Supplement of

Management Scenarios of the Grand Ethiopian Renaissance Dam and Their Impacts Under Recent and Future Climates

> S. Liersch, H. Koch, F.F. Hattermann August 28, 2017

Table S 1: GERD data

Parameter	Value (IPoE 2013)
Distance to border [km]	20
Dam height [m]	145
Lake (FSL) [masl]	640
Lake (MOL) [masl]	590
Lake area (FSL) $[km^2]$	1,874
Lake area (MOL) $[\rm km^2]$	606
Lake length (FSL) [km]	246
Total storage $[10^9 \text{ m}^3]$	74.01
Active storage $[10^9 \text{ m}^3]$	59.22
Dead storage $[10^9 \text{ m}^3]$	14.79
Cap. design flow $[m^3/s]$	4,305
Max. net head [m]	133
Plant factor	0.31
Capacity [MW]	6,000

Table S 2: Climate models

	0 0 0 0	
ESM	RCM	Correction
GFDL-ESM2M		BC
HadGEM2-ES		BC
MIROC-ESM-CHEM		BC
NorESM1-M		BC
GFDL-ESM2M	RCA4	UC
ICHEC-EC-EARTH	HIRHAM5	BC
ICHEC-EC-EARTH	RACMO22T	BC
ICHEC-EC-EARTH	RCA4	BC
MPI-M-ESM-LR	RCA4	BC
NorESM1-M	RCA4	UC

Table S 3: HPP statistics during operation (1961–1980); wet period

Scenario	HPP	SD_{HPP}	CV_{HPP}	Firm yield		[MW]	
	$[\mathrm{GWh}^{-a} \ (\mathrm{MW})]$	[MW]		EP_{90}	EP_{95}	EP_{99}	
eco_mgt_01	13,860(1,357)	720	46	818	761	610	
eco_mgt_02	12,526(1,218)	708	49	722	641	496	
eco_mgt_03	$9,975 \ (955)$	673	59	499	422	290	
hpp_1500MW_01a	14,252(1,342)	527	32	1,096	1,019	818	
$\rm hpp_1500 MW_02a$	$11,993 \ (1,155)$	181	13	915	822	665	
$\rm hpp_1500MW_03a$	9,885~(945)	222	20	687	603	390	
hpp_1500MW_01b	14,188(1,346)	200	12	1,081	971	723	
hpp_1500MW_02b	12,191(1,183)	188	13	905	787	600	
hpp_1500MW_03b	9,932 (952)	268	24	641	550	352	
hpp_1700MW_01	13,675(1,332)	198	13	1,039	971	816	
hpp_1700MW_02	12,303(1,200)	216	15	925	832	675	
$\rm hpp_1700 MW_03$	9,859 (943)	251	22	678	581	402	
hpp_1800MW_01	12,213(1,176)	639	46	87	39	0	
$\rm hpp_1800 MW_02$	$11,541 \ (1,112)$	691	52	42	0	0	
hpp_1800MW_03	10,183 (973)	771	66	0	0	0	

Scenario	HPP	SD_{HPP}	CV_{HPP}	Firm yield		[MW	
	$[\mathrm{GWh}^{-a} \ (\mathrm{MW})]$	[MW]		EP_{90}	EP_{95}	EP_{99}	
eco_mgt_01	11,885(1,357)	695	51	869	779	585	
eco_mgt_02	$10,\!674\ (1,\!218)$	678	56	736	645	496	
eco_mgt_03	$8,363\ (955)$	634	66	494	402	329	
hpp_1500MW_01a	11,759(1,342)	329	24	1,140	966	792	
hpp_1500MW_02a	$10,117 \ (1,155)$	255	22	836	732	666	
hpp_1500MW_03a	8,278 (945)	265	28	626	529	413	
hpp_1500MW_01b	11,793(1,346)	274	20	1,123	928	770	
hpp_1500MW_02b	10,362(1,183)	276	23	850	739	639	
hpp_1500MW_03b	8,337 (952)	310	33	586	488	396	
hpp_1700MW_01	11,665(1,332)	265	20	1,069	979	781	
hpp_1700MW_02	10,510(1,200)	268	22	939	832	675	
$hpp_1700 MW_03$	8,264 (943)	275	29	661	548	460	
hpp_1800MW_01	10,302(1,176)	744	63	100	40	0	
hpp_1800MW_02	9,738(1,112)	770	69	53	0	0	
hpp_1800MW_03	8,525 (973)	813	84	0	0	0	

Table S 4: HPP statistics during operation (1981–1999); dry period

Table S 5: Average annual precipitation and temperature changes in the UBN projected by the climate model ensemble

	1970 - 1999	2030-2059				2030-205	59
	ave	ave	change	change	ave	change	change
	$\rm mm$	mm	mm	%	mm	$\mathbf{m}\mathbf{m}$	%
P median	1364.5	1418.7	54.2	4.0	1433.6	69.1	5.1
P ave	1364.9	1403.6	38.7	2.8	1433.4	68.5	5.0
T median	22.7	24.6	1.9	_	27.2	4.5	—
T ave	22.6	24.3	1.7	_	26.8	4.2	_

P=precipitation; T=temperature; median=multi-model median; ave=multi-model mean

Figure S 1: GERD rule curves of the different operation scenarios

Figure S 2: SWIM model performance in the 1960s and 1970s at gauge El Diem

Figure S 3: Reservoir filling, inflows, and HPP simulated with climate model input in the reference period and operation scenario hpp_1500MW_01a (low seepage rate)

Figure S 4: Precipitation changes projected by the model ensemble

Figure S 6: Operation scenarios under climate change projections and operation scenario hpp_1500MW_01a (low seepage rate)

Figure S 7: Sorted annual HPP in TWh^{-a} of the three 30-years periods and operation scenario hpp_1500MW_01a (low seepage rate), in brackets the mean annual production and in square brackets the change signal