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Abstract: Capturing the dynamics of a lake-water area using remotely sensed images has always
been an essential task. Most of the fine spatial resolution data are unsuitable for this purpose
because of their low temporal resolution and limited scene coverage. A Visible Infrared Imaging
Radiometer Suite on board the Suomi National Polar-orbiting Partnership (Suomi NPP–VIIRS) is a
newly-available and appropriate sensor for monitoring large lakes due to its frequent revisits and
wide swath (more than 3000 km). However, it provides visible and infrared images at relatively
coarse spatial resolutions, which would sometimes hamper the accurate mapping of lake shorelines.
This study, therefore, proposes a two-step downscaling method that combines spectral unmixing and
subpixel mapping to produce a finer resolution lake map from NPP–VIIRS imagery, which is then
applied to delineate the shorelines of five plateau lakes in Yunnan Province, as well as the shoreline
dynamics of Poyang Lake at three separate times. A newly published global water dynamic dataset
is employed in this study to improve the downscaling method. Results suggest that the proposed
method can generate a finer resolution lake map that exhibits more details of the shoreline than hard
classification. The downscaling results of the Suomi NPP–VIIRS generally achieve higher than 75%
accuracy, while the downscaling results of a Landsat-simulated fraction map could have accuracy
higher than 85%. This reveals that errors and uncertainties exist in both procedures, but mainly come
from the spectral unmixing procedure which retrieves water fractions from NPP–VIIRS data.

Keywords: linear spectral unmixing; subpixel mapping; surface water dynamics; lake shoreline
mapping; Poyang Lake

1. Introduction

Lakes are an important component of the regional water cycle. They play a significant role in the
regional water balance of ecosystems. Lake water can sometimes change drastically because of climate
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change, irregular precipitation and varying consumption in arid and semi-arid regions [1,2]. Therefore,
intensive mapping is necessary to capture the dynamics of lake-water areas for the purpose of water
resource balance analysis [3,4].

Satellite imagery is an essential data source for lake-area monitoring because of its wide coverage
and repeated observations [5]. Various remotely sensed images have been employed to serve
this purpose, including synthetic aperture radar (SAR) images and optical images. SAR images,
including Envisat [6] and Sentinel-1 [7,8], have been proven to be effective in mapping surface water
dynamics or monitoring lake areas because they are not restricted to weather conditions or sunlight.
Optical images, such as those of the Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper
plus (ETM+)/Operational Land Imager (OLI) [9–11], Advanced Very High Resolution Radiometer
(AVHRR) [12,13], and Moderate Resolution Imaging Spectroradiometer (MODIS) [14–16], have also
been widely used for lake-area monitoring because of their high data availability and suitable
resolutions. Most of these prior studies have proved that the near-infrared (NIR) and short-wave
infrared (SWIR) channels are most suitable for delineating water from land. In particular, the spectral
characteristics of water in the SWIR channel are much more stable than those in the NIR channel [17,18].

The Suomi National Polar-orbiting Partnership (Suomi NPP) is a new generation of satellites
intended to replace the Earth Observation System satellites [19]. The Visible Infrared Imaging
Radiometer Suite on board Suomi NPP (Suomi NPP–VIIRS) provides a range of visible and infrared
bands at a moderate resolution for observing the Earth’s surface. It is considered to be an upgrade and
replacement of the AVHRR and MODIS as a wide-swath and multispectral sensor [20]. Its ability to
detect surface water and lake-water areas has been tested in an exploratory study [21].

Landsat imagery is one of the most popular remote sensing data sources that have been used
for mapping lakes or other types of surface water bodies because of its fine spatial resolution,
mostly at regional or continental scale [22,23]. With the assistance of Google Earth Engine (http:
//earthengine.google.com), a new cloud platform for large satellite data analysis, several studies have
mapped surface water dynamics at a global scale using Landsat data archives [24,25]. The results of
Pekel et al. [24], in particular, have been recommended as providing the best understanding of global
surface water dynamics so far [26]. However, restricted by the low temporal frequency of Landsat
coverage, their results only provide monthly occurrences of water inundation. Therefore, their dataset
might have missed some rapid surface water dynamics, especially those caused by flood events.

On the contrary, like other coarse resolution sensors, the Suomi NPP–VIIRS scans the Earth’s
surface frequently with a broad view. It acquires images that provide a timely, cost-effective,
and spatially comprehensive view of lake coverage. Unfortunately, these images have medium
to coarse spatial resolutions, which hinders the accurate mapping and monitoring of lake-water
areas. A traditional and widely used approach to overcome this limitation is the spatial downscaling
method [12,18] that consists of the spectral unmixing method, which estimates the percentage of water
(water fraction) in each mixed pixel, and the subpixel mapping (SPM) method, which allocates the
water subpixels within the mixed coarse pixel.

Spectral unmixing is a procedure by which the measured spectrum of a mixed pixel is decomposed
into a collection of endmembers, and a set of corresponding fractions that indicate the proportion of
each endmember presented in the mixed pixel [27]. Owing to its definite physical meaning and simple
calculation, the unmixing method based on the linear spectral mixture model (LSMM) is one of the
most popular approaches [28]. It has been implemented in many studies for extracting surface water
or lake-water areas [12,18,21,29]. There is a consensus that the major difficulty of LSMM is endmember
selection [12,18,21], including the selection of water endmembers and non-water endmembers.

Subpixel mapping, or super-resolution mapping, is a technique generally used to retrieve a finer
resolution land cover map from fraction images [30]. Many algorithms have been developed to spatially
allocate subpixels within each coarse pixel of fraction maps, such as the Hopfield Neural Network [31],
genetic algorithm [32,33], pixel-attraction models [34–36], pixel-swapping algorithms [37–40], and particle
swarm algorithms [41]. Although these algorithms use different approaches, they are all based on the
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spatial correlation of land cover information, referring to the tendency of a land cover feature to be more
alike than more distant observations. Therefore, it is obvious that this kind of method is applicable for
mapping lake shorelines at subpixel scale. Several studies have implemented different subpixel mapping
methods to derive finer-resolution shorelines or lake areas [42–47].

Although there are many studies, as mentioned above, that have either tried to retrieve water
fractions using spectral unmixing, or allocate subpixel location using subpixel mapping, few of them
integrate both together. This is because both procedures introduce uncertainties and errors once
combined, and it would be difficult to evaluate and optimize each of them individually. This study,
therefore, aims to present a complete spatial downscaling procedure from spectral unmixing to subpixel
mapping, in order to produce finer resolution lake maps from Suomi NPP–VIIRS data. The global
water dynamic dataset published by Pekel et al. [24] was employed to assist endmember selection
and also subpixel allocation processes. The uncertainties introduced by each step of the procedure
were carefully tested and examined. By doing this, this study aims to reveal whether the spatial
downscaling method is able to describe lake shorelines at a higher spatial resolution and accuracy, and
how reliable the downscaling results are. This paper is organized as follows. Study areas and materials
involved are presented in Section 2. The section also gives a detailed description of the proposed
downscaling method and the method for accuracy assessment. Section 3 shows the downscaling
results and discusses their accuracy against Landsat data. The conclusions are presented in Section 4.

2. Materials and Methods

2.1. Study Areas and Materials

2.1.1. Study Areas

In order to demonstrate the applicability and generality of the proposed method in lake downscale
mapping, two groups of case studies were selected. The first one is a large area that covers five lakes.
While the water boundaries of these lakes are relatively stable, this case study intended to reveal
the generality of the downscaling method in different lakes. The second group is a single lake with
obvious water dynamics, intended to demonstrate the applicability of the downscaling method for
monitoring lake-water variation at subpixel scale.

For the first group, an area that covers five of the largest plateau lakes in Yunnan Province of China,
including Dianchi Lake, Fuxian Lake, Yangzonghai Lake, Xingyun Lake and Qilu Lake, was selected.
It is located between 24◦0′–25◦1′ N and 102◦5′–103◦1′ E (Figure 1a). All these lakes are essential water
resources for Yunnan Province. On one hand, they provide physical conditions for human life and
socio-economic development. On the other hand, each of them is a key element of its local ecosystem
and a major driver of changes in the ecosystem. The shapes of these lakes are quite different from each
other. Dianchi Lake is the largest and its shape is also more intricate than the others, with a sand levee
on the north splitting the lake into two parts. The smaller part on the north side is called the inner lake,
with an area of approximately 10 km2. The other part is the outer lake with an area of almost 300 km2.
The shorelines of the other four lakes are relatively simpler, except that there is a big wetland on the
south-west of Qilu Lake which makes the mapping of its shoreline difficult. Furthermore, there are
some tiny tributaries on the west of Xingyun Lake and south-west of Qilu Lake, which would also be
difficult to map on coarse resolution images.

For the second group, Poyang Lake located on the south bank of the middle and lower reaches
of the Yangtze River (Figure 1b), was selected as the study area. As the largest freshwater lake in
China, Poyang Lake has a drainage area of more than 160,000 km2. With an overall decreasing trend,
the water area of this lake fluctuates drastically between the wet and dry seasons. During the wet
season, the floodplains are inundated, forming a big lake with a more than 3000 km2 water area. In the
dry season, the water area can shrink to less than 1000 km2, leaving a narrow meandering channel [48].
For the sake of flood control and other management purposes, levees have been built around the
lake, which creates numerous small lakes [49]. During the dry season in particular, the lake is usually
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divided into many connected and disconnected patches. Therefore, it is always difficult to define the
exact boundary of Poyang Lake, because it changes obviously over time.
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Figure 1. Maps of study areas showing the locations of (a) Yunnan lakes, and (b) Poyang Lake.

2.1.2. Materials

Two sets of image data, namely Suomi NPP–VIIRS and Landsat OLI, were used in this study.
For the Yunnan lakes, only one pair of images acquired on 2 February 2014 were selected, while for
Poyang Lake, three pairs of NPP–VIIRS and Landsat images, acquired either in the wet season or the
dry season, were selected, considering data availability and cloud cover issues. There were drastic
water-area changes between these three dates (T1, T2 and T3). The selected images are listed in Table 1.

Table 1. Selected case studies and remotely sensed images involved.

Case Study Image Type Image Date Acquisition Time Path/Row Spatial Resolution

Yunnan lakes
NPP-VIIRS 2 February 2014 06:39:57 – 375 m

Landsat OLI 2 February 2014 03:36:02 129/43 30 m

Poyang Lake T1 NPP-VIIRS 5 October 2013 05:52:14 – 375 m
Landsat OLI 5 October 2013 02:46:14 121/40 30 m

Poyang Lake T2 NPP-VIIRS 1 May 2014 05:53:21 – 375 m
Landsat OLI 1 May 2014 02:44:05 121/40 30 m

Poyang Lake T3 NPP-VIIRS 8 October 2014 05:52:50 – 375 m
Landsat OLI 8 October 2014 02:44:32 121/40 30 m

Suomi NPP–VIIRS images were downloaded from the National Oceanic and Atmospheric
Administration (NOAA)/Comprehensive Large Array-data Stewardship System (CLASS) (http://
www.class.ncdc.noaa.gov/saa/products/search?datatype_family=VIIRS). Suomi NPP-VIIRS sensors
provide 22 visible and infrared bands with wavelength ranging from 0.4 to 12.5 µm. Sixteen of them
are moderate resolution bands (M-bands) at a resolution of 750 m. There is also a day/night band with
750 m resolution and five imagery resolution bands (I-bands) with 375 m resolution. The third I-band
(I3), an SWIR band with a spectral range from 1.58 to 1.64 µm, was employed in this study to estimate
water fraction because of the high separability of land and water in this part of the spectrum [17,18].

Landsat OLI images at 30 m resolution acquired on the same day as Suomi NPP–VIIRS images
were downloaded from United States Geological Survey (USGS) EarthExplorer platform (https://

http://www.class.ncdc.noaa.gov/saa/products/search?datatype_family=VIIRS
http://www.class.ncdc.noaa.gov/saa/products/search?datatype_family=VIIRS
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/


Water 2017, 9, 834 5 of 20

earthexplorer.usgs.gov/). They were the standard terrain correction (Level 1T) product that has been
radiometrically and geometrically corrected. They were used as the reference data to evaluate the
accuracy of the downscaling results of the Suomi NPP–VIIRS because of their relatively finer spatial
resolution. The time lag between the acquisition of NPP–VIIRS and Landsat is about 3 h. Band 6 of
Landsat OLI has a wavelength range from 1.56 to 1.66 µm, which is close to that of the NPP–VIIRS I3
band. Both types of images have been atmospherically corrected and processed to surface reflectance
in ENVI 5.1, and then co-registered with each other.

A 30 m resolution global surface water dynamic dataset (https://global-surface-water.appspot.
com/), which was derived by Pekel et al. [24] using more than 3 million Landsat images over the
past 32 years, was employed in this study as auxiliary data. This dataset includes a series of raster
layers such as occurrence, change, seasonality, recurrence, transitions, and extent. Here, only extent
and occurrence layers were used. The extent layer (e.g., Figure 2a,c) records the maximum water
extent over the last 32 years. The occurrence layer (e.g., Figure 2b,d) maintains the frequency of water
occurrence over the whole observation period in monthly time-steps. Permanent water bodies would
in theory have an occurrence value of 100%, but this value is sometimes affected by cloud cover, which
means some of the permanent water bodies have less than 100% occurrence. Through careful visual
inspection, pixels with occurrence values greater than 90% were considered as permanent water bodies
in these lake areas.
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Figure 2. (a) Water extent of Yunnan lakes; (b) water occurrence of Yunnan Lakes; (c) water extent
of Poyang Lake; and (d) water occurrence of Poyang Lake, extracted from the global water dynamic
dataset published by Pekel et al. [24].

2.2. Methods

2.2.1. Water Fraction Retrieval

Water fraction retrieval was conducted on the basis of LSMM theory [50] which assumes the
reflectance of a mixed pixel to be a linear combination of all its endmembers’ reflectance. According to
LSMM, water fraction f can be estimated using the following equation:

f =
Rland − Rmix

Rland − Rwater
(1)

where Rmix is the reflectance of a mixed pixel containing both water and land fractions; and Rwater and
Rland are the reflectance of pure water and land, respectively.

The value of Rmix can be identified directly from the reflectance image. Therefore, the most
difficult part of using Equation (1) to estimate water fraction is to find optimal candidate pure pixels
that can be used as Rwater and Rland. Huang et al. [21] determined feasible value ranges for Rwater and
Rland from the histogram of the SWIR band (I3) of the NPP–VIIRS, considering this histogram generally
appears as two peaks when there are enough water and land pixels on the image (an example is shown
as Figure 3). The feasible range for pure water pixels starts from the minimum reflectance value of
the whole image and ends with the maximum reflectance of a pure water pixel, while the feasible
range for pure land pixels starts from the minimum reflectance of a pure land pixel and ends with the
maximum reflectance value of the whole image. Therefore, the determination of feasible ranges is
actually determining the upper limit of the pure water pixel range (Rw-max in Figure 3) and the lower
limit of the pure land pixel range (Rl-min in Figure 3). A moving window was then applied to search
for candidate pure pixels that have reflectance values within the feasible ranges. While the moving
window approach reduced the uncertainties of reflectance variations of water and land objects to
some extent, the determination of feasible ranges from the histogram still needs manual intervention,
which introduces additional uncertainties [21].



Water 2017, 9, 834 7 of 20
Water 2017, 9, 834  7 of 20 

 

 
Figure 3. An example of the two-peak histogram of the NPP–VIIRS short-wave infrared (SWIR) band, 
and the demonstration of feasible ranges. 

In this study, the extent layer (e.g., Figure 2a,c) was employed to generate the maximum water 
mask to exclude possible water areas and extract pure land pixels. It was first resampled to a 15 m 
binary water map and then aggregated to 375 m resolution. The aggregated pixel would be 
considered as a pure land pixel if all the 15 m pixels in the aggregation window are non-water. The 
minimum reflectance of all these pure land pixels was selected as the lower limit for the feasible value 
range of pure land pixels (Rl-min in Figure 3). The occurrence layer (e.g., Figure 2b,d) was used to 
generate the permanent water mask at 375 m resolution, also through resampling and then 
aggregating. The aggregated pixel would be considered as a permanent water pixel only if all the 15 
m pixels in the aggregation window are water. The maximum reflectance of all permanent water 
pixels was used as the upper limit for the feasible value range of pure water pixels (Rw-max in Figure 
3). It has to be noted that when selecting the minimum reflectance of all pure land pixels and the 
maximum reflectance of all pure water pixels, the three-sigma rule was applied in order to avoid 
abnormal values being wrongly selected. The three-sigma rule considers values that lie out of three 
standard deviations of the mean to be outliers, which are usually taken as abnormal values. 

Once the feasible ranges for both pure water and pure land pixels were determined, mixed pixels 
could be identified easily. A 3 × 3 moving window was applied to determine the endmembers for 
each mixed pixel. Among all the pure land pixels within the moving window, the one that has the 
lowest reflectance value was taken as the endmember of land (Rland). The endmember of water (Rwater) 
was determined similarly by taking the highest reflectance value of all the pure water pixels within 
the moving window. These two endmembers were then employed to estimate the water fraction of 
each mixed pixel using Equation (1). 

2.2.2. Subpixel Mapping 

After the derivation of the water fraction, subpixel mapping is needed to allocate subpixels 
within each mixed pixel. The pixel-swapping algorithm was adopted in this study for subpixel 
mapping because of its simplicity and efficiency. It was initially proposed by Atkinson [37] to achieve 
maximum attractiveness between same-class fractions. The attractiveness of all subpixels was 
calculated based on their initial locations, which are allocated randomly at the beginning of the 
algorithm. For each subpixel i, its attractiveness Ai was calculated as a distance-weighted function of 
its j = 1,2,…, J neighbouring subpixels (Equation (2)): 

Figure 3. An example of the two-peak histogram of the NPP–VIIRS short-wave infrared (SWIR) band,
and the demonstration of feasible ranges.

In this study, the extent layer (e.g., Figure 2a,c) was employed to generate the maximum water
mask to exclude possible water areas and extract pure land pixels. It was first resampled to a 15 m
binary water map and then aggregated to 375 m resolution. The aggregated pixel would be considered
as a pure land pixel if all the 15 m pixels in the aggregation window are non-water. The minimum
reflectance of all these pure land pixels was selected as the lower limit for the feasible value range of
pure land pixels (Rl-min in Figure 3). The occurrence layer (e.g., Figure 2b,d) was used to generate
the permanent water mask at 375 m resolution, also through resampling and then aggregating.
The aggregated pixel would be considered as a permanent water pixel only if all the 15 m pixels
in the aggregation window are water. The maximum reflectance of all permanent water pixels was
used as the upper limit for the feasible value range of pure water pixels (Rw-max in Figure 3). It has
to be noted that when selecting the minimum reflectance of all pure land pixels and the maximum
reflectance of all pure water pixels, the three-sigma rule was applied in order to avoid abnormal values
being wrongly selected. The three-sigma rule considers values that lie out of three standard deviations
of the mean to be outliers, which are usually taken as abnormal values.

Once the feasible ranges for both pure water and pure land pixels were determined, mixed pixels
could be identified easily. A 3 × 3 moving window was applied to determine the endmembers for
each mixed pixel. Among all the pure land pixels within the moving window, the one that has the
lowest reflectance value was taken as the endmember of land (Rland). The endmember of water (Rwater)
was determined similarly by taking the highest reflectance value of all the pure water pixels within the
moving window. These two endmembers were then employed to estimate the water fraction of each
mixed pixel using Equation (1).

2.2.2. Subpixel Mapping

After the derivation of the water fraction, subpixel mapping is needed to allocate subpixels within
each mixed pixel. The pixel-swapping algorithm was adopted in this study for subpixel mapping
because of its simplicity and efficiency. It was initially proposed by Atkinson [37] to achieve maximum
attractiveness between same-class fractions. The attractiveness of all subpixels was calculated based
on their initial locations, which are allocated randomly at the beginning of the algorithm. For each
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subpixel i, its attractiveness Ai was calculated as a distance-weighted function of its j = 1,2, . . . , J
neighbouring subpixels (Equation (2)):

Ai =
J

∑
j=1

exp(
−hij

α
)× Cj (2)

where α is the exponential parameter of the distance-decay model; Cj is the binary class (1 for the
target class and 0 for the other) of the jth pixel; and hij is the Euclidean distance between the location
of subpixel i and a neighbouring subpixel j. The total number of neighbouring pixels (J) is determined
by the size of the predefined moving window (r).

The attractiveness of subpixels was then ranked within each coarse pixel on a pixel-by-pixel basis.
The general procedures are: (1) Subpixel classes are swapped if the attractiveness at the least attractive
location of class 1 is less than that at the most attractive location of class 0. Otherwise, no operation
would be conducted; (2) The related attractiveness would be recalculated and updated whenever a
change has been made. This pixel-swapping process is repeated iteratively. It stops either at a fixed
number of iterations or when the algorithm converges to a solution.

In this study, two modifications were made for improving the efficiency of lake mapping. The first
one is to replace the random initial allocation of water subpixels with the lake-center oriented allocation.
Subpixels that are closer to the center of lake have higher priorities to be assigned as water at the
initialization process. This modification helps reduce iteration times and reach a convergence faster.
The other one is to assign a higher C value (instead of 1, the same value of r was used as C) to pure
lake-water pixels, which gives the main lake body pixels higher attractiveness to the water subpixels
within the mixed pixel. This makes the final subpixel mapping result more compact around lakes.

2.2.3. Accuracy Assessment

Accuracy assessment in this study includes two aspects, evaluating the accuracy of the water
fraction estimation and evaluating the accuracy of subpixel mapping. For both aspects, the referencing
data are water cover information derived from corresponding Landsat images. Since Landsat has
a much finer resolution than NPP–VIIRS, all Landsat pixels were considered as pure pixels here.
A binary water/land classification can be generated using a threshold to the SWIR band (band 6) of the
Landsat image [22]. Reflectance values of this band equal to or below the threshold were assigned to
water, while those above were classified as land. It can be noted that the threshold must be determined
very carefully, because the optimal threshold differs from case to case. In this study, the thresholds
were adjusted carefully for each case study with the aid of visual interpretation. For the Yunnan lakes
especially, pixels that are far away from the lakes were manually excluded. Binary lake maps with
a value of 1 as the lake-water area and 0 as the land were derived, which were then resampled to
15 m resolution using the nearest neighbor method. Landsat-simulated water fraction maps (e.g.,
Figure 4c,d) were then generated by aggregating the 15 m Landsat lake map to 375 m resolution with a
scale factor of 25. Each pixel of these maps maintains the water percentage within its 375 m × 375 m
area. These fraction maps were used as the reference to evaluate the accuracy of fraction maps derived
from the 375 m resolution NPP–VIIRS. Evaluation was first based on a pixel-by-pixel fraction difference,
since they have exactly the same resolution.

Another easy way to validate water fraction results is to compare the satellite-observed lake areas
calculated from both estimated and referenced water fraction maps using the following equation [51]:

S =
n

∑
i=1

fwisi (3)

where fwi is the water fraction of pixel i; si is the area of pixel i; and n stands for the total number of
pixels that comprise the lake.
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A generalized cross-tabulation matrix (CTM) was proposed by Pontius and Cheuk [52] to evaluate
soft classified maps at multiple resolutions. On the basis of CTM, Silván-Cárdenas and Wang [53]
developed a subpixel confusion–uncertainty matrix (SCM) to assess sub-pixel mapping accuracy and
uncertainties. Compared to the traditional evaluation methods, such as root mean square error (RMSE),
SCM is able to provide detailed information on subpixel confusion and uncertainty. It was, therefore,
also adopted in this study to evaluate the water fraction estimation results. Accuracy–uncertainty
indices were calculated from traditional indices such as overall accuracy and the Kappa coefficient,
based on SCM.

Landsat-simulated water fraction maps were also used for subpixel mapping, which provides
a comparison for the subpixel mapping results of the NPP–VIIRS-derived water fraction. Subpixel
mapping results of both data sources (Landsat-simulated and NPP–VIIRS-derived) were evaluated
using the initial resampled 15 m resolution water maps as references. Validation maps were produced
by overlaying the subpixel mapping results with reference maps pixel-by-pixel. Some accuracy indices,
such as the commission and omission errors, overall accuracy and Kappa coefficient, were calculated
from these validation maps to provide an intuitive assessment of the accuracy.
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3. Results and Discussion

3.1. Water Fraction Map and Its Accuracy

The I3 bands of the Suomi NPP–VIIRS images as listed in Table 1 were employed as the input of
the water fraction retrieval method. Water fraction maps at a spatial resolution of 375 m were then
derived (e.g., Figure 4a,c). Corresponding Landsat-simulated water fraction maps (e.g., Figure 4b,d)
are displayed for reference.

In order to quantify the accuracy of the NPP–VIIRS retrieved water fraction, the corresponding
Landsat-simulated water fraction map was employed as the reference. Two maps were overlaid pixel
by pixel, generating a difference map as shown in Figure 5. A difference value greater than 0 indicates
that water fraction has been overestimated by the NPP–VIIRS image. From Figure 5, the water fraction
for Yunnan lakes was slightly underestimated by the NPP–VIIRS in general, because a substantial
proportion of pixels have fraction difference values smaller than 0. For Poyang Lake, overestimation
is much more common, especially for the result of 5 October 2013 (T1). Underestimation also exists,
but mainly occurs in the river channels.
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The absolute difference was divided into four levels, less than 0.10, 0.10–0.25, 0.25–0.50, and greater
than 0.50. The percentage of pixels that belonged to each level was counted in Table 2. It is clear
that most of the pixels have been estimated properly. For the Yunnan lakes, about 66% of the pixels
have an absolute difference of less than 0.25. There are only 10% mixed pixels that have an absolute
difference greater than 0.5. For all the three cases of Poyang Lake, over 50% mixed pixels have an
absolute difference of less than 0.10. There are also about 10% of the mixed pixels whose water fraction
has been estimated improperly, with an absolute difference greater than 0.50. This indicates that the
water fraction has been retrieved from the NPP–VIIRS image with acceptable accuracy in general,
bearing in mind that deviations still exist, some of them are even significant.

Table 2. Percentage of mixed pixels with four levels of absolute difference.

Case Study Percentage of Pixels that Have an Absolute Difference

<0.10 0.10–0.25 0.25–0.50 >0.50

Yunnan lakes 39% 27% 24% 10%
Poyang Lake T1 53% 19% 16% 12%
Poyang Lake T2 61% 18% 13% 8%
Poyang Lake T3 54% 20% 16% 10%

The areas of these lakes were calculated using Equation (3) from the NPP–VIIRS-derived and
Landsat-simulated fraction maps, respectively (Table 3). Note that for the Poyang Lake cases, the lake
area here refers to the total water area in the whole study area. It is obvious that the areas of all the
lakes have been estimated properly by the NPP–VIIRS. Qilu Lake has the highest estimation difference,
which is about 5%, mainly due to its relatively smaller lake-water area and intricate water body.
The area of Poyang Lake varies at three selected dates, which has been captured successfully by both
the NPP–VIIRS and Landsat. Estimation for T2 (1 May 2014) has the highest difference (more than 7%)
among all three. Based on these results, downscaling the NPP–VIIRS image is proved to be able to
achieve generally accurate lake-water coverage estimation.

Table 3. Difference of lake areas * calculated from the NPP–VIIRS and Landsat.

Case Study Lake Lake Area on
NPP-VIIRS (km2)

Lake Area on
Landsat (km2) Difference (%)

Yunnan lakes

Dianchi Lake 289.30 294.26 1.69
Yangzonghai Lake 28.84 29.47 2.14

Fuxian Lake 212.40 213.83 0.67
Xingyun Lake 31.13 31.86 2.29

Qilu Lake 23.80 22.59 5.36

Poyang Lake T1 Poyang Lake 2011.32 2093.30 3.92
Poyang Lake T2 Poyang Lake 2107.93 2277.45 7.44
Poyang Lake T3 Poyang Lake 2666.81 2766.85 3.62

Note: * For the Poyang Lake cases, lake area refers to the total water area in the whole study area.

Accuracy–uncertainty indices, including producer accuracy, user accuracy, overall accuracy and
the Kappa coefficient, were calculated based on SCM for lakes in each case study (Table 4). From Table 4,
center values of traditional accuracy indices demonstrate the baseline of the accuracy for lakes in each
case study. It is found that although the overall accuracy for all the lakes is over 90%, the producer
accuracy (PA), user accuracy (UA) and Kappa coefficient are quite different. Dianchi Lake, Yangzonghai
Lake and Fuxian Lake in the Yunnan lakes case study have relatively higher accuracy than the others.
Corresponding uncertainties for these indices were appended as plus–minus values behind each
index. It is found that uncertainties for most of these indices are around 1–2%. Uncertainties for the
Kappa coefficient are generally less than 0.03. It is noted that the larger the uncertainty of an index,
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the less useful the center value will be. In general, the water fractions of lakes for all the case studies
have been estimated properly, with some of the Yunnan lakes having relatively higher accuracy and
fewer uncertainties.

Table 4. Accuracy assessment of lake-water fraction estimation based on the subpixel confusion–uncertainty
matrix (SCM).

Case Study Lake
Producer

Accuracy (%)
with Uncertainty

User Accuracy
(%) with

Uncertainty

Overall
Accuracy (%)

with Uncertainty

Kappa
Coefficient with

Uncertainty

Yunnan lakes

Dianchi Lake 95.33 ± 1.05 96.95 ± 1.09 97.94 ± 0.58 0.95 ± 0.02
Yangzonghai Lake 92.09 ± 1.78 94.09 ± 1.86 98.26 ± 0.48 0.92 ± 0.02

Fuxian Lake 96.91 ± 0.80 97.56 ± 0.81 97.94 ± 0.60 0.96 ± 0.01
Xingyun Lake 90.17 ± 1.92 92.22 ± 2.01 95.09 ± 1.14 0.88 ± 0.03

Qilu Lake 93.94 ± 2.52 89.29 ± 2.28 95.93 ± 1.20 0.89 ± 0.03

Poyang Lake T1 Poyang Lake 75.46 ± 1.72 78.47 ± 1.86 94.70 ± 0.50 0.74 ± 0.03
Poyang Lake T2 Poyang Lake 63.28 ± 1.27 82.88 ± 2.18 92.30 ± 0.57 0.67 ± 0.03
Poyang Lake T3 Poyang Lake 75.70 ± 1.58 86.80 ± 2.07 93.88 ± 0.67 0.77 ± 0.03

3.2. Subpixel Mapping Results and Their Accuracy

Both the NPP–VIIRS-derived water fraction map (e.g., Figure 4a,c) and the Landsat-simulated
water fraction map (e.g., Figure 4b,d) were employed as the input of a subpixel mapping algorithm
with a scale factor of 25, respectively. The other parameters of the SPM algorithm, such as the moving
window size (r) and exponential parameter of the distance-decay model (α), were adjusted and
determined carefully through a series of experiments. Ultimately, the window size was set to 13 and
the exponential parameter was given an optimal value of 10 for all cases. With these parameters,
downscaled lake maps at a spatial resolution of 15 m were produced and are presented in Figure 6.

It can be observed from Figure 6a that the overall shapes of five Yunnan lakes have been generated
appropriately by subpixel mapping the NPP–VIIRS-derived water fraction map. Some subtle parts of
the shorelines can even be restored. However, it has also been noted that the downscaled lake shorelines
are not as smooth as the actual shorelines portrayed by the Landsat image (Figure 1a). Some delicate
areas, such as the inner lake on the north of Dianchi Lake and the wetland on the south-west of
Qilu Lake, have not been mapped reasonably. The boundaries of these areas are obviously incorrect
compared with those observed from the Landsat image; while the subpixel mapping result of the
Landsat-simulated water fraction map (Figure 6b) looks reasonable. The shorelines of all lakes were
properly restored, even in the intricate areas.

For Poyang Lake at three different times, the subpixel mapping results of the NPP–VIIRS
(Figure 6c,e,g) look inferior to that of the Yunnan lakes, due to its much more complicated shoreline,
as well as its rich and small river tributaries. The main lake bodies were retrieved appropriately,
but small patches, as well as rivers, were failed to be restored. Nevertheless, the subpixel mapping
results of the Landsat-simulated water fraction (Figure 6d,f,h) appear to be much more reasonable.
The main lake bodies, small patches and even some small rivers were properly derived.

All subpixel mapping results in Figure 6 were overlaid pixel-by-pixel with the corresponding
referencing water maps that were derived directly from Landsat images to achieve a quantitative
accuracy assessment. The validation maps of the Yunnan lakes are shown in Figure 7. For a better
visual effect, five Yunnan lakes were split into separated map frames with different scales. Commission
and omission errors can be identified directly from Figure 7. It is clear that errors mainly occur in
those parts where the lakes have relatively delicate shorelines. This is even obvious in the NPP–VIIRS
derived results (Figure 7a–e). Significant omission errors (green), as well as commission errors (red)
occur in the northern part of Dianchi Lake, and also in the south-west boundary of Qilu Lake, while the
results that are derived from the Landsat-simulated water fraction (Figure 7f–j) have much higher
accuracy, apparently. Even in some intricate areas, errors are very limited. Only some tiny and delicate
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water areas, for example the small tributaries on the south-west of Qilu Lake and tributaries on the
west of Xingyun Lake, have obvious errors.

The validation maps of Poyang Lake in Figure 8 reveal that the main lake body has been retrieved
correctly at all three times. It is also noted that errors exist substantially in the downscaling results of
the NPP–VIIRS data. Commission errors (red) occur mainly in the isolated patches that were formed
when the water level dropped in the dry season, while omissions (green) generally happen in narrow
river channels. It seems that those fine water bodies cannot be correctly retrieved by downscaling the
NPP–VIIRS. On the contrary, the downscaling results of simulated Landsat data have very limited
errors, either commission or omission, and even some small rivers can be restored properly.
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Figure 6. (a) Subpixel mapping result of NPP–VIIRS-derived water fraction for Yunnan lakes on
2 February 2014; (b) subpixel mapping result of Landsat-simulated water fraction for Yunnan lakes on
2 February 2014; (c) subpixel mapping result of NPP–VIIRS-derived water fraction for Poyang Lake
on 5 October 2013; (d) subpixel mapping result of Landsat-simulated water fraction for Poyang Lake
on 5 October 2013; (e) subpixel mapping result of NPP–VIIRS-derived water fraction for Poyang Lake
on 1 May 2014; (f) subpixel mapping result of Landsat-simulated water fraction for Poyang Lake on
1 May 2014; (g) subpixel mapping result of NPP–VIIRS-derived water fraction for Poyang Lake on
8 October 2014; and (h) subpixel mapping result of Landsat-simulated water fraction for Poyang Lake
on 8 October 2014.



Water 2017, 9, 834 14 of 20Water 2017, 9, 834  14 of 20 

 

 

Figure 7. Validation results of subpixel mapping of: (a) Dianchi Lake from the NPP–VIIRS; (b) 
Yangzonghai Lake from the NPP–VIIRS; (c) Fuxian Lake from the NPP–VIIRS; (d) Xingyun Lake from 
the NPP–VIIRS; (e) Qilu Lake from the NPP–VIIRS; (f) Dianchi Lake from the Landsat; (g) 
Yangzonghai Lake from the Landsat; (h) Fuxian Lake from the Landsat; (i) Xingyun Lake from the 
Landsat; and (j) Qilu Lake from the Landsat. 

 
Figure 8. Validation results of subpixel mapping of Poyang Lake (a) from the NPP–VIIRS on 5 October 
2013; (b) from the NPP–VIIRS on 1 May 2014; (c) from the NPP–VIIRS on 8 October 2014; (d) from the 
Landsat on 5 October 2013; (e) from the Landsat on 1 May 2014; (f) from the Landsat on 8 October 
2014. 

Figure 7. Validation results of subpixel mapping of: (a) Dianchi Lake from the NPP–VIIRS;
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(g) Yangzonghai Lake from the Landsat; (h) Fuxian Lake from the Landsat; (i) Xingyun Lake from the
Landsat; and (j) Qilu Lake from the Landsat.
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Figure 8. Validation results of subpixel mapping of Poyang Lake (a) from the NPP–VIIRS on
5 October 2013; (b) from the NPP–VIIRS on 1 May 2014; (c) from the NPP–VIIRS on 8 October 2014;
(d) from the Landsat on 5 October 2013; (e) from the Landsat on 1 May 2014; (f) from the Landsat on
8 October 2014.
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Percentage of errors, as well as overall accuracy and Kappa coefficient, were calculated based on
the overlaying maps. As suggested by Mertens et al. [32], a mask was applied to exclude all pure pixels
from the water fraction map in order to achieve a more precise accuracy assessment. These indices
were calculated for each lake individually and listed in Table 5.

It is obvious from Table 5 that the accuracy of downscaled maps differs across lakes, dates,
and data sources. Lakes downscaled from the Landsat-simulated water fraction maps have many
fewer errors than those derived from the NPP–VIIRS water fraction maps. For all the five Yunnan
lakes individually, high accuracy has been achieved using the Landsat-simulated water fraction
map. Even the worst one, Qilu Lake, has an overall accuracy of 91.32% and a Kappa coefficient of
0.82, which represent a close-to-perfect agreement according to Landis and Koch [54]. While using
the NPP–VIIRS-retrieved water fraction map, the downscaling results for the Yunnan lakes have
relatively lower accuracy. Dianchi Lake has the highest accuracy, with an overall accuracy of 80.50%,
a commission error of 6.81%, and an omission error of 12.69%. Its Kappa coefficient is 0.61 which,
according to Landis and Koch [54], is a medium above agreement. The accuracy of the other lakes is
a little bit lower than that of Dianchi Lake, indicating that the method of downscaling NPP–VIIRS
for lake-water mapping is applicable for the Yunnan lakes, but still needs to be improved. For the
three cases of Poyang Lake, bearing in mind that the water bodies are much more complicated,
the downscaling results have lower accuracy than those of Yunnan lakes. The downscaling results
of the NPP–VIIRS have overall accuracy about 80%, with generally more than 10% omission errors.
These errors are largely due to the failure of restoring fine river channels, as shown in Figure 8a–c.
When using simulated Landsat, the overall accuracy reaches around 88% for all cases, and the Kappa
coefficients are between 0.62 and 0.69. The Poyang Lake cases also suggest that the downscaling
method is applicable but imperfect. The accuracy comparison between different downscaling data
sources in Table 5 reveals the uncertainties introduced only by fraction errors. It is therefore suggested
that water fraction estimation errors, even if sometimes limited (see Table 4), would affect the final
downscaling results significantly.

Table 5. Accuracy indices showing the evaluation result of different lakes on both the NPP–VIIRS and
Landsat downscaling results for different case studies.

Case Study Lake Downscaling
Data Source

Commission
Error (%)

Omission
Error (%)

Overall
Accuracy (%)

Kappa
Coefficient

Yunnan lakes

Dianchi Lake
NPP-VIIRS 6.81 12.69 80.50 0.61

Landsat 2.86 2.83 94.31 0.89

Yangzonghai
Lake

NPP-VIIRS 8.42 13.24 78.34 0.56
Landsat 1.59 1.56 96.85 0.97

Fuxian Lake
NPP-VIIRS 8.75 12.27 78.98 0.59

Landsat 2.35 2.32 95.33 0.91

Xingyun Lake NPP-VIIRS 9.95 14.62 75.43 0.51
Landsat 2.71 2.66 94.63 0.89

Qilu Lake
NPP-VIIRS 16.25 6.61 77.14 0.55

Landsat 4.34 4.34 91.32 0.82

Poyang Lake T1 Poyang Lake NPP-VIIRS 9.20 11.01 79.79 0.42
Landsat 5.43 5.43 89.14 0.69

Poyang Lake T2 Poyang Lake NPP-VIIRS 4.13 12.02 83.85 0.48
Landsat 5.74 5.74 88.52 0.62

Poyang Lake T3 Poyang Lake NPP-VIIRS 5.96 12.95 81.09 0.46
Landsat 6.26 6.26 87.48 0.67

Based on the four levels of absolute fraction difference in Table 2, the NPP–VIIRS mixed pixels
were divided into four groups. For each group, percentages of commission and omission errors in the
subpixel mapping result were recalculated through dividing the error pixel numbers by total pixel
numbers. These percentages of errors for all the four case studies have been displayed as bar charts
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in Figure 9. It is obvious that as the absolute fraction difference increases, which means the water
fraction estimation accuracy decreases, the percentage of commission and omission errors increases
significantly, from less than 5% to nearly 70%. This demonstrates that the water fraction estimation
results affect the subpixel mapping results seriously.
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4. Conclusions

Due to their fine temporal resolution and wide spatial coverage, Suomi NPP–VIIRS data have
begun to show their value in surface water and lake-water detection. However, the effective and wide
application of this data source is still challenging because of its medium to coarse spatial resolution [21].
The mixed pixel issue seriously affects the accurate detection of land cover, which includes the
mapping of lake shorelines. This study has demonstrated the potential of downscaling the 375 m
Suomi NPP–VIIRS SWIR band for lake-water area extraction. The purpose is to devise an effective
method that improves the spatial resolution as well as the mapping accuracy by combining the spectral
unmixing method and subpixel mapping method.

For spectral unmixing, a low-cost, easy-to-implement method was proposed to automatically
extract endmembers from the image for estimating water fraction based on the principle of the linear
spectral mixture model. An accurate and globally available water dynamic dataset was employed to
automatically refine the feasible value ranges of pure water and pure land reflectance, which helps
avoid uncertainties introduced by human intervention. Through either lake area comparison or
the subpixel confusion–uncertainty matrix, it was proved that the water fraction had been properly
estimated from the NPP–VIIRS. By directly comparing this with the referencing fraction map, a limited
proportion of pixels was found to have large fraction deviations (greater than 0.50). However, it is also
noted that water and land endmembers acquired with the proposed method are sometimes unable
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to reflect the real land cover types in the study area precisely, especially for the land endmember,
because the non-water land cover type varies from place to place. The reflectance of these land cover
types is also quite different from others. It is almost impossible to select a single endmember to
represent all non-water land covers exactly, although the moving window approach does make the
selected endmembers more representative to some extent.

When subpixel mapping a lake area, it would be helpful to make some modifications to the
traditional subpixel mapping algorithms, such as modifications to the random initialization and
attractiveness calculation, since the location of main lake body is easily acquired from the water
product involved. These modifications would enhance the subpixel mapping algorithms by either
reducing the calculation or improving the final result.

It is demonstrated that by downscaling NPP–VIIRS data using the proposed two-step process, lake
maps at finer resolution can be generated with proper accuracy. This methodology could also be easily
applied to other similar sensors such as MODIS. This could be useful because these coarse resolution
data usually have fine temporal resolution, which means they are usually available while other finer
spatial resolution data are not. Spatial downscaling these data produces lake maps with finer spatial
resolution and higher accuracy compared to their hard classification results. Daily lake water products
at fine spatial resolutions could be produced from daily MODIS or NPP–VIIRS time-series using
the downscaling method, bearing in mind that uncertainties may be introduced by the downscaling
process. It also has to be noted that while having all these advantages, the downscaling process
sometimes requires intensive additional computation.

Based on the downscaling results of both the NPP–VIIRS-derived and Landsat-simulated water
fraction maps, it has been found that the water fraction retrieval process introduced more uncertainties
and errors into the final result than the subpixel mapping process. The subpixel mapping result of
the Landsat-simulated water fraction map that has the exact water fraction values entails very limited
errors, while the downscaling fraction map that is derived from the actual NPP–VIIRS image produced
much more errors, although the validation results reveal that the NPP–VIIRS-derived water fraction
has acceptable accuracy. Only a small proportion of the pixels have fraction deviations greater than 0.50.
Most of the estimated water fractions have deviations smaller than that. However, it seems that these
deviations, even though sometimes small, may still affect subpixel mapping results. This is because
the spatial allocation of water subpixels is based on the water fraction within each coarse mixed pixel.
When the fraction is not accurate, it is difficult for any type of optimal method to restore the correct
subpixel mapping results. On the contrary, if the water fraction was retrieved correctly, the shoreline
of lakes could be easily restored at the subpixel scale with high accuracy. It is therefore suggested that
future work on downscale lake mapping should focus more on improving the unmixing procedure.
It is hoped that this study could promote the application of some moderate resolution sensors, such as
the Suomi NPP–VIIRS and MODIS, in monitoring lake-water areas. It is anticipated that in the near
future, after the downscaling method has been significantly improved, a daily lake-water product at
fine spatial resolutions could be generated from time-series MODIS and NPP–VIIRS data.
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