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Abstract: Reliable prediction of groundwater depth fluctuations has been an important component
in sustainable water resources management. In this study, a data-driven prediction model combining
discrete wavelet transform (DWT) preprocess and support vector machine (SVM) was proposed for
groundwater depth forecasting. Regular artificial neural networks (ANN), regular SVM, and wavelet
preprocessed artificial neural networks (WANN) models were also developed for comparison.
These methods were applied to the monthly groundwater depth records over a period of 37 years
from ten wells in the Mengcheng County, China. Relative absolute error (RAE), Pearson correlation
coefficient (r), root mean square error (RMSE), and Nash-Sutcliffe efficiency (NSE) were adopted
for model evaluation. The results indicate that wavelet preprocess extremely improved the training
and test performance of ANN and SVM models. The WSVM model provided the most precise and
reliable groundwater depth prediction compared with ANN, SVM, and WSVM models. The criterion
of RAE, r, RMSE, and NSE values for proposed WSVM model are 0.20, 0.97, 0.18 and 0.94, respectively.
Comprehensive comparisons and discussion revealed that wavelet preprocess extremely improves
the prediction precision and reliability for both SVM and ANN models. The prediction result
of SVM model is superior to ANN model in generalization ability and precision. Nevertheless,
the performance of WANN is superior to SVM model, which further validates the power of data
preprocess in data-driven prediction models. Finally, the optimal model, WSVM, is discussed by
comparing its subseries performances as well as model performance stability, revealing the efficiency
and universality of WSVM model in data driven prediction field.

Keywords: groundwater depth; data-driven prediction model; wavelet transform; support vector
machine; artificial neural network

1. Introduction

Groundwater is an important water source in much of the world, especially in arid and semi-arid
regions [1,2]. In recent decades, groundwater often has been overexploited, particularly in developing
countries. Groundwater depth, the distance from ground surface to water table, can be measured by
monitor wells, thus can be directly observed. Groundwater depth fluctuations are influenced by natural
and anthropic stresses, which can be an indicator for the integrated water resources management.
When groundwater exploitation exceeds recharge, groundwater depth increases as the water table
falls; in contrast, groundwater depth decreases when recharge exceeds exploitation and can lead to
water-logging. Accurate prediction of groundwater depth fluctuation has been crucial for regional
sustainable water resources management.
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Physical and data-driven statistical models are two main tools for groundwater depth
prediction [3]. The need of large amounts of data on precipitation, groundwater exploitation,
soil nature, and human activities such as operation of channels and dams projects is a significant
barrier for physical modeling [1,4]. To achieve reliable groundwater depth prediction, data-driven
statistical modeling is a useful alternative approach.

Statistical models are mainly developed to explore the “input-output” pattern of long term
groundwater depth data series for make future estimates. Input data can be single groundwater historic
series or exogenous with broader types of available data [5]. Multi-variable linear regression model
(MLR) has been applied in several groundwater level prediction cases [6–8]. Since long term historical
groundwater depth records can be considered as correlated time series, autoregressive integrated
moving average model (ARIMA) has also been used for groundwater fluctuation forecasting [9–11].
The advantage of ARIMA is that it can filter extreme values and decrease their interference in prediction
accuracy. Linear regression methods are practical and cost-effective. However, linear fitting is not
capable to describe many complex groundwater fluctuation problems. Thus, in recent research,
linear regression models were usually carried out as a comparative method to highlight better models.

Artificial neural networks (ANNs) are a promising intelligent method that can efficiently capture
internal non-linear characteristics of groundwater fluctuations. Over the last decades, ANN has become
one of the most widely used algorithms in groundwater level forecasting [12–17] and is frequently
compared with linear regression. ANNs are more competitive in prediction accuracy for its high
efficiency in abstracting non-linear complicated input-output rules [1,6,8]. However, ANN also has
limitations. It is quite sensitive to internal parameters, which brings difficulties in model calibration.
Although many other intelligent algorithms such as genetic algorithms, particle swarm algorithms
and ant colony optimization were integrated into ANN for parameter calibration [18–21], underfitting
and overfitting are difficult to avoid due to improper model structures and parameters.

Support Vector Machine (SVM) is a modern statistical learning theory in data-driven modeling.
The uniqueness of SVM is its structural risk minimization (SRM) objective that balancing model’s
complexity against its fitting precision, instead of an empirical risk minimum (ERM) used by most
intelligent algorithms that focus mostly on fitting accuracy [22]. This model architecture greatly
improves model generalization ability compared with ERM based algorithms such as ANN. In recent
years, SVM is used for hydrologic predictions such as stream flows [23,24], precipitation [25,26],
sediments [27], and groundwater fluctuations. Most researches found that SVM performs more reliable
than ANN. Usually, ANN models have lower mean error than SVM in model calibration, but in model
test stage, the mean error of SVM is much lower than ANN, indicating SVM models are often superior
in generalization ability [28,29].

A problem for intelligent algorithms in hydrology is that most time series are non-stationary,
which may lead to poor forecasting ability. For instance, long term groundwater depth process may be
influenced by precipitation, evapotranspiration, seasonal cycle, crop yield, and other random issues.
Even non-linear intelligent models cannot guarantee precise description of all these features, or such
models may become very complicated for it confounds real features and stochastic noise. Therefore,
data preprocessing is another important aspect. Preprocessing can be accomplished in various ways.
Deleting abnormal points from observed time series can be regarded as preprocess, but it is usually
controversial because simply deleting outliers may disrupt randomness in the sample. In ARIMA
models, the moving average (MA) is a preprocess method to smoothen time series data [9–11].
Fuzzification, the first step in ANFIS model, which disperses determined data to discrete fuzzy
scenarios is also a preprocess method [30,31]. In time series analysis, preprocess is accomplished by
separating trend components, cyclical components, seasonal components and random components
from original time series. Wavelet analysis decomposes the initial process into several sub-series for
regulation. It has been used in hydrologic prediction modeling as a preprocess method coupled with
other prediction models. Adamowski et al. [6] proposed an ANN prediction model combined with
wavelet transform on input data for daily water demands in Montreal, Canada. The hybrid model
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showed best fitting precision compared with multiple linear regression (MLR), multiple nonlinear
regression (MNLR), ARIMA and traditional ANN model. Suryanarayana et al. [32] proposed a wavelet
analysis based SVM model for groundwater level prediction, and the result was also better than
SVM, ANN and ARIMA models. However, other models combined with wavelet analysis were not
discussed in this paper. Rathinasamy et al. [33] compared three hybrid wavelet models: WVC (Wavelet
Volterra Coupled model, proposed by Maheswaran R. et al. [34]), WANN WLR, and two regular
models: AR and ANN, which was in agreement that hybrid models performed better than regular
models. Furthermore, the wavelet based models outperformed significantly with the increase of lead
time. Similar results were also indicated by Moosavi et al. in groundwater level prediction using ANN,
ANFIS, WANN and WANFIS models [35].

Nourani et al. [36] gave a state-of-the-art review of hybrid wavelet and artificial intelligence
(AI) models development in hydrology. 105 papers were summarized, concluding that the dominant
application of wavelet based AI models is stream flow forecasting, and the dominant AI method is
ANN with a proportion of 90%. Due to the low number of research papers in groundwater and water
quality subject, the authors recommended conducting additional research in these fields.

This study explores and compares data-driven prediction models for monthly groundwater
depth. Discrete wavelet transforms are used to preprocess original groundwater depth time series.
Four models: regular ANN, regular SVM, wavelet preprocessed ANN (WANN) and wavelet
preprocessed SVM (WSVM) were developed and applied in parallel under the same time horizon.
The ANN based models represent classic intelligent algorithm, while the SVM models are proposed
in this paper to explore more efficient prediction for non-stationary data process. Specifically,
the performances of ANN based model and SVM based model were comprehensively compared,
drawing a conclusion that SVM based model is superior to ANN based model from both theoretical
and practical point of view. Thereafter, the effect of wavelet preprocess was analyzed by comparisons
between regular models and wavelet preprocessed models, which demonstrated the role of data
preprocessing in non-stationary time series prediction. Finally, the best model, WSVM, was discussed
with stability analysis.

2. Study Area and Data

Mengcheng County is in the Huai river basin of Anhui province, China (Figure 1). Mengcheng
County is home to 1.40 million people, of which 22.5% are urban and 77.5% are rural. The total area
of Mengcheng County is 2091 km2, comprising 318 km2 (15%) urban land and 1773 km2 (85%) of
agriculture land, so water is of vital importance for this agrarian county.

The Mengcheng County lies in the north-south climate boundary of China. Annual average
precipitation is 873 mm. Mengcheng County relies on groundwater. Precipitation can guarantee
groundwater recharge in most years, but there remains great gap between precipitation and water use
demands in many years. Therefore, groundwater pumping has long been important supplement in
Mengcheng County for it is convenient and cheap, meanwhile the supply is reliable and sustainable.

Mengcheng County has been facing severe groundwater depletion, mainly for agriculture. In the
1970s, ten observation wells were set in Mengcheng County to monitor groundwater fluctuations.
A total of 444 months were observed with records from January 1974 to December 2010. The well
specifications are shown in Table 1. Here we use the average data of the ten wells to represent
the groundwater depth fluctuation. Moreover, the averaged monthly groundwater depth series,
average groundwater depth and precipitation by month, as well as annual average groundwater depth
are shown in Figures 2–4, respectively. Several temporal characteristics can be found as follows:
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First, the groundwater depth shows seasonal periodicity. Precipitation in Mengcheng County
concentrates in June, July and August (Figure 3). Correspondingly, groundwater depth decreases
during the three months as the water table rises. In contrast, groundwater depth increases with the
decrease of precipitation after September. May and June are exceptions where precipitation increases
but groundwater depth does not significantly decrease, probably due to intensive groundwater
pumping for irrigation in May and June.

Second, annual average groudwater depth varies greatly from year to year and even from period
to period, as shown in Figure 4. The maximum annual average groundwater depth of 3.75 m occurred
in the drought year 1999; while the minimum is 1.68 m occurred in 1991, when the Huai river flooded.
These characteristics indicates groundwater depth is strongly influenced by the north-south boundary
climate conditions.

By dividing 37 years into four periods: 1974–1983, 1984–1993, 1994–2003 and 2004–2010,
the groudwater depth was relatively even during the first two periods, and then encountered
a sharp drawdown in the third period, finally restored after 2004. This trend is driven by the
groudwater exploitation history of Mengcheng County. Before 1990, agriculture was not very
advanced and precipitation can satisfy most demand, so groudwater depth was in a natural even
status; during 1990 to 2000, irrigation economies flourished with population growth and commercial
expansion. Groudwater abstraction was becoming more severe for agricultural and domestic use.
Many wells in the countryside were illegal and pumping was irregular, which caused sudden declines
of groundwater level. As a result, groundwater depth sharply increased by 38.8%, to an anverage
of 2.79 m. After 2000, since the rise of environment protection and water saving irrigation in China,
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groudwater overexploitation drawn more attention. Mengcheng County carried out many water
resources conservancy projects to decrease and regularize groundwater pumping. As a result,
the groundwater rose slowly to a depth of 2.33 m.

The groundwater depth process of Mengcheng County is complicated in statistical features and
influenced by both natural environment and human activities. Physical models alone are not realistic in
this case to predict groundwater depth, and linear methods are not able to describe the comprehensive
characteristics. Therefore, non-linear intelligent algorithm with data preprocess would be a suitable
method to establish the groundwater depth prediction model.

3. Model Development

3.1. Model Configuration

In this study, a hybrid machine learning method combining wavelet analysis is proposed to
predict monthly groundwater depth. The core idea is to form a set of subseries of groudwater depth
time series by wavelet analysis and then calibrate prediction model for each subseries. The overall
method consists of six major schemes (Figure 5), summarised below:
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(1) Divide overall groundwater depth into two sets: training set and test set. Sample sizes of both sets
should be adjusted. Usually the training set size should be larger than test set size to guarantee
the objectivity of model.

(2) Build an ANN/SVM training model with parameter calibration using training set data, and apply
the model to test set, which generates prediction results of ANN/SVM model.

(3) In parallel with step (2), construct a multi-level wavelet transform model to decompose original
groundwater depth time series to several subseries.

(4) Build ANN/SVM training model with parameter calibration for each subseries, and apply each
model to corresponding subseries of test set.

(5) Integrate the results of each subseries in chronological order to generate prediction results of
WANN/WSVM model.
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(6) Compare four models results in step (2) and (5), and analyze the effect of each module in the
hybrid model.

The key modules of the hybrid models are introduced below.

3.2. Determination of Lag Time

In this study, the prediction model has a “input-output” time-lag structure, where output is
groudwater depth for t time step and inputs are goundwater depth in t-n previous months. Here,
in order to determin the lag time n, a partial autocorrelation function (PACF) was carried out to test
the correlation of the examined time series [37]. Figure 6 plots the PACF of groundwater process with
95% confidence bounds (blue solid line). The correlation pattern indicated that a strong correlation
exists among groundwater depths in consecutive months, which proves the feasibility of forecasting
groundwater depth using groundwater depth in previous months. Further, an autoregressive model
with lag time 5 may be warranted for this time series, since there are notable partial autocorrelation for
the lag 1 to 5.
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3.3. ANN Training Model

ANN is a classic learning system inspired by biological neural networks. An ANN model has
a multi-layer feedward structure connected by several nodes in each layer. Each node is a processer
for “input-output” calculation. By parallel and massive iteration in the network, a convergent stable
“input-output” structure may be achieved through a procedure known as model training. The goal of
ANN is to find a function that fits given datasets best.

ANN is more effective in extracting and expressing hidden non-linear input-output relationships
than traditional algorithms. Nevertheless, the flexibility of ANN structure also brings difficulties in
model tuning. Improper settings of network structure or nodes may lead to deterioration in fitting
performance, such as overfitting or underfitting. Evolutionary algorithms such as genetic algorithm
(GA) particle swarm algorithm (PSO) and ant colony algorithm (ACA) have been emploryed in ANN
model for parameter optimization and achieve improvement in model efficiency. As discussed above,
the lag time of model structure is five, denoting the input variables (which is represented by input node
in ANN) are previous five months data of each target output. Therefore, the input and output node
numbers are 5 and 1 in ANN model structure. Node numbers of hidden layer is dependent on input
and output node numbers as well as data feature. With the increase of node numbers, the model will
be trained to fit more details but the generalization ability might decrease accordingly. Here the initial
node number was set to be 25. Therefore, a (5:25:1) ANN model with 5 nodes of input layer, 25 nodes in
hidden layer and 1 node of output layer was established as initial model structure. The node number of
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hidden layer is optimized by numeration from 25 to 5 with decremental step of 1. A genetic algorithm
was combined in the node weight values of hidden layer in model calibration.

The data used to construct or discover a predictive model is called a training set, while data used
to assess the model is called a test set. The quantity of training set and test set samples should
be reasonably divided to assure the objectivity of both training and test procedures. Since we
have 444 months of groundwater data sets, we defined a 3:1 ratio for training and test set samples.
Specifically, groundwater depth data from 1974 to 2001 is training set, while data from 2002 to 2010 is
test set.

3.4. SVM Training Model

3.4.1. SVM Algorithm

SVM is a machine learning theory based algorithm. SVM does not have a pre-determined
structure, while the training samples are judged by their contributions. Only selected samples are
contributed to the final model, which are the socalled “support vectors”. The SVM objective function
can be expressed as:

min 1
2‖w‖

2 + C
n
∑

i=1
(ξi+ξ∗i ){

(wφ(xi) + b)− yi ≤ ε + ξi
yi − (wφ(xi) + b) ≤ ε + ξ∗i

(1)

where w denotes direction vector, C denotes adjustment factor, ξi and ξ∗i are slack variables,
φ(xi) represents mapping input vector xi to high dimensional hyperspace, b is intercept of regression
function and ε is non-sensitivity coefficient. The former part of objective function represents the
model complexity, while the latter part represents fitting error. In SVM theory, the model reaches best
performance when the sum is minimized. SVM models seek the simultaneous optimum of model
generalization performance and fitting performance.

The SVM model is a high dimensional quadratic programming problem. To avoid “dimensional
disaster”, a kernel function is introduced to convert high dimensional computing into low dimensional
computing. Generic kernel functions include linear, radial basis function (RBF), Gaussian, polynomial,
and other kernel functions. Among them, the RBF kernel is superior to the linear kernel when dealing
with high dimensional complex samples; compared with Gaussian and polynomial kernel functions,
the parameter of RBF kernel function is simple. Thus, the RBF kernel is often chosen to solve the SVM
model, expressed as:

k(x, xi) = e−g‖x−xi‖2
(2)

where parameter g is used to fit different samples distributions.

3.4.2. PSO Parameter Calibration Method

The effectiveness of SVM depends on the selection of objective function parameter C,
kernel parameter and non-sensitivity coefficient ε. There is currently no widely accepted best way to
optimize SVM parameters. Grid search (GS) with exponentially growing sequences of combination
{C, g} is often applied [38]. Grid search is easy to implement but has low computing efficiency. Moreover,
optimal result of grid search can only generate from existing grid combinations, while unknown
possible better parameters can not be explored and discovered.

In this study, a PSO based parameter optimization method is adopted to search for best parameter
combination. The performance of SVM is more sensitive to the value C and g than ε, for the range of ε

is quite small that generally within interval [10−4, 10−1].
The PSO algorithm is derived from the migration mechanism of birds during foraging, which has

advantages of fast convergence, efficient parallel computing and strong universality which is able to
efficiently avoid local optimum [23,24]. Moreover, the iteration velocity of particle is influenced by the
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sum of current velocity, historical particle value, current global optimal value and random interferences,
which avoids local optima to a large extent and improves search coverage and effectiveness. In this
study, grid search also has been tried for comparison in this study—the PSO method is shown to
be much more efficient. Parameter C was enumerated within set {2−5, 2−4, 2−3, . . . 25} and g in
set {2−7, 2−6, 2−5, . . . 2}. Each combination was enumerated to determine the best parameter set.
The training and test results of grid search based SVM and WSVM are shown in Figure 7. It is obvious
that the PSO based SVM/WSVM simulation accuracy (shown in Section 4.1) bested the grid search
based SVM/WSVM model.
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3.4.3. Cross Validation

In machine learning algorithms, the basic purpose is fitting the model to training data, with the
ultimate goal of making reliable prediction on unknown test data. However, favorable training
performance does not always lead to reliable test performance. Overfitting is an example of this
case. An overfitted model usually has minor training error but large test error, as the model learned
too much unnecessary details from training data but fails to fit unknown test data. Overfitting
may occur due to improper training mechanisms and internal parameters, which would lead to the
more complicated and sensitive model. Although the proposed SVM model takes generalization
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performance and parameter calibration into account, overfitting may still occur caused by data bias in
training, especially when the training set is small.

K fold cross validation mechanism was adopted to further avoid overfitting. The original training
set was partitioned into k equally sized subsets. From the k subsets, a single subset was retained
as a validation set, and the remaining k − 1 subsets were used as training set. The cross-validation
process was then repeated k times (the folds), with each of the k subsets used as the validation
data, alternatively. The final performance of a k fold model training was the average of validation
performances in k subsets. Usually the value of k is determined by samples availability, generally from
2 to 10. Considering the overall training sample size is moderate, k is set to be 4 in this study.

The advantage of k fold cross validation mechanism is that in each round, the training sets and
validation set are independent. Therefore, the performance is objective, creating a solid foundation
for model optimization. Besides, the implementation of cross validation can improve efficiency of
data utilization. In model configuration, the overall data set should be commonly divided into three
independent sets: model calibration set, validation set, and test set. Sample sizes in each set might be
small and lack of representative. By involving cross validation, the calibration set and validation set
are combined as a whole, so the overall data would be divided into two sets. By the k fold of randomly
dynamic division of training samples, the model can be more stable and objective.

In this study, the ratio of training samples and test samples is 3:1, indicating 75% training samples
and 25% test samples. Considering 4 fold cross validation is applied on training set to train and
calibrate the model, the calibration samples account for 75% of the overall training samples, and the
rest 25% are validation samples. In summary, the ratio of calibration samples, validation samples,
and test samples are 56.25%, 18.75%, and 25%.

The final hybrid SVM model, which integrates SVM theory, PSO parameter optimization method
and k fold cross validation was trained on the whole training set, as shown in Figure 8.
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3.5. Wavelet Based Preprocess Analysis

Wavelet transform is used for de-noising, compression, and decomposition of data series.
In wavelet transform analysis, a time series process is considered consisting of low frequency
components and high frequency components. Low frequency component represents general and
regulated features of time series, such as cyclical and seasonal trends, while the details and chaotic
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element is preserved in high frequency component. Similar with components seperation in time series
analysis, the seperation of these features may be helpful to extract the inherent patterns of original
time series.

Discrete wavelet transform (DWT) is a method for seprating the low frequency and high frequency
components into given layers. Mallat transform, proposed by Stephane Mallat in 1989 [39] has been
the most practical and efficient method for DWT implementation. Figure 9 illustrated the framework
of Mallat DWT theory. The original groundwater depth S passes through level one filter and emerges
as two signals: low frequency component a1 and high frequency components d1, and this is called one
level wavelet. Similarly, the decomposition process can be operated for n times, with low frequency
components successively broken down into lower components, which is called n level DWT. Therefore,
a DWT with n levels will generate n + 1 subseries, which consists of n high frequency and 1 low
frequency subseries. The proper level n is determined by data series feature. If the data is chaotic
which need intensive refining, the level is better to be larger. However, it is noted that increasing
DWT level does not necessarily mean model performance improvement, for the error layers will also
increase with level increase. In this study, several rounds of test were carried out that enumerating
level from three to six, a three level DWT is shown to be best. Several types of wavelet functions can be
used in DWT, including Meyer wavelet, Haar wavelet, Daubechies wavelet, ReverseBior wavelet, etc.
In this paper, the Daubechies wavelet was chosen for its compact support and orthogonality, which has
enormous potential in describing details of groundwater depth fluctuations accurately.

Water 2017, 9, 781  11 of 21 

 

framework of Mallat DWT theory. The original groundwater depth S passes through level one filter 
and emerges as two signals: low frequency component a1 and high frequency components d1, and 
this is called one level wavelet. Similarly, the decomposition process can be operated for n times, with 
low frequency components successively broken down into lower components, which is called n level 
DWT. Therefore, a DWT with n levels will generate n + 1 subseries, which consists of n high frequency 
and 1 low frequency subseries. The proper level n is determined by data series feature. If the data is 
chaotic which need intensive refining, the level is better to be larger. However, it is noted that 
increasing DWT level does not necessarily mean model performance improvement, for the error 
layers will also increase with level increase. In this study, several rounds of test were carried out that 
enumerating level from three to six, a three level DWT is shown to be best. Several types of wavelet 
functions can be used in DWT, including Meyer wavelet, Haar wavelet, Daubechies wavelet, 
ReverseBior wavelet, etc. In this paper, the Daubechies wavelet was chosen for its compact support 
and orthogonality, which has enormous potential in describing details of groundwater depth 
fluctuations accurately. 

 
Figure 9. Architecture of three level discrete wavelet transform. 

The three level DWT result is shown in Figure 10. The three level DWT decomposed 
groundwater depth (S) into low frequency subset (a3) and three high frequency subsets (d1), (d2) and 
(d3). Obviously, S = a3 + d1 + d2 + d3. The subseries show apparent differences from each other, but 
the feature of each subseries are much more orderly and consistent, which will facilitate the rules 
derivation for each subseries. 

 
Figure 10. Three level DWT of groundwater depth series of Mengcheng County. 

Figure 9. Architecture of three level discrete wavelet transform.

The three level DWT result is shown in Figure 10. The three level DWT decomposed groundwater
depth (S) into low frequency subset (a3) and three high frequency subsets (d1), (d2) and (d3). Obviously,
S = a3 + d1 + d2 + d3. The subseries show apparent differences from each other, but the feature of
each subseries are much more orderly and consistent, which will facilitate the rules derivation for
each subseries.
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3.6. Model Verification

Relative absolute error (RAE), Pearson’s correlation coefficient (r), root mean square error (RMSE),
and Nash-Sutcliffe efficiency (NSE) coefficient are employed as the performance evaluation criterion
for comparison of ANN, SVM, WANN and WSVM models, as follows:

RAE =
∑n

i=1|ŷi − yi|
∑n

i=1|yi − y| (3)

r = ∑n
i=1 (ŷi − ŷ)(yi − y)√

∑n
i=1 (ŷi − ŷ)2

√
∑n

i=1 (yi − y)2
(4)

RMSE =

√
1
n∑n

i=1 (yi − ŷ)2 (5)

NSE = 1− ∑n
i=1 (ŷi − yi)

2

∑n
i=1 (yi − y)2 (6)

where yi and ŷi denote actual and estimated value of groundwater depth in time step i, respectively;
y and ŷ denote mean value of the actual and estimated value of groundwater depth in time step i,
respectively; n is the number of samples.

RAE takes the total absolute error and normalizes it by dividing by the total absolute error of the
predictor. RAE ranges from 0 to ∞. In a perfect prediction, RAE is equal to 0; the numerator value
increases with the increase of model prediction error.

The coefficient r measures the linear relationship between observation and estimation values.
The coefficient r ranges from −1 to 1. A value of 1 or −1 implies that a linear equation describes the
relationship between yi and ŷi perfectly. A value of 0 implies that there is no linear correlation between
yi and ŷi.

RMSE is frequently used in measuring standard deviation of differences between estimated values
and observed values. The closer the RMSE is to 0, the less deviation there is between estimations
and observations.

NSE is a coefficient particularly used to assess the predictive power of hydrologic models.
NSE values ranges from −∞ to 1. An efficiency of 1 is a perfect match of model predictions to
the observations. An efficiency of 0 indicates that model predictions are as accurate as the mean of the
observed data, whereas efficiency less than 0 means the residual variance exceeds the data variance.
Essentially, models with NSE in the (0, 1) range are feasible, otherwise the model is usually considered
infeasible for application.
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The criterion RAE and r can describe the aggregated fitting performance for all samples;
while RMSE and NSE reflect the fluctuation of time series trend which focus more on the track
of extreme values. By the criterions above, model performance can be characterized from different
point view. However the premise of evaluation is that the training set and test set are assured to be
representative [40,41]. In order to test the objectivity and stability of proposed model, more rounds
of model procedures were carried out by exchanging and deleting the training and test samples.
The stability test is applied on the best model, as discussed in Section 4.3.2.

4. Results and Discussion

4.1. Model Fitting and Test Results

The fitting and test results of four models and actual groundwater depth series are shown in
Figure 11. Scattered distribution of predicted values and observed values with linear regression trends
are plotted in Figure 12. The figures show clearly that the overall performance of WANN and WSVM
are superior to ANN and SVM models. The trends of WANN and WSVM have better agreement with
observations than ANN and SVM models in Figure 11; scatter plots show that the estimation of WANN
and WSVM are closely around 1:1 curve with few outliers in Figure 12. Moreover, Figure 11 indicates
that ANN model performs less well than the SVM model, particularly in the sudden rises and declines
during 1995 to 2008. Further indication is needed to distinguish differences between WANN and
WSVM, for they have the same r coefficient in both training and test stages according to Figure 12e–h.
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4.2. Comparative Discussion of Model Results

Table 2 gives the evaluation coefficients of each model in training and test stages. It can be inferred
from the criterions in Table 2 that the WSVM model improves over the WANN model, for its RMSE is
smaller and NSE is larger than WANN model. Therefore, model performance can be preliminarily
ranked from high to low as: WSVM > WANN > SVM > ANN.
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Table 2. Evaluation coefficients for ANN, SVM, WANN and WSVM models.

Model
Training Stage Test Stage Gap

RAE r RMSE NSE RAE r RMSE NSE RAE r RMSE NSE

ANN 0.55 0.82 0.43 0.64 0.64 0.72 0.60 0.44 0.09 0.10 0.17 0.20
SVM 0.58 0.85 0.41 0.68 0.64 0.78 0.53 0.56 0.06 0.07 0.12 0.12

WANN 0.13 0.99 0.080 0.99 0.21 0.97 0.20 0.93 0.09 0.02 0.12 0.06
WSVM 0.10 0.99 0.095 0.98 0.20 0.97 0.18 0.94 0.10 0.02 0.085 0.04

Moreover, we listed the gaps of each criterion between training stage and test stage to measure
the generalization ability for each model. Model performance gap and generalization ability have an
inverse relationship. Therefore, according to Table 2, the generalization ability of the four models is
ranked as: WSVM > WANN > SVM > ANN, consistent with their prediction performance rank.

For prediction models, system stability is a crucial criterion. If prediction error fluctuates wildly
when applied to different unknown scenarios, the model is usually considered impracticable even if
the average error is quite low, because we cannot control the risk in real time operation. Here to avoid
the limitation of single evaluation criterion, we further calculated relative error for each test data to
examine the models stability using formula (7):

relative error =
|simulated value− actual value|

actual value
(7)

The relative errors of the four models are plotted in Figure 13. Upper bounds of relative error
vary greatly among the four models. The relative error of WSVM is closely arranged with fewer
outliers comparing with the other three models, which shows the WSVM model is more reliable in
both precision and stability. The WSVM model has significant advantages over the other three models.
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The comprehensive comparative analysis has two implications:

1. From theoretical point of view, the SVM model has better performance than the ANN model in
this case. Models with SVM theory, for both raw data and wavelet preprocessed data, have more
accurate precision than that with ANN theory. The focus on generalization ability of SVM model,
as explained in 3.5, is a critical issue for overcoming the ANN model. The PSO parameter
calibration and cross validation mechanism further guaranteed its prediction performance.
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2. From model architecture point of view, the wavelet based preprocess profoundly improves model
performance. The essential improvement of WANN and WSVM is attributed to the wavelet based
preprocess of raw groundwater depth data. The wavelet based preprocess filters the original
groundwater depth series into regulated subseries (Figure 10). The partition of raw data makes
hybrid models (both WSVM and WANN) more capable of extracting those unknown patterns
hidden in the groundwater fluctuations, which leads to more accurate prediction results. This is
the reason for the substantial improvement of WANN and WSVM models. Although SVM theory
is more efficient than ANN theory, the WANN model performs much better than SVM model.
This illustrates that data preprocessing may be more important than the model itself in this case.

4.3. Discussion of WSVM Model

4.3.1. WSVM Model Performance

Since former analysis showed that WSVM is the best model among the four models compared,
more detailed specifications WSVM are given and discussed. In WSVM, four subseries generated by the
three level DWT are independently trained in SVM model. Table 3 gives the detailed model verification
coefficients for each subseries. All subseries are quite consistent with original series, with r value and
NSE value approaching 1 and RMSE value approaching 0. The gaps between training stage and test
stage are close to 0 in each subseries, indicating little overfitting. Subseries performance is even better
than the reconstructed result shown as WSVM in Table 2.

Table 3. Evaluation coefficients for four subseries of WSVM model.

Subseries
Training Stage Test Stage Gap

RAE r RMSE NSE RAE r RMSE NSE RAE r RMSE NSE

a3 0.04 1.00 0.021 0.99 0.11 1.00 0.078 0.99 0.07 0.00 0.057 0.00
d3 0.14 1.00 0.037 0.99 0.24 1.00 0.081 0.98 0.10 0.00 0.044 0.01
d2 0.02 0.95 0.060 0.99 0.03 0.95 0.099 0.98 0.01 0.00 0.039 0.01
d1 0.02 0.94 0.059 0.99 0.03 0.94 0.083 0.98 0.01 0.00 0.024 0.01

Figure 14 shows scattered plots for simulated data and original subseries data of each subseries.
With the increase of subseries frequency, the fitting and test performances tend to decrease slightly.
For low frequency subseries a3, simulated results fit raw subseries data precisely; when it comes to d2
and d3 subseries, the fitting curve gradually deviated from 1:1 line, and the samples are getting diverse.
Subseries d4 indicates an increasing simulating error. The differences can be explained by the wavelet
analysis theory: stable characteristics of original time series were preserved in low frequency subseries
a3; high frequency subseries comprise complicate information and noises, which are therefore difficult
for characteristics extraction. The importance of data preprocessing is also shown here: even for the
carefully calibrated WSVM model, data “quality” still profoundly affects model performance.
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4.3.2. Stability Test of WSVM Model 
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4.3.2. Stability Test of WSVM Model

The stability test of WSVM model is carried out based on two schemes by samples processing:
Scheme 1: Change the samples order by reversing the two halves of original time series data,

and then still use the 3:1 ratio to divide training and test samples. In this way, the training samples
include groundwater depth from 1974 to 1983, and 1994 to 2010; test samples are groundwater depth
from 1984 to 1993.

Scheme 2: delete the last 25% of original training samples (84 samples from 1995 to 2001) from
training set, and take them as test samples. Therefore, the ratio between training set and test set is
changed from 3:1 to approximately 1.29:1.

WSVM model is trained and tested independently on the two schemes. The fitting and test results
of the two schemes are shown in Figure 15.
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It is intuitively indicated that WSVM model performs still satisfying in the two schemes. The trend
of WSVM prediction result is closely accordant with observed data in both schemes. To quantify the
training and prediction performance, Table 4 is given with evaluation coefficients in training and
test stages.

Table 4. Evaluation coefficients for four subseries of WSVM model.

Scheme
Training Stage Test Stage Gap

RAE r RMSE NSE RAE r RMSE NSE RAE r RMSE NSE

1 0.13 0.99 0.11 0.98 0.16 0.99 0.10 0.95 0.03 0.00 0.01 0.03
2 0.13 0.98 0.07 0.98 0.16 0.98 0.16 0.96 0.03 0.00 0.09 0.02

Comparison between values in Table 4 and Table 2 illustrates that both scheme 1 and scheme 2
achieved equally favorable performance as previous model. This experiment proves that the proposed
WSVM model can maintain its high efficiency when substituting training samples, or decreasing
training samples (to a moderate extent that would not affect the representative of training set).
It is probably attributed to the solid mathematical processes in the hybrid model: data preprocess,
parameter optimization, cross validation mechanism and SVM generalization. These elements provide
strong guarantee for the flexibility and adaptability in capturing inherit features of non-stationary
time series.

5. Conclusions

The potential of wavelet preprocessed Support Vector Machine (WSVM) model for monthly
groundwater depth prediction during 1974 to 2010 in Mengcheng County were investigated in this
study. The coupled WSVM model was developed by combining DWT and Support Vector Machine.
The input variables lag times were derived from partial autocorrelation function of groundwater depth
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time series. A three level DWT is taken to preprocess and decompose the original groundwater level
time series into four subseries with different frequencies. PSO based parameter calibration and 4 fold
cross validation mechanisms were adopted into the hybrid WSVM model. The WSVM model was
compared with ANN, SVM and WANN models using the same historic data. The WSVM model
provided more accurate results. The RAE, r coefficient, RMSE and NSE were 0.10, 0.99, 0.095 and
0.98 in training stage and 0.20, 0.97, 0.18 and 0.94 in test stage, which largely bested the other models.
WANN was close to WSVM models in some single coefficients but the relative error distribution
demonstrated that the WSVM model has more stable performance. Through the use of three level
DWT, the groundwater depth series was decomposed into four subseries with better stationary for
model training. This facilitated the extraction of mainstream components thus significantly improved
prediction performance.

By comprehensive comparisons of the four models and subseries of WSVM model,
wavelet preprocessing helps provide quite good forecasts of monthly groundwater depth.
The proposed hybrid model WSVM is a promising and practical method for monthly groundwater
prediction. One possible future research from this study is developing multi lead time prediction
models. Different from the one lead time prediction proposed in this study, the dilemma for multi lead
time prediction might be how to deal with and avoid error accumulation of each time step. For rolling
predictions, further lead time prediction is established on previous prediction; however, the previous
prediction may probably have error which will mislead future prediction. Thus, the trade-off between
information value and risk should be analyzed carefully.
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