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Abstract: Particle transport by erosion from ultramafic lands in pristine tropical lagoons is a
crucial problem, especially for the benthic and pelagic biodiversity associated with coral reefs.
Satellite imagery is useful for assessing particle transport from land to sea. However, in the
oligotrophic and shallow waters of tropical lagoons, the bottom reflection of downwelling light
usually hampers the use of classical optical algorithms. In order to address this issue, a Support
Vector Regression (SVR) model was developed and tested. The proposed application concerns
the lagoon of New Caledonia—the second longest continuous coral reef in the world—which is
frequently exposed to river plumes from ultramafic watersheds. The SVR model is based on a
large training sample of in-situ turbidity values representative of the annual variability in the
Voh-Koné-Pouembout lagoon (Western Coast of New Caledonia) during the 20142015 period and
on coincident satellite reflectance values from MODerate Resolution Imaging Spectroradiometer
(MODIS). It was trained with reflectance and two other explanatory parameters—bathymetry and
bottom colour. This approach significantly improved the model’s capacity for retrieving the in-situ
turbidity range from MODIS images, as compared with algorithms dedicated to deep oligotrophic
or turbid waters, which were shown to be inadequate. This SVR model is applicable to the whole
shallow lagoon waters from the Western Coast of New Caledonia and it is now ready to be tested
over other oligotrophic shallow lagoon waters worldwide.

Keywords: turbidity; remote-sensing; MODerate Resolution Imaging Spectroradiometer (MODIS);
Support Vector Regression (SVR); oligotrophic lagoon; bathymetry; reflectance; seabed colour; coral
reef; New Caledonia

1. Introduction

In numerous tropical Pacific islands, the clarity of coastal lagoon waters is an essential parameter
allowing the development of massive coral reefs and numerous benthic living species of prime
importance for ecology and for fishing. This richness is essentially due to the oligotrophy of
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surrounding oceanic waters as it is found along the Great Barrier Reef and many other Pacific Islands.
In these areas, human forcing on river-derived inputs of sediments, nutrients and organic matter to
the coastal oceans can have negative effects on marine biogeochemical cycles and biodiversity [1-3].
It is therefore important to monitor these inputs at high spatial and time scales in order to estimate
both their temporal and spatial fluctuations and to anticipate their possible influences on marine biota
from ocean colour remote sensing [4].

With about one third of its terrestrial surface (8000 km?) covered with ultramafic rocks, about
85% of endemic terrestrial plants and trees species, 24 tree species of the 70 identified in mangrove
ecosystems worldwide, about 2800 species of marine molluscs and with the second longest continuous
coral reef in the world [5-8], New Caledonia is one of the tropical and intertropical areas most
concerned with the potential impacts of anthropogenic forcings at continental margins on marine
biodiversity [9]. The main island (Grande Terre) of this small archipelago is characterized by a large
occurrence of ultramafic rocks (i.e., peridotites) as the geological setting [10]. Strong weathering of
these rocks upon tropical climate lead to deep lateritic covers that are enriched in trace metals like
nickel or cobalt [11-14]. Natural geological and climatic events have then made the lateritic covers
on ultramafic rocks a very important economical resource for New Caledonia [15]. However, these
pedogeological formations are subject to acute erosion [16] and this natural process is significantly
enhanced by mining activities [17-19]. Due to the shoreline location of these covers, eroded lateritic
materials are directly transported to the coastal ecosystems, as evidenced by remote sensing or sea
measurements [20-22].

Remote sensing provides efficient tools for monitoring sediment transport at high spatial and
temporal scales since it offers a synoptic and instantaneous field view of the total suspended matter
(TSM) concentration (e.g., [23-29]). Hu et al. [30] first determined a single band algorithm using
the MODerate Resolution Imaging Spectroradiometer (MODIS) 645 nm-reflectance for mapping the
turbidity in the Tampa Bay (Florida, USA). More recently, Nechad et al. [31] and Novoa et al. [32]
proposed single band algorithms using channels 520 to 885 nm based on equations of the radiative
transfer. Dogliotti et al. [33] developed a general algorithm designed to map turbidity concentrations
from 2 to 1000 FNU, with a switching band algorithm that uses the red 645 nm band for low turbidity
values (i.e., lower than 15 FNU) and the Near Infrared (NIR) 859 nm band for high turbidity values
(up to 1000 FNU). Other attempts for estimating turbidity from MODIS NASA algorithms have
been proposed on the basis of either MODIS-645 nm reflectance [34,35] or the ratios of the MODIS
reflectance at 645 nm over 667 nm [25,36-38]. More recently, supervised methods based on classification
of spectrally-enhanced quasi-true colour MODIS images have also been proposed by Alvarez-Romero
et al. [34] for mapping river plumes in the Great Barrier Reef (Australia).

The only algorithm available at the moment for the oligotrophic waters of the New Caledonian
lagoon is the one developed by Ouillon et al. [39]. However, this algorithm that relies on polynomial
and exponential models using in-situ reflectance channels over deep waters or turbid waters is not
suitable for the oligotrophic and shallow waters (shallower than 5 m) of the Western lagoon of New
Caledonia. This is probably because the effect of bottom reflectance over the coral reefs ecosystems
for the retrieval of water quality parameters such as chlorophyll-a concentration ([chl-a]) [40] or
turbidity [41] is particularly strong in this context. Indeed, such a contribution of both bathymetry
and bottom colour in oligotrophic waters has already been shown to impact the detection of [chl-a]
from MERIS reflectance [42,43] and AVNIR2/MODIS reflectance [44]. In a similar context, analytical
algorithms using 8 “pure” bottom end-members pointed to the same conclusion [45]. However, it has
also been shown that the remote sensing reflectance signal shows no significant contamination
(Rescorr < 0.0005) from bottom reflectance for water depths larger than 17 m for MODIS images with
the brightest reflectance (i.e., white sands and corals such as those found at some places along the
Great Barrier Reef [46]).

For about two decades, supervised learning based on neural networks or support vector
machines (SVM) has been largely used to estimate oceanic parameters [47-49]. Zhan et al. [50]
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successfully retrieved oceanic chlorophyll concentration with data from the SeaBAM dataset. In this
study, we propose a trained algorithm based on support vector regression [51] to get more accurate
assessments of remote sensing turbidity [52] in the oligotrophic shallow waters of the Western lagoon
of New Caledonia. A similar approach already gave interesting improvements for [chl-a] assessment
in the lagoon and open ocean waters of New Caledonia [53]. Due to the possible strong influence
of bathymetry and bottom colour, our support vector regression (SVR) model considers not only
reflectance channels but also these two physical parameters as independent variables. Comparison
of the results of our approach with published algorithms for estimation of turbidity from in-situ
reflectance channels [39] or from MODIS images [33] emphasizes the potential of our model at
retrieving the in-situ turbidity in shallow oligotrophic waters.

2. Materials and Methods

2.1. Study Area

New Caledonia is a South Pacific archipelago located between longitudes 162° and 169° E and
latitudes 19° and 23° S. The study area—the Voh-Koné-Pouembout (VKP) lagoon in the Northern
Province of New Caledonia—extends from 164.5° to 164.9° E and from 20.89° to 21.22° S (Figure 1).
This lagoon is particularly concerned by the enhanced inputs of sediments due to mining activities
since the Koniambo Nickel SAS (KNS) company started mining nickel at the Koniambo regolith in
2013. During the arrangement of the Koniambo regolith for mining vehicle access, as well as the
construction of the nickel pyrometallurgical plant including large dredging in the lagoon, the whole
area was monitored in order to assess the possible environmental impacts, especially on fish, coral reefs
and marine vegetation [8]. Although it can be controlled by both river discharge and resuspension [18],
turbidity was defined as an indicator for assessing water quality in the lagoon [54].
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Figure 1. Visited stations at the Voh-Koné-Pouembout (VKP) lagoon (Google Maps Terrain overlay).
Points colours correspond to bathymetry, i.e., @ 0-10m depth; ®:1020m depth; @ 2030m depth;
@®: > 30 m depth.
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The three main bays of the VKP lagoon are the Chasseloup Bay, the Vavouto Bay and the Katavili
Bay (Figure 1). The watersheds contributing to water discharge in these bays are principally drained
by the Voh, the Taléa/Coco, the Pandanus, the Confiance and the Koné rivers.

The major fraction of the shoreline at this area is made of mangrove, a very productive ecosystem that
protects the coast from erosion, acts as a refuge for marine biodiversity and potentially contributes to CO,
fixation [55]. The sea bottom is made of mud (red to grey), sand (white to grey), fringing or reticulated coral
reefs (white) or vegetation as sea grass or algae (grey) and it is delimited by a barrier reef [8].

The bathymetry of the VKP lagoon (Figure 2a) was extracted from the official database of New
Caledonia administration [56]. A double-check was achieved by determining at each station the
maximal depth recorded by the Conductivity Temperature Depth (CTD) probe (between 5 and 20
profiles per station performed in 2014 and 2015, Figure 2b). Following this protocol, the maximal water
depth is 63 m. About 75% of the stations show a depth lower than 13 m, and more than 90% show a
depth lower than 30 m (Figure 2b). The deepest waters are located in channels at and around passes to
the open ocean while 70% of the lagoon shows a water depth lower than 5 m (Figure 2a).
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Figure 2. (a) Map of the bathymetry (in m) at the Voh-Koné-Pouembout (VKP) lagoon. Points colours
correspond to bottom colour, i.e., ©-: white bottom; ©¥: grey bottom; ®: brown bottom; black areas
correspond to land and those near the barrier reef are emerged reefs. (b) Histogram of the measured
bathymetry on the visited stations. (c) Histogram of the in-situ turbidity values measured along
CTD profiles.
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2.2. Data

2.2.1. Field Measurements

In-situ turbidity values were collected by Analytical Environmental Laboratory (AEL) during a
two-year survey (2014-2015) performed for the KNS company in an environmental monitoring context.
During this survey, 76 stations were monitored with a SeaBird 19+ CTD probe (Bellevue, WA, USA)
that provided measurements at several depths for different parameters including turbidity (in NTU)
and fluorescence measured with an ECOFLNTU (from WetLabs, Philomath, OR, USA), pH, oxygen
concentration, and salinity according to protocols described in [18]. The bottom colour at each station
was estimated from visual in-situ observations [57].

In-situ turbidity values along profiles were generally low, but could exceptionally exceed 10.0 NTU
offshore (an exceptional value of 24.0 NTU was recorded on 21 June 2014). More than 70% of turbidity
values were below 1.0 NTU and more than 85% were below 2.0 NTU (Figure 2c). These turbidity
values are typical of the New Caledonia lagoon [18,39], as well as of the Great Barrier Reef, depending
on rain intensity [26,34]. In order to provide in-situ turbidity values representative of the CTD profile,
we used the median value of all filtered values over a 10 m depth rather than taking the median values
of the 3 first meters as in [39]. Such a calculation aimed at taking into account the variations of turbidity
along the water column [18,39].

2.2.2. Satellite Data

MODIS Aqua images were processed from the level 1A to level 2 by creating 250 m resolution data
as in Bailey and Werdell [58] for all MODIS data over New Caledonia [59]. Atmospheric corrections
were made by default (SeaDAS, but a specific flag was applied composed of 6 SeaDAS flags Land,
Cloud, High Sun Glint, Stray Light, High TOA Radiance and Atmospheric Correction Failure adapted
to shallow coastal lagoons [59]). As a result, only a few pixels with negative reflectance values in the
NIR (1240 nm) were found and subsequently eliminated from the coincidence research. Moreover, the
match-ups with an R (1240) value above 0.001 Sr~1 were discarded because such values in infrared
channels were considered as indicative of wrong atmospheric corrections or of the presence of emerged
reefs within the pixel.

The product of this MODIS database is marine remote sensing reflectance (Rys) available at
14 channels: 412, 443, 469, 488, 531, 547, 555, 645, 667, 678, 748, 859, 869 and 1240 nm. The processing
provides also non-phytoplankton absorption coefficients (aqg), particulate backscattering coefficients
(bbp) at 7 channels: 412, 433, 488, 531, 547, 555 and 667 nm. Turbidity assessment according to
Ouillon et al. [39] (see Equation (1) below) and Dogliotti et al. [33] were calculated as outputs of the
Level2-imagery processing, as well as [chl-a] by Wattelez et al. [53].

Rr5(681) 0.594 )
90.647 (Rrs(620) X m if Turb < 1 FTU

Turb if Turb > 1 FTU 1)
with Turb = —6204217 Ry (681)° + 179652 Ry (681)% + 36.49 Ry (681) 4 0.452

TURB3 =

2.2.3. Match-Ups

494 match-ups from MODIS Aqua images were selected using a 0.01° square (about 1 x 1 km?)
centred on the visited station and in a 2-day temporal window [53,58]. Table 1 summarizes numbers of
match-ups according to the campaigns periods and lists the corresponding MODIS files.
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Table 1. Campaigns periods, number of match-ups per period and corresponding MODIS files.

6 of 22

Period

Number of CTD Stations

Number of Match-Ups

MODIS Files

22-23/4/2014

31

30

A2014111025500
A2014113024000

19-29/5/2014

59

53

A2014138023500
A2014139032000
A2014141030500
A2014145024000
A2014147023000

24-27/6/2014

43

40

A2014173030500
A2014175025500
A2014177024000

28-30/7/2014

35

29

A2014206021000
A2014207025500
A2014209024000
A2014211023000
A2014229021500

18-20/8/2014

A2014227023000
A2014229021500

28-30/10/2014

28

27

A2014301030500
A2014302021000

21-23/1/2015

34

34

A2015021032500
A2015024021500

19-27/3/2015

33

32

A2015079022000
A2015085032500
A2015086023000

28-30/4/2015

24

19

A2015116024000
A2015117032500
A2015121030000

6-7/5/2015

18

17

A2015128030500

22-30/6/2015

36

35

A2015173023500
A2015174032000
A2015175022500
A2015176030500
A2015180024000

22-27/7/2015

17

17

A2015205023500
A2015207022000

17-26/8/2015

35

26

A2015228024000
A2015234020500
A2015236033000

28/9/2015-1/10/2015

47

45

A2015272030500
A2015273021000
A2015274025000

26-30/10/2015

41

40

A2015299024500
A2015300033000
A2015302031500

16-20/11/2015

39

39

A2015325032500

22/12/2015

A2015357032500

Satellite values were assigned according to three different methods as preconized for the research

of coincident pixels [58], i.e., with the closest neighbour method (CL), the weighted mean method
(WMM) and the filtered mean method (FMM). This approach has already been successfully used for
lagoon waters of New Caledonia in Dupouy et al. [60] and Wattelez et al. [53].
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2.3. Creation of the Support Vector Regression (SVR) Model

2.3.1. Sampling

Support Vector Regression (SVR) Models are built with a learning sample and then tested with
a randomly selected test sample. In our study, the learning sample was constructed with 70% of the
data and the test sample contained the remaining 30% of the data. This method is necessary to check
the algorithm effectiveness without an overtraining effect. Each model was created and tested ten
times (by using ten randomly selected samples). This process allowed selecting a model well fitted on
average (and not on a particular random selection).

2.3.2. Indicators

Several indices were computed in order to compare the different models. These indices were the
mean normalized bias (MNB), the mean normalized absolute error (MNAE), the mean absolute error
(MAE) and the root mean square error (RMSE) with the following respective mathematical expressions:

MNB (y) = % Z% @)
i=1 !
MNAE (y) = % Zle;inI ®)
1 n
MAE (y) = — ) |xi = il @

i=1

1 n
RMSE (y ‘/E ; — y)? (5)

where 7 is the number of observations, x; is the i in-situ observation, y; is the it" remote
sensing assessment.

As a model was created and tested ten times, each index was computed ten times. Indicators
of differences of two models were compared thanks to a paired Student’s t-test. Different models
were also compared using the values range, the coefficient of determination (R?) in both linear and
log-regression modes.

2.3.3. Support Vector Regression

In this study, the SVR was built with the following parameters: in-situ turbidity as the explained
variable, and remote sensing parameters as the explanatory variables. We first performed tests with
all remote sensing parameters (i.e., Rys in the visible spectra from 412 to 678 nm, and a4z and by,;,)
as explanatory variables. Considering the low turbidity values of our in-situ dataset, we decided
in a first approach not to select the MODIS NIR channels (i.e., 748, 859, 869 and 1240 nm) available
in the products data set. This option was chosen on the basis of previous studies [31,33,39] which
suggested that these channels should not bring information in the low turbidity values range of our
study. The first SVR model was therefore deliberately based on visible channels, and the bathymetry
and bottom colour were added as explanatory variables to test if these physical parameters bring some
significant information. However, to check this assumption, we re-integrated the NIR channels in a
second step in order to check the capacity of these channels at improving our SVR model in the case of
oligotrophic shallow waters.

The SVR was implemented by using the “svm” function of the R package “el071” [61].
This function uses an epsilon-regression with a radial kernel whose -y parameter is equal to - where
is the number of explanatory variables, ¢ = 0.1 for the insensitive-loss function and a cost parameter
C = lis used in the Lagrange formulation.
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2.3.4. Algorithm Steps

The forward stepwise approach was used by successively adding the optical parameters, one
by one. First, each optical parameter was tested as an explanatory variable in the model containing
only one explanatory variable. The one giving the best results according to the aforementioned
indicators was retained. Then, the selected model was expanded with a second optical parameter as
an explanatory variable, selected according to values of the indicators, and so on.

At each step and for each optical parameter, 10 models were built with 10 different random
learning samples and then tested with the 10 corresponding test samples, giving 10 different values for
the indicators. If the added parameter did not bring information statistically significant, the last model
was kept as the best model.

The last steps were the following: testing the bathymetry and the bottom colour significance, one
by one, then removing some parameters in the model and testing again if results were significantly
different. For a model, 10 values of an indicator were available (recall that there are 6 indicators,
i.e., MNB, MNAE, MAE, RMSE, R? and log R?). Then, comparison of the different models one to
another by successive paired t-tests on the series of indicators enabled checking the significance of the
indicators of differences. During this latter procedure, the Hy hypothesis was “There is no significant
difference between the two tested models”, whereas the Hj hypothesis was “Indicators computed
from the model using an additional parameter are better than the others”. We considered that the final
model was the one providing the best indicators results and using the lowest number of parameters.

2.4. Interpolated Maps for In-situ Values

The resulting model of this study must be compared to other usual models and to in-situ values.
Maps are a useful tool to clearly perceive spatial structures induced by models. But in-situ data are
punctual, that is why they were interpolated before mapping.

In an aim of building a map of the interpolated data and comparing with a model applied on a
MODIS image, ordinary kriging was implemented on the corresponding MODIS 250m-satellite grid.
Turbidity values on all the stations were used to get an empirical variogram from which a variogram
model (exponential, Gaussian or else according to the spatial variation structure) was designed with
the “fit.variogram” function of the gstat R package. Then, the “krige” function was applied on data
with the fitted variogram model. Finally, the kriging output was mapped with the colour scale used
for the satellite data mapping.

3. Results

3.1. Evaluation of the SVR Model at Visible Wavelengths

At each step of our SVR approach, R;s values generally provided better results than Ry ratios.
Other optical parameters such as agqg and by, did not add information so they were discarded from the
explanatory variables.

Our approach converged with a 3-parameters model that includes Rys (555), Ry (645) and Rys (667)
as optical parameters (Optical Model, O.M.), with bathymetry (B) and bottom colour (C) added as
explanatory variables. The indicators values computed with the corresponding assessments are shown
in Table 2 C.B.O.M. part. The first t-test (t-test 1) aimed at checking the significance of adding (B) to
the (O.M.) to yield a (B.O.M.), whereas the second one (t-test 2) aimed at checking the significance of
adding (C) to the (B.O.M.) to yield a (C.B.O.M.).
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Table 2. Minimum, mean and maximum values for the series of indicators computed on each test
sample with C.B.O.M. and C.B.NIR.M. (see Section 3.3). The t-tests p-values indicate the statistical
significance of improvements between models. The t-test 1: O.M. vs. B.O.M.; the t-test 2: B.O.M. vs.
C.B.O.M,; t-test 3: C.B.O.M. vs. C.B.NIR.M.

C.B.O.M. C.B.NIR.M.
. . p-Value p-Value . p-Value
Indicators Min. Mean Max. (t-Test 1) (t-Test 2) Min. Mean Max. (t-Test 3)
MNB —0.104 —0.050 0.033 0.0371 # 0.1659 * —0.144 —0.064 —0.010 0.0439 *
MNAE 0.211 0.233 0.262 <0.001 * <0.001 * 0.219 0.234 0.269 0.5484 *
MAE 0.094 0.139 0.172 <0.001 * <0.001 * 0.109 0.136 0.174 0.1691 *
RMSE 0.126 0.235 0.330 <0.001 * <0.001 * 0.146 0.220 0.333 0.0156 *
R? 0.426 0.494 0.602 <0.001 * 0.0012 * 0.402 0.553 0.633 0.0312 *
R? (log) 0.431 0.539 0.639 <0.001 * <0.001 * 0.478 0.590 0.684 0.0141*
In-situ values
(NTU) 0.216 0.549 2417 0.216 0.549 2417
Assessment
values (NTU) 0.230 0.513 1.291 0.221 0.525 1.235

* t-test conditions are verified in this case; * t-test conditions were not verified in this case so a Wilcoxon paired rank
test was applied.

The t-test 1 results clearly showed that (B) brings significant information in remotely-sensed
assessment of turbidity in the VKP lagoon. Indeed, MNAE, MAE and RMSE computed with the
(B.O.M.) were significantly lower than those computed with the (O.M.) and all the p-values were
below 0.05 with a H; hypothesis being “The indicator is significantly below for the (B.O.M.)” (Table 2).
Similarly, the R? and the log-R? computed with the (B.O.M.) were significantly larger than those
computed with the (O.M.), the H; hypothesis being “The indicator is significantly above for the
(B.O.M.)”. Similar results were obtained for the f-test 2, which indicated that adding (C) as an
explanatory variable to the (B.O.M.) significantly improved the remotely-sensed assessments (Table 2).

Comparison of the in-situ turbidity with the remote-sensed turbidity assessed by our different
SVR models showed that adding (B) and then (C) to the (O.M.) significantly improved the quality of
the model (Figure 3), especially above brown bottoms. Despite this improvement, the highest turbidity
values (i.e., around 2 NTU in this study), remain underestimated with our SVR model, even if both
bathymetry (B.O.M., Figure 3b) and bottom colour (C.B.O.M., Figure 3c) parameters are used.
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Figure 3. Log-linear regressions between in-situ turbidity and remote sensing turbidity assessed by
the different optical SVR models. The red line is the first bisector. (a) O.M. Optical Model; (b) B.O.M.
Optical Model + Bathymetry; (c) C.B.O.M. Optical Model + Bathymetry + bottom Colour. Points colours
correspond to bottom colour, i.e., 3 white bottom;

3.2. Comparison with Other Models

: grey bottom; @: brown bottom.

This SVR model was then compared with the already existing algorithms of Ouillon et al. [39]
(hereafter referred as 02008, set for New Caledonia waters, based on in-situ reflectance data) and
Dogliotti et al. [33] (hereafter referred as D2015, based on MODIS images), that have not yet been
tested on satellite data over oligotrophic shallow waters. Figure 4 shows that the density of errors
is close to 0 with C.B.O.M., which is not the case for the 02008 and D2015 models. This comparison
shows then that C.B.O.M. is more suited than a general model in the lagoon of the VKP area.
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Figure 4. Error density distribution on the 10 test samples obtained with the different SVR models
(i.e., C.B.O.M., B.O.M,, and O.M.) and with the 02008 and D2015 models.
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3.3. Using NIR Channels as Explanatory Variables

Testing the use of NIR channels (from 700 to 869 nm) through the three R;s (859), Rys (488)/Rys
(555) and Ry (667)/R;s (678) parameters for another SVR model including both bathymetry and
bottom colour yields a new model (i.e., C.B.NIR.M.) that improved the quality of turbidity assessment
(Figure 5). This improvement can be evaluated by comparison of Figures 3b and 5, which shows that
the highest turbidity values retrieved with C.B.NIR.M. are above those retrieved with C.B.O.M. and
then slightly better fit the in-situ values.
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In situ turbidity (NTU)

Figure 5. Log-linear regression between in-situ turbidity and remote sensing turbidity retrieved
with C.B.NIR.M. The red line is the first bisector. Only the high turbidity values (corresponding to
brown-bottom stations) are not well retrieved by the SVR model. Points colours correspond to bottom
colour, i.e., ) white bottom; “': grey bottom; & brown bottom.

The statistical improvement of C.B.NIR.M. compared to C.B.O.M. is confirmed in Table 2 that
compares the various indicators for both models with f-test 3 which aimed at checking a significant
improvement in using C.B.NIR.M. instead of C.B.O.M. Table 2 indicates that RMSE (0.220 for
C.BNIR.M. and 0.235 for C.B.O.M. in mean), R? (0.553 for C.B.NIR.M. against 0.494 for C.B.OM.
in mean) and log-R? (0.590 for C.B.NIR.M. against 0.539 for C.B.O.M. in mean) are significantly
improved with C.B.NIR.M. with ¢-tests p-values < 0.05. Considering the NIR channels as explanatory
variables enables in particular better retrieval of the remote sensing turbidity values on brown bottom,
the in-situ values of which are high (between 1.5 and 2 NTU).

Despite this improvement, the highest in-situ turbidity values are not well fitted. With a maximum
value of 1.23 NTU, C.B.NIR.M. seems unable to assess high turbidity values compared to C.B.O.M,,
which provides a maximum value of 1.29 NTU. Both models yield slightly underestimated values.

3.4. Application to MODIS Images

The B.O.M. was applied on MODIS images despite the efficiency of C.B.O.M. at retrieving the
in-situ turbidity as the full C.B.O.M. model could not be applied on MODIS images since the bottom
colour (C) is not known at all the image pixels. Figure 6a—c shows respectively the in-situ and the
remotely-sensed turbidity assessed by 02008 and the B.O.M. on the VKP lagoon area for 21 April
2014 (low turbidity period). The in-situ map (Figure 6a) was made from a kriging interpolation based
on a Gaussian variogram model. This map shows a coastal enhancement of turbidity up to 1.5 NTU
(164.8° lon, —21.1° lat), while stations in the middle part of the lagoon (164.6° lon, —21.0° lat) and over
barrier reefs show a moderate turbidity of 0.3 NTU. High turbidity values shown near the barrier reef



Water 2017, 9, 737 12 of 22

(164.55° lon, —21.00° lat) are probably due to localised coral resuspension. Figure 6b (02008) shows
that high turbidity values were located in shallow waters near the coast (164.78° lon, —21.12° lat) as
well as on shallow reef flats (164.75° lon, —21.15° lat) due to bottom effect. Figure 5c shows that with
the B.O.M., some pixels with turbidity above the mean level (164.75° lon, —21.15° lat) were retrieved
in shallow waters though generally high measured turbidity values were not retrieved everywhere.
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Figure 6. Turbidity in the VKP lagoon area on 21 April 2014. (a) in-situ turbidity values (in NTU)
interpolated by ordinary kriging and their histogram, as measured with the CTD; (b) Map and
histogram of turbidity (in FTU) retrieved from the MODIS image with the 02008 model; (c¢) Map
and histogram of the turbidity values (in NTU) retrieved from the MODIS image with our B.O.M.
Black areas correspond to MODIS land mask and grey areas correspond to deep ocean. Points colours
correspond to bottom colour, i.e., & white bottom; ©: grey bottom; #: brown bottom. On maps (b)

and (c) the white areas correspond to flagged pixels.

Similarly, Figure 7a—c show in-situ and retrieved turbidity values with 02008 and B.O.M. on the
VKP area for the MODIS image captured on 24 June 2014. The in-situ map (Figure 7a) was made from
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a kriging interpolation based on an exponential variogram model. For this day, in-situ values highlight
a coastal enhancement too (164.68° lon, —20.98° lat). With B.O.M., assessed values around the barrier
reef were quite low (<1.5 NTU, Figure 6¢) whereas values assessed by O2008 were usually high (up to
5 NTU).
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Figure 7. Turbidity in the VKP lagoon area on 24 June 2014. (a) in-situ turbidity values (in NTU)
interpolated by ordinary kriging and their histogram, as measured with the CTD; (b) Map and
histogram of turbidity (in FTU) retrieved from the MODIS image with the O2008 model; (c¢) Map
and histogram of the turbidity values (in NTU) retrieved from the MODIS image with our B.O.M.
Black areas correspond to MODIS land mask and grey areas correspond to deep ocean. Points colours
correspond to bottom colour, i.e., & white bottom; : grey bottom; #: brown bottom. On maps (b)
and (c) the white areas correspond to flagged pixels.

Finally, both Figures 6¢ and 7c on the two selected MODIS images of April and June confirm the
capacity of the B.O.M. at retrieving the in-situ turbidity of the oligotrophic shallow waters of the West
Coast of New Caledonia as high values do not appear on reefs.
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Tables 3 and 4 exhibit the main quantile values for the turbidity assessments by different models
for the days of 21 April 2014 and 24 June 2014 respectively. As expected, the ranges of turbidity values
retrieved by B.O.M. are strongly reduced and their range (from 0.1 to 1.40 NTU, Figure 3b) more
accurate than those retrieved by the 02008 model (Figures 6 and 7). These results indicate that, despite
its difficulty at assessing the highest turbidity values, the present SVR model is more suited than the
02008 model that overestimated turbidity with more than 25% for pixels with a turbidity value above
5 FTU.

Table 3. Main quantile values of turbidity estimations by the 02008 model, the B.O.M. and the B.NIR.M.
(see Sections 3.1 and 3.3) in the Voh-Koné-Pouembout lagoon area on 21 April 2014.

Model Min. 1st Decile  1st Quartile = Median  3rd Quartile  9th Decile Max.
02008 (FTU) 0.0500 0.1360 0.4418 1.8898 5.6038 11.4643 23.4488
B.O.M. (NTU) 0.1036 0.4084 0.5195 0.6615 0.7768 0.8885 1.3938
B.NIR.M. (NTU) 0.2294 0.3880 0.4503 0.6029 0.7264 0.8191 1.3116

Table 4. Main quantile values of turbidity estimations by the 02008 model, the B.O.M. and the B.NIR.M.
(see Sections 3.1 and 3.3) in the Voh-Koné-Pouembout lagoon area on 24 June 2014.

Model Min. 1st Decile  1st Quartile = Median  3rd Quartile  9th Decile Max.
02008 (FTU) 0.0500 0.05 0.1209 0.7162 3.2655 6.8045 30.0500
B.O.M. (NTU) 0.1190 0.3935 0.4862 0.6373 0.7611 0.8964 1.4139
B.NIR.M (NTU) 0.2232 0.4104 0.5125 0.6465 0.7914 0.8904 1.3017

4. Discussion

4.1. Validity of the SVR for Turbidity or SPM Estimation, and Comparison to Previous Algorithms

The SVR model was tested using in-situ turbidity with a SeaBird 19+ CTD calibrated during
the period 2014-2015. A relationship can be inferred between turbidity and Suspended Particulate
Matter (SPM) [62,63] but this relation is highly dependent on the area explored and on the season
considered as well [64]. Consequently, the present SVR model can be used to estimate suspended
matter concentration, but only on the VKP region where this regression was set.

The SVR optical model uses 3 channels in the visible, i.e., Ry (555), Ris (645) and Ry (667).
Many algorithms have used the 667 nm wavelength (see for instance [26,33]). It has been shown
that the sensitivity of one-band algorithms depends on both wavelength and turbidity range, with
reflectance at shorter wavelengths more sensitive to low turbidity and reflectance at longer wavelengths
more sensitive to high turbidity [31,39,65]. Even if these proposed algorithms show performance with
low mean relative errors on a large turbidity range (e.g., with a 20% RMSE for turbidity ranging from 1
to 1000 ENU [33]), they were not developed for oligotrophic shallow tropical waters.

The 02008 algorithm developed over the Southern Lagoon of New Caledonia is designed for
oligotrophic waters. However, it is restricted to water depth > 14 m or to water with turbidity > 1 FTU
and depth > 10.5 m. In its present state, it can then not be applied successfully to the shallow parts
of the lagoon where the bottom influence is not negligible. Indeed, in that context, the upwelling
light emerging from the sea surface is affected by the bottom reflectance that is in fact composed of
two terms (Rys-water and Ryg-bottom). The measured R can thus no more be considered to infer
the inversion algorithm because its value over shallow waters is higher than the R;s-water value.
This mismatch will yield an overestimation of the turbidity retrieved from the 02008 or D2015 (for the
same reason) algorithms compared to that retrieved using the SVR method.

As shown on Figure 8, the strongest differences between the 02008 model and our B.O.M. are
on white bottom stations and on very shallow brown bottom stations. This figure also shows that the
difference in retrieved turbidity between a generic algorithm established for oligotrophic and deep
waters (02008 model) and a SVR model (B.O.M.) decreases with increasing water depth (Figure 8).
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Figure 8. Differences in turbidity estimates between the 02008 model and B.O.M. according to
bathymetry and bottom colour. Points colours correspond to bottom colour, i.e., ©-*: white bottom;
grey bottom; @: brown bottom.

The addition of a NIR channel (C.B.NIR.M.) slightly improved the model performance, in
particular over the brown bottoms. The smaller penetration depth of near infra-red light as compared
to the visible bands (due to the high absorption of light by water molecules, see for example
References [66—68]) makes the upwelling radiance much more dependent on water and dissolved or
suspended matter properties than on bottom colour. That is likely the reason why the performance of
the C.B.NIR.M model did not depend anymore or very little on the bottom colour (see Figure 5).

Petus et al. [25] found that the MODIS-Aqua band at 859 nm was not sensitive enough to detect
turbidity variations between 0.01 and 10 NTU in the Adour River. Nevertheless, as this study context is
widely different from ours (oligotrophic waters), good results provided by C.B.NIR.M. may encourage
us to test in the future another model using the visible and near-infrared bands but without considering
anymore the bottom colour as a possible explanatory variable. However, the C.B.NIR.M. failed more
than the C.B.O.M. at retrieving the highest values of turbidity with underestimation of the highest
values by 49% and 46.5%, respectively (Table 2). This performance can be explained by reasons that are
discussed in the following part, such as a temporal window of 48 hours between satellite overpass and
field measurements, and that can be considered in the next applications of this method. Another reason
of discrepancy may be considered in future tests as the penetration depth of light is very low in the
NIR. Considering turbidity averaged over 10 m for model training could be reduced to a smaller depth
below the surface in next applications.

4.2. Other Possible Improvements of Our Modelling Approach

4.2.1. Vertical Heterogeneity of In-situ Turbidity Profiles

Examination of the in-situ turbidity vertical profiles indicates that the coastal VKP lagoon area
is rather mixed as is the South-Western lagoon [18,69]. We then decided to link the ocean colour on
each pixel to the median value of the in-situ turbidity value from 0 to 10 m depth. However, the ocean
colour on a pixel actually depends on turbidity values in the water column weighted by an exponential
function of the depth of measurement [66—68] and, in shallow waters, on the bottom colour [70-72].
It could then be interesting to depict more precisely the function that links the surface value of in-situ
turbidity to the vertical profile and to the bottom colour by considering separately the SPM and the
seabed contributions to this parameter.
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4.2.2. Turbidity Values Distribution

Figures 3 and 5 highlighted that both C.B.O.M. and C.B.NIR.M. underestimated high in-situ
turbidity values. This limitation is considered to be linked to the asymmetric distributions of in-situ
turbidity values in our learning data set (Figures 6a and 7a) and it should then be improved when a
sufficient number of high turbidity values is available for the training of the SVR model (i.e., along a
greater sampling period including significant climatic events). Since it is usually difficult to obtain
images with plumes and high turbidity right after a significant climatic event because of the cloud
coverage, an alternative way would be to train the SVR model with in-situ reflectance values rather
than with satellite values.

Moreover, customizing the parameters of our SVR model, including the kernel function and the
C cost parameter, could improve the results by providing a distribution of retrieved values closer to
the distribution of the in-situ values.

4.2.3. Match-Up Research Procedure

A limitation of our approach during the match-up process in the lagoon waters from the VKP
area in New Caledonia is the use of methods mainly developed for the open ocean [58], where sea
floor and bathymetry do not influence the ocean colour and where spatial and temporal changes in
biogeochemical parameters are quite low. However, in lagoon waters, many localized and transient
phenomena, such as upwelling, river inputs and resuspension due to wind bursts, can influence in-situ
turbidity values at short distance and time scales. A future improvement of our approach could then
consist in reducing both the temporal and spatial windows that are used during the match-up process.
However, such a reduction would imply a reduced number of coincidences, which would raise the
issue of data representativeness and significance to create a robust model.

4.2.4. Model Conception

Generic models designed to remotely assess turbidity values are generally customized with in-situ
turbidity values and in-situ reflectance values. By this way, resulting models have only to be fitted
according to remote reflectance sensors. Since the current SVR model was customized with in-situ
turbidity values and remote reflectance values from Aqua-MODIS, it is highly dependent from the
MODIS sensors. Nevertheless, the methodology developed with this SVR model should be easily used
with other sensors providing a sufficient training dataset in coincidence with in-situ data is available.

An alternative could be to develop a SVR model from in-situ turbidity and Rys for any sensor
obtained from in-situ hyperspectral R;s values and the spectral sensitivity of the given sensor. Such an
opportunity would overcome the need of many sets of match-up for different sensors.

4.2.5. Spectral Classification of MODIS Pixels in the VKP Lagoon

Figure 9 shows the MODIS reflectance spectra obtained on all coincident pixels of the VKP
lagoon area for the 2014-2015 period that was used to construct our SVR model. Grey bottom pixels’
reflectance spectra show little variability according to turbidity range. The highest R;s values were
linked to the brown bottom pixels, and to white bottom pixels with turbidity values below 1 NTU.
On white bottom pixels, the higher reflectance values for lower turbidity values clearly show the
prevalence of the bottom effect in the optical signal. Although the current data set was too small to
strongly support this statement, this effect seems to be opposite on brown bottom pixels. This latter
point illustrates the difficulty to remotely assess turbidity in oligotrophic shallow waters and it then
emphasizes the interest of the SVR method.
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Figure 9. Spectra of MODIS reflectance on all pixels used for the construction of our SVR model and
classified by both turbidity values (i.e., Upper row: Turb < 0.5 NTU, Middle row: 0.5 < Turb < 1, Lower
row: Turb > 1) and bottom colour (i.e., Left: Brown bottom, Middle: Grey bottom, Right: White bottom).

4.2.6. Including the Bottom Colour

In the present SVR model, the optical signal of the bottom is integrated in the model conception
and it is weighted by the bathymetry and the bottom colour. Some bathymetric patterns slightly appear
on the derived turbidity maps (e.g., Figures 6c and 7c as compared to Figure 2) but a generalized
integration of the bottom colour in the application should bring more accurate results. The main
remaining challenge of this approach lies in constructing a SVR model that could include the bottom
colour at each pixel. To reach this goal, a first approach would consist in collecting this variable
by in-situ observations at the largest possible number of stations. However, this option appears
difficult to apply at the lagoon scale. Another option would be to extrapolate a bottom colour from
geological maps. An alternative approach could be to retrieve the bottom colour from an extremely
clear image, where the water column is considered null, by using the Lyzenga’s method from ocean
colour reflectance [70,73,74], and then operate a spectral classification to associate each pixel of the
image to a bottom colour as successfully applied in other areas of New Caledonia [42,43]. Such a
method will be applied on the VKP lagoon area in order to evaluate its improvements toward the
C.B.O.M. for turbidity retrieving in oligotrophic shallow waters. Figures 5 and 6 show an application
of the B.O.M. SVR on two particular days for MODIS. We may also use the Sentinel 2 or Sentinel 3
data in order to produce synoptic maps for studying the temporal variations on the whole area.

5. Conclusions

This paper introduced an empirical algorithm—based on the SVR method—for assessing turbidity
values in oligotrophic shallow waters from MODIS images. This algorithm was tested on the
oligotrophic shallow waters of the West Coast of New Caledonia, but it may be applicable to other
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similar areas. The optical explanatory variables included in this SVR model were selected according to
statistical considerations, and improving results of turbidity assessments given by generic algorithms
which are not adapted to shallow oligotrophic waters. Since bathymetry and bottom colour showed to
widely influence the remotely-sensed optical signal, both parameters were introduced as explanatory
parameters in the SVR model. Despite the complex optical character of the waters at the VKP lagoon
area studied, this latter approach significantly improved the capacity of our SVR model at retrieving
the in-situ turbidity data in these oligotrophic shallow waters.

Since the SVR model introduced in this paper is based on a limited set of in-situ data with low
turbidity values, extending the range of these data should improve its accuracy for higher turbidity
values. Considering that this method is widely applicable on hyperspectral and multispectral remote
sensors, such as Sentinels, it should allow a better monitoring of coastal shallow waters in coral reefs.

Acknowledgments: This work was financially supported by the Centre de Recherche pour le Nickel et son
environment (www.cnrt.nc/) under the project DYNAMINE, “Dynamique des métaux de la mine au lagon en
Nouvelle-Calédonie” project (CSF N° 3PS2013-CNRT.IRD/DYNAMINE) and by French Institute of Research for
the Development (IRD—www.ird.fr/). The PC-cluster used for the ocean colour applications was funded through
an IRD/IFREMER collaboration and by the IRD SPIRALES Valhysat program. We gratefully acknowledge the
NASA Ocean Biology Processing Group (OBPG) for making MODIS ocean-colour imagery and products available.
We thank Koniambo Nickel SAS (KNS) for allowing access to the set of in-situ turbidity measurements. Finally,
we especially thank Morgan Mangeas (IRD, UMR 228 ESPACE-DEV) for his advices about SVR modelling.

Author Contributions: G.W. and C.D. designed the study. ].-M.E. performed the in-situ measurements of turbidity.
J.L. developed the MODIS database Valhysat software. G.W. developed the SVR model and adapted it to the site.
G.W.,, C.D. and EJ. performed the statistics. C.D., G.W., EJ. and S.O. analysed the results and wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Morrison, R.J.; Denton, G.; Tamata, U.B.; Grignon, J. Anthropogenic biogeochemical impacts on coral reefs in
the Pacific Islands—An overview. Deep Sea Res. 1I 2013, 96, 5-12. [CrossRef]

2. Fabricius, K.E.; Logan, M.; Weeks, S.; Brodie, J. The effects of river run-off on water clarity across the central
Great Barrier Reef. Mar. Pollut. Bull. 2014, 84, 191-200. [CrossRef] [PubMed]

3.  Heinz, T.; Haapkyld, J.; Gilbert, A. Coral health on reefs near mining sites in New Caledonia. Dis. Aquat. Org.
2015, 115, 165-173. [CrossRef] [PubMed]

4. Chen, Z.; Muller-Karger, F.; Hu, C. Remote sensing of water clarity in Tampa Bay. Remote Sens. Environ. 2007,
109, 249-259. [CrossRef]

5. Adjeroud, M.; Fernandez, J.-M.; Carroll, A.G.; Harrison, P.L.; Penin, L. Spatial patterns and recruitment
process of coral assemblages among contrasting environmental conditions in the southwestern lagoon of
New Caledonia. Mar. Pollut. Bull. 2010, 61, 375-386. [CrossRef] [PubMed]

6.  Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for
conservation priorities. Nature 2000, 403, 853-858. [CrossRef] [PubMed]

7. Alongi, D.M. Present state and future of the world’s mangrove forests. Environ. Conserv. 2002, 29, 331-349.
[CrossRef]

8.  Adjeroud, M.; Gilbert, A.; Facon, M.; Foglia, M.; Moreton, B.; Heintz, T. Localised and limited impact of a
dredging operation on coral cover in the northwestern lagoon of New Caledonia. Mar. Pollut. Bull. 2016, 105,
208-214. [CrossRef] [PubMed]

9.  Ceccarelli, D.M.; McKinnon, A.D.; Andréfouét, S.; Allain, V.; Young, J.; Gledhill, D.C.; Flynn, A.; Bax, N.J.;
Beaman, R.; Borsa, P; et al. The coral sea: Physical environment, ecosystem status and biodiversity assets.
Adv. Mar. Biol. 2013, 66, 213-290. [PubMed]

10. Cluzel, D.; Aitchison, J.C.; Picard, C. Tectonic accretion and underplating of mafic terranes in the Late Eocene
intraoceanic fore-arc of New Caledonia (Southwest Pacific): Geodynamic implications. Tectonophysics 2001,
340, 23-59. [CrossRef]

11.  Perrier, N.; Ambrosi, J.P.,; Colin, E; Gilkes, R.J. Biogeochemistry of a Regolith: The New Caledonian Koniambo
Ultramafic Massif. J. Geochem. Explor. 2006, 88, 54-58. [CrossRef]


www.cnrt.nc/
www.ird.fr/
http://dx.doi.org/10.1016/j.dsr2.2013.02.014
http://dx.doi.org/10.1016/j.marpolbul.2014.05.012
http://www.ncbi.nlm.nih.gov/pubmed/24863415
http://dx.doi.org/10.3354/dao02884
http://www.ncbi.nlm.nih.gov/pubmed/26203888
http://dx.doi.org/10.1016/j.rse.2007.01.002
http://dx.doi.org/10.1016/j.marpolbul.2010.06.015
http://www.ncbi.nlm.nih.gov/pubmed/20621316
http://dx.doi.org/10.1038/35002501
http://www.ncbi.nlm.nih.gov/pubmed/10706275
http://dx.doi.org/10.1017/S0376892902000231
http://dx.doi.org/10.1016/j.marpolbul.2016.02.028
http://www.ncbi.nlm.nih.gov/pubmed/26902684
http://www.ncbi.nlm.nih.gov/pubmed/24182902
http://dx.doi.org/10.1016/S0040-1951(01)00148-2
http://dx.doi.org/10.1016/j.gexplo.2005.08.015

Water 2017, 9, 737 19 of 22

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Fandeur, D.; Juillot, F; Morin, G.; Olivi, L.; Cognigni, A.; Webb, S.M.; Brown, G.E. XANES evidence for
oxidation of Cr(IIl)) to Cr(VI) by Mn-oxides in a lateritic regolith developed on serpentinized ultramafic
rocks of New Caledonia. Environ. Sci. Technol. 2009, 43, 7384-7390. [CrossRef] [PubMed]

Dublet, G.; Juillot, F.; Morin, G.; Fritsch, E.; Fandeur, D.; Ona-Nguema, G.; Brown, G.E. Ni speciation
in a New Caledonian lateritic regolith: A quantitative X-ray absorption spectroscopy investigation.
Geochim. Cosmochim. Acta 2012, 95, 119-133. [CrossRef]

Dublet, G.; Juillot, F.; Morin, G.; Fritsch, E.; Fandeur, D.; Brown, G.E., Jr. Goethite aging explains Ni depletion
in upper units of ultramafic lateritic ores from New Caledonia. Geochim. Cosmochim. Acta 2015, 160, 1-15.
[CrossRef]

Lagadec, G.; Perret, C.; Pitoiset, A. Nickel et Développement en Nouvelle-Calédonie, Perspectives de Développement
Pour la Nouvelle-Calédonie; Perret, C., Ed.; PUG: Grenoble, France, 2002; Chapter 1, pp. 21-42.

Join, J.L.; Robineau, B.; Ambrosi, ].P.; Costis, C.; Colin, F. Systéme hydrogéologique d'un massif minier
ultrabasique de Nouvelle-Calédonie. C. R. Geosci. 2005, 337, 1500-1508. [CrossRef]

Fernandez, ].-M.; Ouillon, S.; Chevillon, C.; Douillet, P; Fichez, R.; Le Gendre, R. A combined modelling and
geochemical study of the fate of terrigenous inputs from mixed natural and mining sources in a coral reef
lagoon (New Caledonia). Mar. Poll. Bull. 2006, 52, 320-331. [CrossRef] [PubMed]

Quillon, S.; Douillet, P; Lefebvre, J.P.; Le Gendre, R.; Jouon, A.; Bonneton, P.; Fernandez, J.M.; Chevillon, C.;
Magand, O.; Lefévre, ].; et al. Circulation and suspended sediment transport in a coral reef lagoon: The
South-West lagoon of New Caledonia. Mar. Pollut. Bull. 2010, 61, 269-296. [CrossRef] [PubMed]
Fernandez, ].M.; Meunier, ].D.; Ouillon, S.; Moreton, B.; Douillet, P.; Grauby, O. Dynamics of Suspended
Sediments during a Dry Season and Their Consequences on Metal Transportation in a Coral Reef Lagoon
Impacted by Mining Activities, New Caledonia. Water 2017, 9, 338. [CrossRef]

Andrefouét, S.; Mumby, PJ.; McField, M.; Hu, C.; Muller-Karger, FE. Revisiting coral reef connectivity.
Coral Reefs 2002, 21, 43-48. [CrossRef]

Dupouy, C.; Minghelli-Roman, A.; Despinoy, M.; Rottgers, R.; Neveux, J.; Pinazo, C.; Petit, M. MODIS/Aqua
chlorophyll monitoring of the New Caledonia lagoon during the 2008 La Nina event. In Proceedings of
the Remote Sensing of Inland, Coastal, and Oceanic Waters, Noumea, New Caledonia, 19 December 2008;
Frouin, R.J., Andrefouét, S., Kawamura, H., Lynch, M., Pan, T., Platt, T., Eds.; SPIE: Bellingham, WA, USA,
2008; Volume 7150, pp. 1-8.

Dupouy, C.; Rottgers, R.; Tedetti, M.; Martias, C.; Murakami, H.; Doxaran, D.; Lantoine, F.; Rodier, M.;
Favareto, L.; Kampel, M.; et al. Influence of CDOM and Particle Composition on Ocean Colour of the Eastern
New Caledonia Lagoon during the CALIOPE Cruises. Proc. SPIE 2014, 9261, 92610M. [CrossRef]

Wang, YJ.; Yan, F; Zhang, P.Q.; Dong, W.J. Experimental research on quantitative inversion model of
suspended sediment concentration using remote sensing technology. Chin. Geogr. Sci. 2007, 17, 243-249.
[CrossRef]

Gohin, F. Annual cycles of chlorophyll-a, non-algal suspended particulate matter, and Turbidity observed
from space and in-situ in coastal waters. Ocean Sci. 2011, 7, 705-732. [CrossRef]

Petus, C.; Chust, G.; Gohin, F; Doxaran, D.; Froidefond, ].M.; Sagarminaga, Y. Estimating turbidity and
total suspended matter in the Adour River plume (South Bay of Biscay) using MODIS 250-m imagery.
Cont. Shelf Res. 2010, 30, 379-392. [CrossRef]

Petus, C.; da Silva, E.T.; Devlin, M.; Wenger, A.S.; Alvarez-Romero, J.G. Using MODIS data for mapping of
water types within river plumes in the Great Barrier Reef, Australia: Towards the production of river plume
risk maps for reef and seagrass ecosystems. J. Environ. Manag. 2014, 137, 163-177. [CrossRef] [PubMed]
Han, B.; Loisel, H.; Vantrepotte, V.; Mériaux, X.; Bryere, P.; Ouillon, S.; Dessailly, D.; Xing, Q.; Zhu, J.
Development of a semi-analytical algorithm for the retrieval of Suspended Particulate Matter from remote
sensing over clear to very turbid waters. Remote Sens. 2016, 8, 211. [CrossRef]

Kabiri, K.; Moradi, M. Landsat-8 imagery to estimate clarity in near-shore coastal waters: Feasibility
study—Chabahar Bay, Iran. Cont. Shelf Res. 2016, 125, 44-53. [CrossRef]

Constantin, S.; Doxaran, D.; Constantinescu, S. Estimation of water turbidity and analysis of its
spatio-temporal variability in the Danube River plume (Black Sea) using MODIS satellite data. Cont. Shelf Res.
2016, 112, 14-30. [CrossRef]


http://dx.doi.org/10.1021/es900498r
http://www.ncbi.nlm.nih.gov/pubmed/19848150
http://dx.doi.org/10.1016/j.gca.2012.07.030
http://dx.doi.org/10.1016/j.gca.2015.03.015
http://dx.doi.org/10.1016/j.crte.2005.08.011
http://dx.doi.org/10.1016/j.marpolbul.2005.09.010
http://www.ncbi.nlm.nih.gov/pubmed/16257017
http://dx.doi.org/10.1016/j.marpolbul.2010.06.023
http://www.ncbi.nlm.nih.gov/pubmed/20637477
http://dx.doi.org/10.3390/w9050338
http://dx.doi.org/10.1007/s00338-001-0199-0
http://dx.doi.org/10.1117/12.2073309
http://dx.doi.org/10.1007/s11769-007-0243-2
http://dx.doi.org/10.5194/os-7-705-2011
http://dx.doi.org/10.1016/j.csr.2009.12.007
http://dx.doi.org/10.1016/j.jenvman.2013.11.050
http://www.ncbi.nlm.nih.gov/pubmed/24632405
http://dx.doi.org/10.3390/rs8030211
http://dx.doi.org/10.1016/j.csr.2016.06.016
http://dx.doi.org/10.1016/j.csr.2015.11.009

Water 2017, 9, 737 20 of 22

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Hu, C.; Chen, Z.; Clayton, T.D.; Swarzenski, P.; Brock, J.C.; Muller-Karger, FE. Assessment of estuarine
water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, FL.
Remote Sens. Environ. 2004, 93, 423-441. [CrossRef]

Nechad, B.; Ruddick, K.G.; Park, Y. Calibration and validation of a generic multisensor algorithm for
mapping of total suspended matter in turbid waters. Remote Sens. Environ. 2010, 114, 854-866. [CrossRef]
Novoa, S.; Doxaran, D.; Ody, A.; Vanhellemont, Q.; Lafon, V.; Lubac, B.; Gernez, P. Atmospheric Corrections
and Multi-Conditional Algorithm for Multi-Sensor Remote Sensing of Suspended Particulate Matter in
Low-to-High Turbidity Levels Coastal Waters. Remote Sens. 2017, 9, 61. [CrossRef]

Dogliotti, A.I; Ruddick, K.G.; Nechad, B.; Doxaran, D.; Knaeps, E.A. single algorithm to retrieve turbidity
from remotely-sensed data in all coastal and estuarine waters. Remote Sens. Environ. 2015, 156, 157-168.
[CrossRef]

Alvarez-Romero, J.G.; Devlin, M. ; Teixeira da Silva, E.; Petus, C.; Ban, N.; Pressey, R.J.; Kool, J.; Roberts, S.;
Cerdeira, W.A.; Brodie, . A novel approach to model exposure of coastal-marine ecosystems to riverine flood
plumes based on remote sensing techniques. J. Environ. Manag. 2013, 119, 194-207. [CrossRef] [PubMed]
Devlin, M.; McKinna, L.W.; Alvarez-Romero, J.G.; Petus, C.; Abott, B.; Harkness, P.; Brodie, ]. Mapping the
pollutants in surface riverine flood plume waters in the Great Barrier Reef, Australia. Mar. Pollut. Bull. 2012,
65, 224-235. [CrossRef] [PubMed]

Miller, R.L.; McKee, B.A. Using MODIS Terra 250 m imagery to map concentrations of total suspended
matter in coastal waters. Remote Sens. Environ. 2004, 93, 259-266. [CrossRef]

Doxaran, D.; Froidefond, ].M.; Castaing, P.; Babin, M. Dynamics of the turbidity maximum zone in a
macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data. Estuar. Coast.
Shelf Sci. 2009, 81, 321-332. [CrossRef]

Lahet, F.; Stramski, D. MODIS imagery of turbid plumes in San Diego coastal waters during rainstorm
events. Remote Sens. Environ. 2010, 114, 332-344. [CrossRef]

Ouillon, S.; Douillet, P; Petrenko, A.; Neveux, J.; Dupouy, C.; Froidefond, J.-M.; Andréfouét, S.;
Mufioz-Caravaca, A. Optical Algorithms at satellite wavelengths for Total Suspended Matter in Tropical
Coastal Waters. Sensors 2008, 8, 4165—4185. [CrossRef] [PubMed]

Dupouy, C.; Neveux, J.; Ouillon, S.; Frouin, R.; Murakami, H.; Hochard, S.; Dirberg, G. Inherent optical
properties and satellite retrieval of chlorophyll concentration in the lagoon and open waters of New
Caledonia. Mar. Pollut. Bull. 2010, 61, 503-518. [CrossRef] [PubMed]

Hochberg, E.J.; Atkinson, M. Capabilities of remote sensors to classify coral, algae, and sand as pure and
mixed spectra. Remote Sens. Environ. 2003, 85, 174-189. [CrossRef]

Minghelli-Roman, A.; Dupouy, C. Influence of water column chlorophyll concentration on bathymetric
estimations in the lagoon of New Caledonia using several MERIS images. IEEE ]. Sel. Top. Appl. Earth Obs.
Remote Sens. 2013, 77, 1-7. [CrossRef]

Minghelli-Roman, A.; Dupouy, C. Correction of the water column attenuation: Application to the seabed
mapping of the lagoon of New Caledonia using MERIS images. IEEE ]. Sel. Top. Appl. Earth Obs. Remote Sens.
2014, 7, 2617-2629. [CrossRef]

Murakami, H.; Dupouy, C. Atmospheric correction and inherent optical property estimation in the southwest
New Caledonia lagoon using AVNIR-2 high-resolution data. Appl. Opt. 2013, 52, 182-198. [CrossRef]
[PubMed]

McKinna, L.ILW.; Fearns, PR.C.; Weeks, S.J.; Werdell, PJ.; Reichstetter, M.; Franz, B.A.; Shea, D.M.;
Feldman, G.C. A semianalytical ocean colour inversion algorithm with explicit water column depth and
substrate reflectance parameterization. J. Geophys. Res. Oceans 2015, 120, 1741-1770. [CrossRef]
Reichstetter, M.; Fearns, P.R.C.S.; Weeks, S.J.; McKinna, L.I.LW.; Roelfsema, C.; Furnas, M. Bottom reflectance
in Ocean Colour Satellite Remote Sensing for Coral Reef Environments. Remote Sens. 2015, 7, 16756-16777.
[CrossRef]

Keiner, L.E.; Yan, X.H. A neural network model for estimating sea surface chlorophyll and sediments from
Thematic Mapper imagery. Remote Sens. Environ. 1998, 66, 153-165. [CrossRef]

Zhan, H. Application of Support Vector Machines in inverse problems in ocean colour remote sensing.
Support Vector Mach. Theory Appl. 2005, 177, 387-398.


http://dx.doi.org/10.1016/j.rse.2004.08.007
http://dx.doi.org/10.1016/j.rse.2009.11.022
http://dx.doi.org/10.3390/rs9010061
http://dx.doi.org/10.1016/j.rse.2014.09.020
http://dx.doi.org/10.1016/j.jenvman.2013.01.036
http://www.ncbi.nlm.nih.gov/pubmed/23500022
http://dx.doi.org/10.1016/j.marpolbul.2012.03.001
http://www.ncbi.nlm.nih.gov/pubmed/22469152
http://dx.doi.org/10.1016/j.rse.2004.07.012
http://dx.doi.org/10.1016/j.ecss.2008.11.013
http://dx.doi.org/10.1016/j.rse.2009.09.017
http://dx.doi.org/10.3390/s8074165
http://www.ncbi.nlm.nih.gov/pubmed/27879929
http://dx.doi.org/10.1016/j.marpolbul.2010.06.039
http://www.ncbi.nlm.nih.gov/pubmed/20688344
http://dx.doi.org/10.1016/S0034-4257(02)00202-X
http://dx.doi.org/10.1109/JSTARS.2013.2239260
http://dx.doi.org/10.1109/JSTARS.2014.2307956
http://dx.doi.org/10.1364/AO.52.000182
http://www.ncbi.nlm.nih.gov/pubmed/23314634
http://dx.doi.org/10.1002/2014JC010224
http://dx.doi.org/10.3390/rs71215852
http://dx.doi.org/10.1016/S0034-4257(98)00054-6

Water 2017, 9, 737 21 of 22

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Chen, J.; Quan, W.T.; Cui, T.W.; Song, Q.]. Estimation of total suspended matter concentration from MODIS
data using a neural network model in the China eastern coastal zone. Est. Coast. Shelf Sci. 2015, 155, 104-113.
[CrossRef]

Zhan, H.; Shi, P.; Chen, C. Retrieval of oceanic chlorophyll concentration using support vector machines.
IEEE Trans. Geosci. Remote Sens. 2003, 41, 2947-2951. [CrossRef]

Drucker, H.; Burges, C.J.C.; Kaufman, L.; Smola, A.; Vapnik, V. Support Vector Regression Machines.
Adv. Neural Inf. Process. Syst. 1996, 9, 155-161.

Camps-Valls, G.; Bruzzone, L.; Rojo-Alvarez, ].L.; Melgeni, F. Robust Support Vector Regression for biophysical
variable estimation from remotely sensed images. IEEE Geosci. Remote Sens. Lett. 2006, 3, 1-5. [CrossRef]
Wattelez, G.; Dupouy, C.; Mangeas, M.; Lefevre, J.; Touraivane; Frouin, R. A statistical algorithm for
estimating Chlorophyll Concentration in the New Caledonian lagoon. Remote Sens. 2016, 8, 45. [CrossRef]
Touraivane; Allenbach, M.; Mangeas, M.; Bonte, C. Monitoring the turbidity associated with the dredging
in Vavouto Bay in New Caledonia. In Proceedings of the 19th International Congress on Modelling and
Simulation, Perth, Australia, 12-16 December 2011.

Leopold, A.; Marchand, C.; Renchon, A.; Deborde, J.; Quiniou, T.; Allenbach, M. Net ecosystem CO, in the
“Coeur de Voh” mangrove, New Caledonia: Effects of water stress on mangrove productivity in a semi-arid
climate. Agric. For. Meteorol. 2016, 223, 217-232. [CrossRef]

Banque des Données Bathymétriques de la Nouvelle-Calédonie (BDBNC). Banque des Données Bathymétriques
de la Nouwvelle-Calédonie; Atlas de la Direction des Technologies et Systemes d'Information, Direction des
Technologies et des Service de I'Information (DTSI): Noumea, France, 2009.

Kumar-Roiné, S.; Achard, R.; Kaplan, H.; Haddad, L.; Laurent, A.; Drouzy, M.; Hubert, M.; Pluchino, S.;
Fernandez, ]. M. Suivi Environnemental du Milieu Marin de la Zone VKP; Volet 4: Surveillance Physicochimique.
Période: Septembre 2015—Aott 2016 et Novembre 2016. Rapport AEL 131121-KS-02; AEL/LEA: Noumea,
France, 2017.

Bailey, S.W.; Werdell, P.J. A multi-sensor approach for the on-orbit validation of ocean colour satellite data
products. Remote Sens. Environ. 2006, 102, 12-23. [CrossRef]

Lefevre, J. The VALHYSAT Project: MODIS-DB Database: Description Guide of the Database; Valhysat Report 1.
Noumea: IRD Internal Report; IRD: Noumea, New Caledonia, 2010.

Dupouy, C.; Savranski, T.; Lefevre, J.; Despinoy, M.; Mangeas, M.; Fuchs, R.; Faure, V.; Ouillon, S.; Petit, M.
Monitoring optical properties of the Southwest Tropical Pacific. In Proceedings of the Remote Sensing of
the Coastal Ocean, Land, and Atmosphere Environment, Incheon, Korea, 4 November 2010; Frouin, R.J.,
Rhyong Yoo, H., Won, J.-S., Feng, A., Eds.; SPIE: Bellingham, WA, USA, 2010; Volume7858, p. 13. [CrossRef]
R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2014.

Jouon, A.; Ouillon, S.; Douillet, P; Lefebvre, J.P.; Fernandez, ].-M.; Mari, X.; Froidefond, ].M. Spatio-temporal
variability in suspended particulate matter concentration and the role of aggregation on size distribution in
a coral reef lagoon. Mar. Geol. 2008, 256, 36—48. [CrossRef]

Kaplan, H.; Laurent, A.; Hubert, M.; Moreton, B.; Kumar-Roiné, S.; Fernandez, ].M. Suivi de la Qualité
Physico-Chimique de I'eau de mer de la Zone sud du Lagon de Nouvelle-Calédonie: 2eme Memester 2016; Contrat
AEL/Vale-NC n°3052-Avenant n°1; AEL/LEA: Noumea, France, 2016.

Jafar-Sidik, M.B.J.; Gohin, F; Bowers, D.G.; Howarth, J.; Hull, T. The relationship between Suspended
Particulate Matter and Turbidity at a mooring station in a coastal environment: Consequences for
satellite-derived products. Oceanologia 2017, in press. [CrossRef]

Shen, F.; Verhoef, W.; Zhou, Y.X.; Salama, M.S.; Liu, X.L. Satellite estimates of wide-range suspended sediment
concentrations in Changjiang (Yangtze) estuary using MERIS data. Estuaries Coasts 2010, 33, 1420-1429.
[CrossRef]

Gordon, H.R.; Clarke, D.K. Remote sensing optical properties of a stratified ocean: An improved
interpretation. Appl. Opt. 1980, 19, 3428-3430. [CrossRef] [PubMed]

Nanu, L.; Robertson, C. The effect of suspended sediment depth distribution on coastal water spectral
reflectance: Theoretical simulation. Int. . Remote Sens. 1993, 14, 225-239. [CrossRef]

Quillon, S. An inversion method for reflectance in stratified turbid waters. Int. J. Remote Sens. 2003, 24,
535-548. [CrossRef]


http://dx.doi.org/10.1016/j.ecss.2015.01.018
http://dx.doi.org/10.1109/TGRS.2003.819870
http://dx.doi.org/10.1109/LGRS.2006.871748
http://dx.doi.org/10.3390/rs8010045
http://dx.doi.org/10.1016/j.agrformet.2016.04.006
http://dx.doi.org/10.1016/j.rse.2006.01.015
http://dx.doi.org/10.1117/12.869888
http://dx.doi.org/10.1016/j.margeo.2008.09.008
http://dx.doi.org/10.1016/j.oceano.2017.04.003
http://dx.doi.org/10.1007/s12237-010-9313-2
http://dx.doi.org/10.1364/AO.19.003428
http://www.ncbi.nlm.nih.gov/pubmed/20234635
http://dx.doi.org/10.1080/01431169308904334
http://dx.doi.org/10.1080/01431160304986

Water 2017, 9, 737 22 of 22

69.

70.

71.

72.

73.

74.

Fichez, R,; Chifflet, S.; Douillet, P.; Gérard, P; Gutierrez, F.; Jouon, A.; Ouillon, S.; Grenz, C. Biogeochemical
typology and temporal variability of lagoon waters in a coral reef ecosystem subject to terrigeneous and
anthropogenic inputs (New Caledonia). Mar. Poll. Bull. 2010, 61, 309-322. [CrossRef] [PubMed]

Lyzenga, D. Passive remote sensing techniques for mapping water depth and bottom features. Appl. Opt.
1978, 17, 379-383. [CrossRef] [PubMed]

Tolk, B.L.; Han, L.; Rundquist, D.C. The impact of bottom brightness on spectral reflectance of suspended
sediments. Int. J. Remote Sens. 2000, 21, 2259-2268. [CrossRef]

Mobley, C.D.; Sundman, L.K. Effects of optically shallow bottoms on upwelling radiances: Inhomogeneous
and slopping bottoms. Limnol. Oceanogr. 2003, 48, 329-336. [CrossRef]

Lyzenga, D. Remote sensing of bottom reflectance and Water attenuation parameters in shallow water using
aircraft and Landsat data. Int. J. Remote Sens. 1981, 2, 71-82. [CrossRef]

Lyzenga, D.; Malinas, N.; Tanis, F. Multispectral Bathymetry Using a Simple Physically Based Algorithm.
IEEE Trans. Geosci. Remote Sens. 2006, 44, 2251-2259. [CrossRef]

@ © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1016/j.marpolbul.2010.06.021
http://www.ncbi.nlm.nih.gov/pubmed/20723942
http://dx.doi.org/10.1364/AO.17.000379
http://www.ncbi.nlm.nih.gov/pubmed/20174418
http://dx.doi.org/10.1080/01431160050029558
http://dx.doi.org/10.4319/lo.2003.48.1_part_2.0329
http://dx.doi.org/10.1080/01431168108948342
http://dx.doi.org/10.1109/TGRS.2006.872909
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Data 
	Field Measurements 
	Satellite Data 
	Match-Ups 

	Creation of the Support Vector Regression (SVR) Model 
	Sampling 
	Indicators 
	Support Vector Regression 
	Algorithm Steps 

	Interpolated Maps for In-situ Values 

	Results 
	Evaluation of the SVR Model at Visible Wavelengths 
	Comparison with Other Models 
	Using NIR Channels as Explanatory Variables 
	Application to MODIS Images 

	Discussion 
	Validity of the SVR for Turbidity or SPM Estimation, and Comparison to Previous Algorithms 
	Other Possible Improvements of Our Modelling Approach 
	Vertical Heterogeneity of In-situ Turbidity Profiles 
	Turbidity Values Distribution 
	Match-Up Research Procedure 
	Model Conception 
	Spectral Classification of MODIS Pixels in the VKP Lagoon 
	Including the Bottom Colour 


	Conclusions 

