Next Article in Journal
Integrating Ecological Restoration of Agricultural Non-Point Source Pollution in Poyang Lake Basin in China
Next Article in Special Issue
Batch Test Screening of Industrial Product/Byproduct Filter Materials for Agricultural Drainage Water Treatment
Previous Article in Journal
A Novel SWMM Based Algorithm Application to Storm Sewer Network Design
Previous Article in Special Issue
Phosphate Removal from Agricultural Tile Drainage with Iron Enhanced Sand
Article Menu
Issue 10 (October) cover image

Export Article

Open AccessFeature PaperArticle
Water 2017, 9(10), 746; doi:10.3390/w9100746

Phosphorus Retention by Fly Ash Amended Filter Media in Aged Bioretention Cells

Biosystems and Agricultural Engineering Department, Oklahoma State University, Stillwater, OK 74078, USA
Oklahoma Water Survey, University of Oklahoma, Norman, OK 73072, USA
USDA Agricultural Research Service, National Soil Erosion Research Laboratory, West Lafayette, IN 47907, USA
Author to whom correspondence should be addressed.
Received: 7 September 2017 / Revised: 26 September 2017 / Accepted: 27 September 2017 / Published: 29 September 2017
(This article belongs to the Special Issue Additives in Stormwater Filters for Enhanced Pollutant Removal)
View Full-Text   |   Download PDF [797 KB, uploaded 30 September 2017]   |  


Bioretention cells (BRCs) have shown potential for storm water quantity and quality control. However, the phosphorus (P) removal in BRC has been variable due to differences of soil properties in filter media. The objectives of this research were to identify and evaluate P accumulation in filter media and to quantify effluent P reduction in BRC. Each cell has a sand and fly ash media designed to remove phosphorous. Filter media were collected in 2014 across the cell surface and to a depth of 0.6 m to quantify the P accumulation. The mean total P (T-P) concentration increased over the seven years of operation, but the changes were not statistically significant. The average Mehlich-3 P (M3-P) and water-soluble P (WS-P) concentrations in the media profiles showed higher P accumulation in the top 0.15 m. The average M3-P and WS-P concentrations between 0.15 m to 0.30 m, and 0.30 m to 0.60 m were variable on all four BRCs media. The media with 5% fly ash significantly retained M3-P and WS-P over the top 0.15 m. Stormwater influent and effluent samples from three of the BRCs monitored over one year showed reductions in both P concentration (68% to 75%) and P mass (76% to 93%). View Full-Text
Keywords: bioretention; filter media; fly ash; phosphorus; stormwater; water quality bioretention; filter media; fly ash; phosphorus; stormwater; water quality

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Kandel, S.; Vogel, J.; Penn, C.; Brown, G. Phosphorus Retention by Fly Ash Amended Filter Media in Aged Bioretention Cells. Water 2017, 9, 746.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Water EISSN 2073-4441 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top