sedimentary 
structures that include various orders of terraces (I to IV order) and the current alluvial plain. These 
deposits are mostly silty and sandy in nature with gravelly-sandy lenses of the period between 
medium-upper Pleistocene and Holocene age. The spatio-temporal evolution of the fluvial 
depositional environments, driven by interactions between climatic and glacio-eustatic changes and 
the plio-quartenary tectonic phases, has conditioned the spatial distribution of the characteristic 
lithotypes [28]. The presence of a mostly pelitic substrate, acting as an aquiclude (k values ranging 
from 10−9 to 10−7 m/s), below the more permeable alluvial deposits (k values ranging from 10−5 to 10−3 
m/s) suggests the presence of shallow, single and multi-layered aquifers [29,30]. 

These aquifers often interact with the streams and rivers through the hyphorheic zone. 
Hydraulic connection between the stream and the groundwater can occur with a transfer of mass 

Figure 1. (Top) The study area; and (Bottom) the hydrogeological framework and the monitoring
network are shown (see Table 1 for initials and abbreviations).

Table 1. Topographical data and type of monitored sites.

Name ID Type Elevation
(m a.s.l.)

Distance from
River (m)

Distance from
Sea (km)

Spoltore Sp Rain gauge 165.00 2650 4.4
Surricchio Su Well 18.10 250 8.3

Sanità Sa Well 8.68 170 4.1
De Nicola DN Well 11.68 1960 3.7

Pescara S. Teresa PST Hydrometer 4.51 0 7.0

2. Study Area

The studied alluvial aquifers are located between the Apennine Mountains and the Adriatic Sea.
The more elevated areas in this sector are constituted of Mio-Pliocenic terrigenous pelitic-arenaceous
and pelitic-marly deposits [25–27]. The alluvial aquifers are sedimentary structures that include
various orders of terraces (I to IV order) and the current alluvial plain. These deposits are mostly silty
and sandy in nature with gravelly-sandy lenses of the period between medium-upper Pleistocene
and Holocene age. The spatio-temporal evolution of the fluvial depositional environments, driven
by interactions between climatic and glacio-eustatic changes and the plio-quartenary tectonic phases,
has conditioned the spatial distribution of the characteristic lithotypes [28]. The presence of a mostly
pelitic substrate, acting as an aquiclude (k values ranging from 10−9 to 10−7 m/s), below the more
permeable alluvial deposits (k values ranging from 10−5 to 10−3 m/s) suggests the presence of shallow,
single and multi-layered aquifers [29,30].

These aquifers often interact with the streams and rivers through the hyphorheic zone. Hydraulic
connection between the stream and the groundwater can occur with a transfer of mass and/or pressure
head, based on the local hydrogeological conditions [31]. The alluvial aquifers are fed by the limestone
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aquifers of the Apennine Mountains in the internal areas [32–36], while recharge from rainfall has
a major role in the total recharge to the shallow alluvial aquifers moving downstream towards the
sea, particularly in correspondence of the terraced deposits that are hydraulically connected to the
lower valleys [37–40]. The wells considered in this study fall in the terminal areas of the Pescara River
alluvial valley, near the Adriactic Sea.

The Pescara River has a basin of 3190 km2 (Figure 1), which can be subdivided in two main parts:
the first one is the western mountainous sector, and the second one is the eastern sector, where the
alluvial aquifer under study is located. The Pescara River mean discharge measured in the Pescara
Santa Teresa gauge (PST) is about 50 m3/s (31 m3/s comes from the western part of its basin).

The alluvial deposits making up the aquifer present four orders of terraces, which have different
elevations with respect to the base of the valley. The first and second order terraces are at higher
elevations and are mainly constituted of gravelly deposits with silty-sandy lenses; the third and
four order terraces are at lower elevations and are constituted of gravelly deposits with extensive
silty-sandy and silty-clayey lenses. Only the fourth order terrace runs on both sides of the river,
with thin gravelly-sandy deposits, considered to be the current alluvial deposits, being directly
connected to this terrace (Figure 2). The overall thickness of the quaternary alluvial deposits increases
moving downstream. Thickness increases from 12 to 16 m in the middle section of the Pescara River
valley to 40–50 m near the coast. As the thickness increases, the nature of the deposits varies from
mainly gravelly to silty-sandy.
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The geometric characteristics of the river section under investigation, assessed by means of 
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Figure 2. Schematic geolithological section with a 10× vertical exaggeration (Cross section 1–1′

in Figure 1).

The groundwater flow direction follows that of the river in the most upstream areas of
the valley, although groundwater flow will be dependent on the local spatial distribution of the
lithotypes (presence of paleostreams, etc.) and on the morphology of the substrate, which will be
connected to erosional history and tectonic deformations. The groundwater flow is toward the
river moving downstream where recharge to the aquifer is clearly originating from the terraces
(Figure 1). The morphology of the substrate has a strong role in controlling groundwater flow,
since groundwater divides give rise to secondary flow circuits within the aquifer. The average
hydraulic gradient of the shallow groundwater below the river bed varies from 4h to 6h [29,41].
A meandering hydrographic pattern is observed in the area, which, together with the changes in local
river characteristics (i.e., river head slope and river width variations), controls the relationship between
groundwater and surface water (Figures 1 and 3).

The geometric characteristics of the river section under investigation, assessed by means of aerial
photo-interpretation and in-situ GPS surveys, indicate that the width of the river is quite variable.
However, in general (Figure 3), the width increases moving downstream. There are two discontinuities
along the river profile, which correspond to river dams for hydroelectric purposes, and the river
head slope is very low upward of these artificial impoundments. These hydroelectric plants were
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constructed after the period in which the data was collected and therefore had no influence on the
collected datasets.

The selected wells are located on the right respect to the river bank, at variable distances from the
river bed (Figure 4, Table 1). These wells have been drilled to total depth through silty-sandy deposits
and their exploitation is sporadic and limited to backyard irrigation during summer season.
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3. Datasets

Datasets used in this study, made available by the Hydrographic Service of Abruzzo Region,
refer to “Spoltore” automatic rain gauge (Sp), “Pescara S. Teresa” hydrometer (PST) and three wells
(Figures 1 and 2, and Table 1), “Surricchio” (Su), “Sanità” (Sa) and “De Nicola” (DN). While rainfall
data were available on a daily basis, the piezometric and hydrometric levels instead were measured
every three days, which means that, for every month, 10 measures were made available. For this reason,
to compare the time series, daily rainfall datasets where cumulated on a three-day basis. Since the
data available are relative to the 24-year period 1986–2009, each time series consisted of 2880 records.
Well characteristics and stratigraphy were identified from previous geognostic and field surveys
(Table 1, and Figure 4). The sea level time series has not been considered because of the distance of
each monitoring point from the sea (Table 1).

The three-day time series are plotted against time in Figure 5. River level and rainfall data
monitored at the Pescara S. Teresa (PST) and Spoltore (Sp) sites, and piezometric heads measured from
the Sa and DN wells show that the variability appears to be mainly seasonal, while at first sight a
plurennial cyclic behavior is evident in the piezometric level of Su well.
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4. Methods

4.1. Analyses in Time Domain

With reference to the statistical theory [1–4,42–46], univariate autocorrelation and bivariate
cross-correlation functions were applied to the time series as well as their residual component, obtained
with the additive Seasonal-Trend decomposition procedure Census I.

4.1.1. Seasonal-Trend Decomposition Procedure Census I

This statistical method was applied to raw data to remove the periodical calendar related
fluctuations (seasonal and cyclical) and the trend component, representing the non-casual long term
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changes in the level of the time series. In this way, it was possible to extract from the original data
the casual residual component describing the random short term fluctuations, neither systematic
nor predictable [47–49].

The selected statistical approach is based on the assumption that the observed value xt at time t
of the time series under consideration (or, in the case of a discrete ensemble of elements, the t-th data
measured at the time t, thus 1 ≤ t ≤ N) can be thought as consisting of four different components,
combined to each other in an essentially additive model:

xt = Tt × Ct + St + εt (1)

where Tt is the trend component; St is the seasonal component that occurs at regular (seasonal)
intervals; Ct is the cyclical component that varies from cycle to cycle and that have usually a
longer duration than the seasonal component; and εt is the random, error, or irregular component.
In the Census I method, the trend and cyclical components are customarily combined into a trend-cycle
component Tt × Ct [47,48].

4.1.2. The Autocorrelation Function

The Autocorrelation Function (ACF) provides the opportunity to evaluate the linear dependency
of successive values of a single parameter belonging to a time series. For this reason, the method is
univariate and quantifies the “memory effect” that corresponds to the temporal reciprocal influence
on subsequent data. Therefore, the ACF correlogram describes the time necessary to “forget” its own
initial conditions [1,3,4,44,50,51].

In general, a correlogram with a gentle slope can be an indicator of data series persistence,
while, if it drops off rapidly, it describes the random nature of the values [45]; furthermore, the slower
decline of ACF function for hydrological data describes an aquifer with low draining properties,
low permeability or major groundwater storage, conversely a faster decline of the autocorrelation
function indicates a more rapid flow of water through the aquifer and/or its limited storage
capacity [1,2,5,11,18,52,53].

To compare the “inertia” of signals, a delay (lag) is identified in correspondence of the
decorrelation coefficient 0.2, since events with a lower ACF coefficient can be considered
quasi-independent [1,6,54].

4.1.3. The Cross-Correlation Function

The Cross-Correlation Function (CCF), bivariate analysis performed between rainfall and river
level input signals and between rainfall and piezometric output signals, describes the time lag
necessary for the latter to reach the maximum CCF value in response of the input signals. Furthermore,
the function’s slope characterizes an aquifer in terms of infiltration rate, in terms of draining capacity
and storage and, by doing so, it describes the system’s modulating power and consequently its
inertial nature [1–3,13,42].

The cross-correlation function, to be acceptable, has to be characterized by a significant correlation
at the 95% confidence level, which means a correlation coefficient superior to the standard error
∼ 2

N = 0.037, where N is 2880 and corresponds to the number of values in the selected datasets [55,56].
Applying this function to the raw data, we obtain information on both the casual and non-casual

components relationships of input and output variables, as well as their importance [3]. On the other
hand, cross-correlation applied only to residuals describes the relationship between the random
components of the data, giving an idea about the response of the system against a unitary impulse,
hence the cross-correlogram can be used as the “unitary hydrograph” in surface hydrology [2,3].
Furthermore, the delay of the response gives an estimation of the pressure pulse transfer times
(the piezometric level increase due to hydrostatic pressure increase in the aquifer) and of the particle
travel times through the aquifer [5,6,9,44,48–50,54,57]. In our study, because of the small surface area



Water 2017, 9, 850 8 of 28

considered, the input rainfall signal, referred to SP rain gauge, is common to all wells and consequently
the variability of the transfer function can be related only to site-specific structural and functional
variability of the hydrological processes [57].

4.2. Analyses in Frequency Domain

The frequency domain is useful for data manipulation to extract frequency signals and provide
a picture of the frequency contents that are unclear in the time domain data [58]. Furthermore,
this analysis allows detecting average periodicities in long term series, to see if there are any dominants
oscillation modes and to identify the frequency bands of interest [42,59,60].

Assuming that the time series under study {xt} is a linear combination of sinusoidal functions,
each representing the multiple periodical nature of the phenomena, the discrete Fourier’s analysis,
also called harmonic analysis, can be employed. This univariate analysis decomposes the time series
with cyclical components, into few underlying co-sinusoidal and sinusoidal functions of all possible
(discrete) frequencies, each characterized by an amplitude related with the variance of the time series.
Accordingly, when N is odd:

xt = x +
q
∑

n = 1

2
N
{

an · cos
(
n 2π

N t
)
+ bn · sin

(
n 2π

N t
)}

+ εt

a0 = x =

(
N
∑

t = 1
xt

)
/N

an =
N
∑

t = 1
xt · cos

(
n 2π

N t
)

bn =
N
∑

t = 1
xt · sin

(
n 2π

N t
)

(2)

where x is the mean of the time series, νn = n/N is the n-th frequency (harmonics) multiple of
the fundamental frequency 1/N; and εt is the random component associated to the t-th data and
q = (N − 1)/2. If N is even, q = N/2, aq =

(
∑N

t = 1 (−1)t · xt

)
/N and bq = 0.

It worth noting that the cosine and the sine parameters, respectively, an and bn in Equation (2),
are obtained applying the least squares estimation method and indicate the degree to which the
respective cosine and sine functions are correlated with data. To explore how much each cyclic
phenomenon affects the overall time series trend, the amplitude square of each component, function of
the related frequency (spectral Analysis), was identified as an “importance measure” parameter.

The Fourier Transform, usually employed through its fast computational version (FFT; a particular
gain is obtained if the number of data is equal to N = 2n1 × 3n2 × 5n3 × · · · , in this
paper N = 2880 = 26 × 32 × 5, is a common approach aimed at performing univariate
spectral analysis, providing the feasibility to switch from the temporal to the frequency domain.
Accordingly, the following expression: I(νn) =

(
a2

n + b2
n
)
· 2/N, 0 ≤ n ≤ N/2 (0 ≤ υn ≤ 1/2),

called “periodogram” or the “sample spectrum”, was introduced. After some straightforward
manipulations, a link between the sample spectrum and the estimate of the autocovariance, called also
“power spectrum” [42,44] emerges. Moreover, in order to compare time series obtained at different
scales of measurements, it is useful to introduce the estimated (for this reason characterized by a
circumflex accent) “spectral density function” SD̂F(ν), normalizing the power spectrum respect to the
variance σ̂2

x . Finally, the following expression was exploited:

SD̂F(ν) = 2 ·
{

ĉxx(0)
σ̂2

x
+ 2 ·

N−1

∑
k = 1

ĉxx(k)
σ̂2

x
· cos(2πν · k)

}
0 ≤ ν ≤ 1

2
(3)

where ĉxx(k) is the estimate of the k-th lag auto-covariance and ĉxx(0) ≡ σ̂2
x is the estimate of the

variance (for more details see [42,44]). That is, SD̂F(ν) could be interpreted as the Fourier transform
of the autocorrelation AĈF(k) of the time series. The physical meaning of the SD̂F(ν) is that the area
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under a portion of the total plot, related to a selected frequency range, represents the contribution
to variance of components with frequencies within the range. When the entire spectrum is drawn,
the equation indicates that the area underneath the curve is equal to the variance of the process.
However, the simple Fourier analysis is based on the assumption of fixed amplitudes, frequencies and
phases, while time series are affected by random changes of these kind of parameters.

A consequence is that Expression (3) fluctuates uncontrollably and, for this reason, is not useful for
any meaningful interpretations. Accordingly, the SD̂F(ν) expressed by Equation (3) is not a consistent
estimator [43] for an ensemble of variables taken from a discrete purely random process (de-trended
time series). A way to solve this kind of issue is to smooth the periodogram, exploiting a sort of
truncation of the autocorrelation function, giving less weight to the values of the AĈF(k) as k increases.
As discussed in [42,43] , the following truncated SD̂F(ν)T appears to be a consistent estimator to
consider properly the randomness nature of the time series under study:

SD̂F(ν)T = 2 ·
{

λ(0)
ĉxx(0)

σ̂2
x

+ 2 ·
M

∑
k = 1

λ(k)
ĉxx(k)

σ̂2
x
· cos(2πν · k)

}
0 ≤ ν ≤ 1

2
(4)

where {λ(k)} is an ensemble of weights called the “lag window” and M < N is called the “truncation
point” [43]. In this paper, we adopted, among many others, the Blackman–Tukey window expression:

λ(k) =
1
2

{
1 + cos

(
k · π
M

)}
0 ≤ k ≤ M (5)

The value of M, following the detailed discussion reported in [16,43], was selected equal to 5.
Hereafter, to simplify the symbology, ACF, CCF and SDF stand for AĈF(k), CĈF(k), and SD̂F(ν)T .

Summarizing, the power spectrum of a time series is the simple translation of its autocovariance
function (i.e., the ratio of autocorrelation and variance) in the frequency; complementary to correlation
analysis, it may reveal certain characteristics present in a time series that are buried in noise and not
discernable otherwise [61,62].

4.3. Fractal Analysis

The data clustering of time series, expressed by only the number of events occurring within
a period, cannot fully describe the possible large time irregularities of events [24]. For this reason,
a preliminary fractal approach application was proposed in this study, in addition to the time series
statistical approach described above. The purpose of the fractal analysis was to gain more information
in relation to the variability of the data, and therefore provide insights into this issue.

One of the most important properties of a fractal object, time series included, is that it can
be subdivided into parts (or intervals of time), each of which is (usually only approximately)
a reduced-size copy of the whole. This approximate property is termed “self-affine” and implies that
properties such as frequencies of selected events are almost invariant across spatial and temporal scales.
Their irregular or complex occurrences, in general, can be “measured” to some extent, by the distance
of the Hausdorff–Besicovitch dimension D, called hereafter the “fractal dimension”, from an integer
number [19,20,63–65]. However, not all time series data are truly fractal [66]. Therefore, a preliminary
analysis of the assessed data is recommended in order to verify the occurrence of fractal behavior.
A self-affine performance of a time series could be detected, for example, by long-term correlations
resulting from the analysis of the ACF and by the evidence of a power-law relation between the power
spectrum S(f) and the time frequency of the occurrence of a selected event: S( f ) ≈ f−β, resulting from
the Spectral Analysis [66]. The exponent β is linked to the Hurst’s coefficient H and to the fractal
dimension D [67–69].

The fractal features of different hydrological time series, including rainfall and river dynamics,
were highlighted in previous papers [19,20,22,23,63,65–72]. To have a fast response, we carried out
a fast fractal analyses as a first step. Nevertheless, as we demonstrated in the following sections,
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some interesting results were obtained. The feasibility of the fractal analysis application to the time
series studied in this paper emerge from the inspection of the results obtained by both Autocorrelation
Function and Spectral Analysis. Different types of fractal dimension and the methods of estimating
these have been proposed in literature [65,73].

In this paper, an algorithm based on the Box-Counting and Cantor-Dust methods, successfully
applied in [22,23,70,71], was developed. As a first attempt, only raw data were considered.
Subsequently, the values of the data belonging to each time series, i.e. rainfall intensities,
river hydrometry and three wells piezometric levels, were normalized with respect to the full range of
their variability within their own time series. The resulting percentages (accordingly from 0 to 100%,
to be considered as fluctuations above the minimum values) were considered as the “events” that can
be compared to each other, although originating from different sources. In the following the related
analytical expression is given:

fi,j(%) =
xi,j − xmin,j

xmax,j − xmin,j
× 100

where fi,j(%) (“fluctuation”) is the “event” related to the i-th data xi,j belonging to the j-th time series
(j = 1,2,3,4,5, since the time series under consideration are 5); and xmin,j and xmax,j are, respectively,
the minimum and the maximum numerical values of the j-th time series data. According to the
algorithm procedures, different values of fi,j(%), hereafter “F_threshold”, should be introduced.
No particular constraints are required, thus, in this paper 7–9 values between 0% up to 90% for both
the river hydrometry and wells, while just only up to 40% for Spoltore rainfall were selected. Then the
time range was divided into increasing integer numbers (1, 2, 3, . . . ) of equal-time interval groups,
Ng. Each interval group contains the same integer number ε of measured data. Ng values that did not
satisfy the Ng × ε = 2880 requirement was excluded. Therefore, the resulting Ng numbers are all the
integer divisors of 2880. For each accepted number Ng of intervals, the number of interval time N(ε),
in which at least one event above the selected F_threshold occurred, was counted. We introduced
the parameter “n_events” as the number of the fluctuations fi,j(%) that, in the selected interval time,
satisfy a selected comparison relationship (≤ or ≥) with a selected F_threshold. To be more clear,
if over the interval time under consideration (i.e., from 9-th May 1990 to 10-th June 1990) the rainfall
fluctuations fi,j(%), measured at Spoltore station, were equal to or above the selected F_threshold
(i.e., 60%, thus F_threshold = 0.6) for 5 times, accordingly it results that n_events = 5 and the value of
N(ε) is increased by just only 1. The following power law relation [22,23,65] was assumed:

N(ε) = m
(

1
ε

)D
(6)

where m is a constant (equal to 1 in this paper) and D is a parameter that is identified as the fractal
dimension if:

D = lim
ε→0

[ln N(ε)− ln m]/ ln(1/ε) (7)

ln N(ε) was plotted versus ln(1/ε) and D was estimated from the slope of the best fit straight
line, obtained by means of the Minimum Square Root Method. Generally, the D parameter is
not constant and depends on the selected F_threshold values. Accordingly, the value of the D
parameter calculated in this paper should be intended, in general, as an average fractal D dimension.
Moreover, the comparison of the fractal analyses to the results obtained in the previous statistical
approaches should be considered as qualitative, rather than quantitative, although some quantitative
considerations are also made.

To better clarify the physical meaning of the variability of the fractal dimension D by the mean of
the Cantor Dust approach (DF in Figures 13 and 15), the following example can be useful. Two rainfall
time series are analyzed. The data were obtained by daily measurements over 30 years (10,920 values),
at two gauges, A and B, representative of two different sites (A and B). We are interested to study
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how the occurrences of daily rainfall above or equal to 50 mm (F_threshold) are distributed over the
selected interval of time. If we consider a time scale of one year, the entire interval is subdivided
into 30 subintervals, each lasting one year. Accordingly, Ng = 30 and ε = 365, as resulting from the
application of the Cantor Dust method. Suppose that for 40 times (n-events = 40) the intensity of the
rainfall, measured at A and B stations exceeded the value of the selected F_threshold over, respectively,
2 and 22 different years, even non-continuously. Consequently, N(ε) = 2 and N(ε) = 22, respectively,
for time series A and B.

It could be reasonably inferred that, within the site where Station A is located, rainfall values
exceeding the considered F_threshold are rather uncommon events over the selected time scale of
30 years. Their occurrences are concentrated during just two years. On the other hand, within the
site where Station B is located, this kind of events is quite common and the expected return time
would be reasonable equal to about one year. Then, consider a further partition of the whole time
range into 60 subintervals (Ng = 60 and ε = 182). Moreover, assume that, as the time scale decreases,
N(ε) = 2 remains the same for Station A, while N(ε) = 37, increases (thus almost 1 for each semester) for
Station B. Repeating this operation by the means of the Cantor Dust approach, the resulting value of
the D fractal dimension related to the time series A would be low (in this case close to 0), while for the
other time series, D would be close to 1.

As highlighted by the previous example and according to Mazzarella [23,24], we can infer that,
for the time series considered in this paper, the D Cantor Dust fractal dimension can range from 0,
corresponding to randomly distributed events, just as isolated points to the lim

ε→0
D = 0, to 1 (lim

ε→0
D = 1:

a line by a geometrical point of view) corresponding to a distribution of the selected events occurrence
that remains almost the same within all the considered time scales.

5. Results

5.1. Descriptive Statistics

The variability of the data, described by the standard deviation analysis (Table 2), points out
that the piezometric level fluctuations within the Su and Sa wells are higher than in the DN well.
Their average water depth (unsaturated zone thickness) is calculated from the difference between the
altitude and the average piezometric level for the 1986–2009 period.

Table 2. Average and standard deviation of the piezometric level, rainfall and hydrometric level time
series data.

Type Name
Piezometric Level (m a.s.l.) Water Depth (m)

Average St. dev. Min Max Average

Well
Su 12.06 1.42 9.29 16.28 6.70
Sa 5.49 0.43 4.41 7.28 3.89

DN 10.46 0.19 9.85 11.18 2.02

Type Name
Rainfall (mm)

Average St. dev. Min Max

Rain Gauge Sp 5.35 11.9 0 199.2

Type Name
Hydrometric Level (m a.s.l.)

Average St. dev. Min Max

Hydrometer (m) PST 3.33 0.37 2.74 7.97

Averaging for each month the 10 available piezometry, hydrometry and cumulated rainfall data,
over the 24-year period of 1986–2009, it is possible to represent the monthly average of each variable
(Figure 6). River level at the PST site presents the maximum value in April and the minimum value in
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July, while the Sp rain gauge presents a maximum in December and a minimum in July. Furthermore,
the standardization of the computed piezometric levels through the normalization, based on the mean
and standard deviation, gives us the chance to compare at the same scale the entire 1986–2009 group of
data, showing that all wells present the lowest piezometric level in August and the highest in January,
February and March, respectively, for the DN, Su and Sa wells.
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5.2. The Residual Analysis

The comparison at a three-day resolution between the 2880 piezometric residuals data for the
whole 1986–2009 period identifies in Su site the records with the greatest piezometric variability;
furthermore, a similar residual distribution especially for the Su well, the Sp rain gauge and the PST
river level can be identified, since the peaks fall together on several dates (Figure 7, left side).

The periods during which the casual components are concurrently more influent can be identified
by calculating the average annual series on the basis of a monthly arrangement of the data, which
consisted in averaging the 10 monthly three-day resolution records, over the 24 years of 1986–2009
period (Figure 7, right side); it is evident that the months of March–April, October–November and
June–July, in correspondence of the spring, autumn and summer periods, respectively, present the
greatest random variability.

Some exceptions can be highlighted: for example, a greater residual concentration during the
2007 summer is self-evident at the DN location and is characterized by a strong variability of the
raw data. In December 1994, an intense rainfall event was observed at the Spoltore rain gauge and
a correspondent peak was identified in the rainfall residual. However, it was not identified in the
datasets of river stage and piezometric head residuals, probably because of the local character of
this event.
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its random behavior because events with duration longer than three days are rare and, therefore, the 
correlation between the data for intervals longer than the reference lag is nil. 

Figure 7. Residual time series (left); and year type (right).

5.3. Autocorrelation

The correlogram relative to rainfall observed at the Sp rain gauge (Figure 8A) shows how,
after a three-day time lag, the ACF function immediately decreases to uncorrelated values.
This confirms its random behavior because events with duration longer than three days are rare
and, therefore, the correlation between the data for intervals longer than the reference lag is nil.
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The river level reaches the decorrelation value threshold ACF = 0.2 after 81 days, highlighting a
strong memory effect (Figure 8B). However, the two factors influencing the ACF function shape are
the runoff velocity and the catchment area; indeed, the curve shape in the first three days, when the
ACF value decreases to 0.7, is characterized by a greater slope and a more rapid decorrelation rate
down, meaning a stronger independence of the data. In fact, in this short period, the river level ACF
curve has the same shape of the rainfall one because it describes the flooding action caused by direct
runoff, while after three days the more autocorrelated shape of the river level ACF is controlled by the
baseflow due to the large recharge area and groundwater contribution [74].

The hydrogeological time series as the piezometric levels of our study are strongly autocorrelated
in all sites because of inertia and carryover processes in the physical system, that impart a correlation
to successive piezometry levels. In detail, Su reaches 0.2 threshold value after 880 days, while the
ACF curves for Sa and DN reach that level after respectively 105 and 90 days (Figure 8). Su well
stronger autocorrelation might be related to site-specific physical and structural conditions of the
aquifer, such as the hydraulic conductivity influenced by changes in the grain size of the alluvial
aquifer or its degree of compaction [18,75], because, of course, as suggested by Imagawa et al. [53],
persistence can be an indicator of the local storage capacity of alluvial aquifers, provided that the
assumption of homogeneity in the hydraulic conductivity throughout the aquifer is respected.

5.4. Raw Data Cross-Correlation

The piezometric level fluctuation in answer to rainfall (Figure 9) highlights low correlations value
for all the wells. The Su and DN wells behave the same, since the shape of the curves are similar,
with a maximum CCF value around 0.16, reached at both sites after, respectively, a time lag of nine
and six days.
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Figure 9. Cross-Correlations Function: rainfall–piezometric level (A); and river level–piezometric level
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The cross-correlation analysis between groundwater levels and river level highlights a
major dependency of groundwater level fluctuations to the river stage, rather than to rainfall.
In fact, the maximum CCF values vary from 0.20 in Su, 0.25 in DN and 0.37 in Sa with corresponding
time lags of three days (Su, DN) and six days in Sa (Figure 9). The DN well, which is 1960 m from
Pescara River, presents the intermediate maximum cross-correlation value.

5.5. Residual Cross-Correlation

The CCF between rainfall and river level residual components shows an initial high positive
correlation value (0.34), indicating that an immediate positive fluctuation of river stage corresponds to
the three-day precipitation impulse. After three days, this correlation becomes negative, highlighting
that river level continues to rise positively for three days after the end of the rainfall event (Figure 10).
It is important to remember that the river level is affected by both the local precipitation events
(monitored at the Sp rain gauge) and by those events happened upward in the river drainage basin,
far from the selected rain gauge.
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The rainfall–piezometric and river–piezometric levels residual cross-correlation are similarly
shaped, even though the river impulse affects the well fluctuations more than rainfall, especially
for the Su and Sa wells, which are closer to the river. In fact, in Su well, the residuals CCF
precipitation–piezometric level and river level–piezometric level are, respectively, 0.28 and 0.36
(Figure 11); these maximum values are reached immediately as a consequence of the first impulse event,



Water 2017, 9, 850 16 of 28

while after six days the correlation becomes negative (Figure 11) pointing out that the piezometric
level continues to rise for six days after the rainfall–river stage pulse.

Water 2017, 9, 850  16 of 28 

 

event, while after six days the correlation becomes negative (Figure 11) pointing out that the 
piezometric level continues to rise for six days after the rainfall–river stage pulse. 

 
Figure 11. Residual Cross-Correlation Functions: rainfall–piezometric level (A); and river 
level–piezometric level (B). The dash-dotted lines indicate the significant thresholds. 

At Sa well, the maximum CCF value is lower (0.05–0.1), while DN well level presents slight 
correlations to rainfall and river stage (0.06–0.05). 

5.6. Spectral Analysis 

The power spectrum of precipitation, containing homogeneously unimodal distributed 
amplitudes, is dominated only by an annual cycle representing the wet/dry seasonal cycle and is 
void of other prevailing periodic component. Hydrometric and piezometric levels spectrum, instead, 
are not homogeneously distributed, and present a bimodal behavior, because in addition to the 
seasonal cycle present high amplitude oscillations at lower-frequencies (higher periods) 
concentrated particularly between five and eight years, with broader peaks more evident in 
correspondence of the interannual 72-month cycle (≈6 years) and of the interdecadal 144-month cycle 
(≈12 years), especially in Su and Sa wells located closer to the river (Figure 12). 

 
Figure 12. Spectral density functions: rainfall and hydrometry levels (A); and piezometric levels (B). 

Figure 11. Residual Cross-Correlation Functions: rainfall–piezometric level (A); and river
level–piezometric level (B). The dash-dotted lines indicate the significant thresholds.

At Sa well, the maximum CCF value is lower (0.05–0.1), while DN well level presents slight
correlations to rainfall and river stage (0.06–0.05).

5.6. Spectral Analysis

The power spectrum of precipitation, containing homogeneously unimodal distributed
amplitudes, is dominated only by an annual cycle representing the wet/dry seasonal cycle and is void
of other prevailing periodic component. Hydrometric and piezometric levels spectrum, instead, are not
homogeneously distributed, and present a bimodal behavior, because in addition to the seasonal cycle
present high amplitude oscillations at lower-frequencies (higher periods) concentrated particularly
between five and eight years, with broader peaks more evident in correspondence of the interannual
72-month cycle (≈6 years) and of the interdecadal 144-month cycle (≈12 years), especially in Su and
Sa wells located closer to the river (Figure 12).
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Hydrometric and piezometric level response to the rainfall main driver results from the passage of
infiltrated water through several subsurface filters that, depending on the scale range, have the effect
to either amplify or attenuate the precipitation variability modes [76,77]. Accordingly, the hydrometric
and piezometric level output signals can have significantly different spectral characteristics than the
input precipitation signal; in our study comparing their power spectrum in a log–log scale graph it is
evident how strongly is related the frequency of piezometry and hydrometry, while this relationship
is much weaker with precipitation frequency. Consequently, the unimodal spectrum of the latter is
not affected by a power law type, whilst the previous are characterized by a bimodal power spectra
shifted towards low frequency scales (Figure 12, in red).

Spectral density and amplitude in Figure 12 indicate that piezometric trends seem to follow
approximately a decaying exponential function S( f ) ≈ f−β = Tβ (T is the period and f is the
frequency). They are localized in two intervals for Su and Sa, 12 months < T < (72~144) months and
0 months < T < 12 months, and only in the latter interval for DN. These occurrences further support
the applicability of fractal analysis, as discussed above. Moreover, according to many authors [78–80]
due to the variation of the trends observed in Figure 12 (related to the piezometry Spectral densities,
before and after one year), it could be argued that the time series of the piezometric levels and just
weakly for the hydrometry, show a multifractal behaviors.

5.7. Cantor-Dust Fractal Analysis

The characteristic of the selected F_threshold events and their occurrences are detailed in Table 3
for each time series. More details regarding the meaning of parameters are discussed in the text,
in particular in the Discussion section (Section 6.3. Fractal analysis).

In Figure 13, for Sp rainfall and PST hydrometry respectively, the highest values of the average
fractal dimension, ranging from D = 1.000 to D = 0.851 and D = 0.906 were reached for level values up
to 5% and 10%, corresponding to ∆L = 100 mm and ∆L = 0.52 m fluctuations (Table 3).

The outcomes of piezometric level variations are plotted in Figure 14. Irregular distributions of
points occur for all the three wells at high values of F_threshold events with normalized level variations
higher than 80–90%. This kind of drawback, due to the sensitivity of the method to small differences in
the box size, can be solved using the Shifted Box Counting Method [22]. For the DN time series (Table 3),
normalized events, related to values ranging from 1% to 20% (Figure 14) of the total level variability,
show a similar variation (average fractal dimensions from D = 1.000 to D = 0.9986) of the distribution
level values, corresponding to ∆L = 0.27 m. For the Su and Sa wells, the highest values of the average
fractal dimension, ranging from D = 1.000 to D = 0.963 and D = 0.988, respectively, were reached for
level values up to 20%, corresponding to ∆L = 1.4 m and ∆L = 0.58 m level fluctuations (Table 3).
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Table 3. Details of the Fractal analysis; d: days, w: week, m: months, y: years, F_threshold:
the actual level (m) corresponding to the selected F_threshold fi,j(%) level (percentage of the whole
variability range).

Selected F_threshold Level Sp Rainfall PST Hydrometry Su Well Sa Well DN Well

Range = (0–199.2) (mm) (2.74–7.97) (m) (9.29–16.28) (m) (4.41–7.28) (m) (9.85–11.18) (m)
L_thresh = min + 0.5 × range/100 (m) = 0.001 2.77 9.33 4.42 9.86

Fluctuation (m) = 0.001 0.03 0.04 0.01 0.01
n_events: fi,j ≥ F_threshold = 0.5% = 1170 2876 2877 2879 2879

percentage (%) = 1170/2880 = 40.6 99.86 99.89 99.96 99.97
distribution return time (DRT) (d) = 17 (2 w) 3 3 3 3

L_thresh = min + 1.0 × range/100 (m) = 0.002 2.79 9.36 4.44 9.86
Fluctuation (m) = 0.002 0.05 0.07 0.03 0.01

n_events::fi,j ≥ F_threshold = 1.0% = 998 2860 2874 2879 2879
percentage (%) = 34.7 99.31 99.79 99.96 99.97

DRT (d) = 30 (1 m) 3 3 3 3

L_thresh = min + 2.5 × range/100 (m) = 0.005 2.87 9.47 4.48 9.88
Fluctuation (m) = 0.005 0.13 0.18 0.07 0.03

n_events: fi,j ≥ F_threshold = 2.5% = 730 2792 2862 2872 2878
percentage (%) = 25.3 96.94 99.38 99.72 99.93

DRT (d) = 47 (1.7 m) 3 3 3 3

L_thresh = min + 5.0 × range/100 (m) = 0.01 3.00 9.64 4.55 9.92
Fluctuation (m) = 0.01 0.26 0.31 0.14 0.07

n_events::fi,j ≥ F_threshold = 5% = 474 2491 2794 2866 2876
percentage (%) = 6.5 86.49 97.01 99.51 99.86

DRT (d) = 71 (2.4 m) 3 3 3 3

L_thresh = min + 10 × range/100 (m) = 0.02 3.26 9.99 4.70 9.98
Fluctuation (m) = 0.02 0.52 0.7 0.29 0.13

n_events: fi,j ≥ F_threshold = 10% = 252 1472 2684 2798 2861
percentage (%) = 8.8 51.11 93.19 97.15 99.34

DRT (d) = 107 (3.6 m) 95 (3.2 m) 3 3 3

L_thresh = min + 20 × range/100 (m) = 0.04 3.79 10.69 4.99 10.12
Fluctuation (m) = 0.04 1.05 1.4 0.58 0.27

n_events: fi,j ≥ F_threshold = 20% = 74 218 2313 2671 2837
percentage (%) = 2.6 7.569 80.31 92.74 98.51

DRT (d) = 361 (12 m) 428 (14.3 m) 69 (2.3 m) 3 3

L_thresh =min + 30 × range/100 (m) = 0.06 4.32 11.40 5.27 10.25
Fluctuation (m) = 0.06 1.58 2.11 0.86 0.40

n_events: fi,j ≥ F_threshold = 30% = 26 47 1824 1947 2618
percentage (%) = 0.9 1.632 63.33 67.60 90.9

DRT (d) = 727 (24 m) 572 (19 m) 176 (5.9 m) 130 (4.3 m) 30

L_thresh = min + 40 × range/100 (m) = 0.08 4.84 12.10 5.56 10.38
Fluctuation (m) = 0.08 2.1 2.81 1.15 0.53

n_events: fi,j ≥ F_threshold = 40% = 8 17 1382 1139 1859
percentage (%) = 0.28 0.590 47.98 39.55 64.55

DRT (d) = 1995 (67 m) 861 (29 m) 589 (19.6 m) 360 (12 m) 282

L_thresh = min + 60 × range/100 (m) = 0.12 5.88 13.48 6.13 10.65
Fluctuation (m) = 0.12 3.14 4.19 1.72 0.8

n_events: fi,j ≥ F_threshold = 60% = 1 7 518 216 457
percentage (%) = 0.035 0.243 17.98 7.5 15.87

DRT (d) = 8640 (24 y) 1392 (46 m) 764 (25.5 m) 1272 (42 m) 727 (24 m)

L_thresh = min + 80 × range/100 (m) = 0.160 6.92 14.88 6.71 10.91
Fluctuation (m) = 0.160 4.18 5.59 2.3 1.06

n_events: fi,j ≥ F_threshold = 80% = 1 3 58 35 63
percentage (%) = 0.035 0.104 2.014 1.215 2.19

DRT (d) = 8640 (24 y) 2694 (7.5 y) 2694 (7.5 y) 2860 (7.9 y) 8640 (24 y)

L_thresh = min + 90 × range/100 (m) = 0.180 7.45 15.58 6.99 11.05
Fluctuation (m) = 0.180 4.71 6.29 2.58 1.20

n_events: fi,j ≥ F_threshold = 90% = 1 2 9 13 21
percentage (%) = 0.035 0.069 0.313 0.451 0.73

DRT (d) = 8640 (24 y) 4310 (12 y) 3636 (10 y) 4186 (11.5 y) 8640 (24 y)
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It is roughly possible to identify several “breaking points” in Figures 13 and 14 and the underlying
data on which the figures are based. Such breaking time scales are specific for each F_threshold value
and for each time series source, for which the relation between the number of covering boxes and the
interval time (box size), shows a departure from a linear trend. The latter has a fractal dimension that
is very close to unity. As discussed above, if the fractal dimension of a dataset is close to unity for a
specific time scale, the data show similar distributions within time scales higher than the identified one.
Accordingly, this time-scale could be considered for the introduction of a “distribution return time”
(DRT) of the selected event, which should not be confused with the commonly used “event return
time”, because the last parameter is calculated by means of different approaches. Therefore, DRT values
(estimated through inspection of Figures 13 and 14 and the underlying data) of different fi,j(%) values
are reported in Figure 15.
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It is interesting to note that the Sp Rainfall and the DN estimated distribution curve of DRT show
a similar sigmoidal regression trend of the following type:

T = a/{1 + exp[−(Nvp− b)/c ]} (8)

where T is the DRT (days); Nvp is the Normalized variability percentage (that is fi,j(%)); and “a”, “b”,
and “c” are three parameters, the values of which are different rainfall and DN data. The regression of
DRT related to the other sources follows exponential trends:

T = a + b · exp(c · Nvp) (9)

where “a”, “b”, and “c” are the three regression parameters.

6. Discussion

The relationship between rainfall, river level and piezometric levels was assessed by means of
statistical–mathematical analyses and a conceptual model of the local hydrogeology.

6.1. Analyses in Time Domain

The DN well is the furthest from the main stream, therefore recharge effects from the Pescara
River are considered to be negligible, while rainfall infiltration represents the main local recharge;
this hypothesis is confirmed by the CCF analysis of the rainfall and piezometry data (Figure 9A),
which shows that DN reaches the highest CCF value. An additional confirmation is provided by the
CCF of the residuals, which indicates the absence of a relationship between the DN well and the river
(Figure 11B) meaning that extreme rainfall events appear to have less influence on the piezometry,
as suggested by its low residual component. The higher CCF value between the well and the river level
(Figure 9B) can be explained by the simultaneous changes of piezometric and river levels, due to the
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seasonal cycle, even if the two oscillations are not physically correlated. This is confirmed by the
hydrogeology of the area. In fact, the water table depth in the DN well is quite low (Figure 4; Table 2).
Similarly, the difference between the head in the DN well (mean 10.46 m a.s.l.) and the elevation of
the Pescara River (mean 3.33 m a.s.l.) is significant. In addition, the groundwater hydrodynamic
indicates the presence of a groundwater divide, which has a direction that is approximately parallel
to the direction of the river (Figure 1). This excludes that the water level changes in the well can be
induced by the river.

Conversely, groundwater and surface water interaction is likely in the area near the Su and Sa
wells, since they are located near the Pescara River (Figure 16).
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correspond to the river bed elevations along the blue sections of the river profile.

The Su well is located near the river (Figure 4, Table 1) and has piezometric heads that
are comparable to the elevations of the river section that falls just upstream of the well itself.
The piezometric level spatial distribution indicates that groundwater flows from the river to the
aquifer, thus recharging the latter (Figure 16). The analysis of the raw data CCF (Figure 9A) indicates
that there is a low correlation between rainfall and piezometric level fluctuations. This is in agreement
with both the high average depth of the water table (6.70 m; Table 2) and with the idea of aquifer
recharge from the river. The value of the river/well raw data CCF (Figure 9B) is generally lower
compared to the corresponding residual component CCF (Figure 11B). A possible explanation is the
position of the gauging Station compared to the well location; the analysis of the hydraulic conditions
(Figure 3) indicates that the river section in correspondence of the gauging Station is wider compared
to the section just upstream of the well. Therefore, considering the same discharge, a wider section
should imply smaller river level changes. The higher cross-correlation of the residuals confirms this.
In fact, when high discharges occur during flood events, the higher river level recorded downstream
of the well is indicative of even higher changes upstream where the river section is narrower.
However, the strong impulsive changes in the piezometric level within the well, clearly represented by
the strong oscillation of the residual component (Figure 11B), is due to a pressure transfer rather than a
mass transfer, given the low hydraulic conductivity of the aquifer (about k = 10–5 m/s).

The Sa well is also located near the Pescara River (Figure 4) and has piezometric head that is
constantly higher than the river level upstream of the well itself (Figure 16). This indicates a constant
discharge from the aquifer to the river. The piezometric level supports this idea and the flow lines are
constantly towards the river. The cross-correlation with the rainfall shows a very low value (Figure 9A)
that, together with the high water depth (mean 3.89 m; Table 2), allows assessing the low contribution
of the direct recharge from local rainfall. The CCF with the river level (Figure 9B) shows a relatively
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high value. This apparent anomaly can be explained with the presence of a significant annual cycle
in both datasets, based on the hydrogeological understanding of the area. A further confirmation is
provided by the CCF function of the residuals, which shows very low values for both the rainfall and
the river level fluctuation (Figure 11).

6.2. Analyses in Frequency Domain

The spectral analysis has highlighted a clear seasonal cycle (one year) in piezometry, hydrometry
and rainfall spectral densities distribution. Furthermore, evident multi-year periodicities have been
detected in the piezometric and river levels fluctuations (pointed out in Figure 12). The rainfall
spectrum is characterized by a unimodal and homogeneous power spectrum distribution and,
even though multi-year cycles are present, they are not dominant compared to the annual cycle.
On the other hand, piezometric and river levels present a clearly bimodal and not homogeneous
spectral density distribution, characterized by a sharp spectral power decrease with frequency
increase (Figure 12).

This effect is well known in the literature and is due to low-frequency pass filter effect of the aquifer
and of the river basin, on the piezometric and river levels, respectively [53,59,76,78,81]. Thus, these two
measures modulate the rainfall input signal, lowering the short period fluctuations and highlighting
the long period ones (seasonal and multi-year) that are in association to large scale climatic oscillations,
as many researchers have reported [59,79,82–87].

The water volumes that are at stake proportionally influence the weight of this filtering
effect [16,75–77], therefore extended aquifers and river basins can be considered as excellent climate
signal proxies, at regional scale [18,88,89]. Similar results are described by Luque-Espinar [16]
and Fendeková et al. [90], who found that piezometers, located close to stream with leakage to
the aquifer, or along the main river in those areas where it recharges the aquifer, present long period
cycles. In addition, Chiaudani et al. [91] found out the presence of multi-year and decadal cycles in
Abruzzo Region in 11 wells belonging to alluvial aquifers located near to their main stream.

6.3. Fractal Analysis

It was possible to estimate a sort of “pseudo” fractal dimension through the fractal analysis
discussed in this paper. This fractal dimension can be regarded as average values of trends, within the
appropriate log–log domain for this kind of investigation. As expected, the rainfall plot (left of
Figure 13) shows that these types of events are more “isolated” and random than “events” associated
to river level (right of Figure 13) and piezometric levels (Figure 14). This can be explained by the fact
that the river level and piezometric variations are more continuous in time. They are the result of a
much more complex phenomena related to not only rainfall at one site, but also to the hydrological
dynamics of the entire basin.

The river level plot shows that almost the same event distribution is related to variations of levels
lower than 10% (<0.52 m). This distribution of events, which corresponds to F_threshold = 3.26 m level
(see Table 3) occurs within all time scales. It is interesting to note that the qualitative trends, shown in
Figure 14, are in agreement with the trends obtained for the Warta River flows in [22], even if the
phenomena dynamics are different. The occurrence of the same fractal dimension equal to 1 means
that each distribution of such level fluctuations remains similar in all the selected time interval scales;
however, distributions related to different sources of data are not necessary equal. Consequently,
it would be hard to identify any correlation between different time series, where only the value of the
fractal dimension obtained by the Cantor Dust approach is observed.

Figure 15 and Table 3 show that the DRT distributions of both rainfall and the DN piezometric
data are well interpolated by sigmoidal curves, while Su, Sa and river stage are better interpolated by
exponential ones. This result is in agreement with the statistical analysis that identifies two distinct
groups of data with respect to well defined hydrological relationships. The shift of the sigmoidal curve
of DN well respect to the rainfall one indicates that the piezometric levels shows a random behavior for
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higher L_thresholds, as the breaking points in Figures 13 and 15 and the previous discussion highlight.
This could be related to the modulator effect of the aquifer which gives higher stationarity to DN time
series. Moreover, the interpolating sigmoidal and exponential expressions could be compared to the
classical return-time laws proposed in literature ([92], and references therein).

6.4. Conceptual Model

All the applied statistical–mathematical analyses, considering hydrogeological knowledge,
allowed defining a final conceptual model of the system hydrodynamic (Figure 17).Water 2017, 9, 850  23 of 28 
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In particular, the DN well is located in a Pescara aquifer part where a secondary flow path has
been recognized. Here, the recharge is completely related with local rainfall, described by the Sp rain
gauge, and with the runoff infiltration at the clayey slope base.

On the other hand, the main flow path has been identified near the Pescara River. In this area,
there are clear surface-water/groundwater relationships, considering either an aquifer recharge from
the main stream or the opposite. In detail, upstream, where the Su well is located, the main river
recharges the aquifer. Furthermore, when huge flooding events occur the Su well detects outright
the increase of the hydrometric level, probably due to a pressure transfer. Contrariwise, downstream
near the Sa well, the piezometric head is constantly higher than river level, even during huge flooding
events. Thus, it is clear that the aquifer discharges groundwater into the Pescara River.

Finally, the local rainfall monitored in Sp rain gauge, near the Pescara River, does not seem to
influence substantially the piezometric fluctuation, due to the importance of aquifer baseflow.
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7. Conclusions

The assessment of the relationships between groundwater and both rainfall and river recharge
influencing the alluvial aquifer hydrodynamic needs a detailed hydrogeological framework definition.
Long time series are useful for this purpose, and, in this study, hydrological data series, monitored for
the 24-year period 1986–2009, have been analyzed.

The statistical–mathematical analysis of rainfall, river level and groundwater level time series
data has produced useful information for the understanding of their relationships existing within the
studied hydrogeological context. To better understand the hydraulic conditions and to make statistical
results coherent, aerial photo-interpretation analyses and in-situ GPS surveys have been realized.

The “memory effect”, representing the self-coherency indicator of each time series, was assessed
with the Auto-Correlation Function and with the fractal analysis pointing out how stationary behaviors
were higher for piezometric and river levels than for rainfall. Interdependency between different
hydrological parameters was found by means of the Cross-Correlation Function, highlighting a strong
groundwater/surface water interaction monitored between the Pescara River and the nearest wells.
On the other hand, the farthest well showed a clear correlation with local rainfall. This occurrence
could also be observed by fractal analysis from the regression trends of the “distribution return times”,
for high time scales.

Moreover, the Cross-Correlation Function applied to residual data, after seasonal cycle and trend
removal, points out a strong pressure transfer from the river to groundwater during flooding events,
when the river leakage recharges the aquifer.

The spectral analysis identified in all data series a predominant annual cycle, linked to seasonal
fluctuations, while multi-year climatic related regimen are detected in the hydrometry and in
piezometry affected respectively from the low-pass filter action of the river basin and the aquifer.
These results are supported also from autocorrelation stationary analysis and the fractal approach
that shows a more systematic behavior (high D values) both in hydrometry and in piezometry than in
rainfall (low D values).

These research results highlighted that statistical–mathematical analyses performed on long time
series, when coupled with detailed assessments of the local hydrogeological conditions, can provide
a quantitative understanding of the spatial-temporal relationships that exist between input and
output parameters. In this respect, the application of such tools can be also useful for numerical
modeling and in all those cases (e.g., water resource management, groundwater vulnerability, etc.),
where it is important to understand the type and the entity of the relationships between surface-water
and groundwater.
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