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Abstract: Long-term streamflow forecasting is crucial to reservoir scheduling and water resources
management. However, due to the complexity of internally physical mechanisms in streamflow
process and the influence of many random factors, long-term streamflow forecasting is a difficult
issue. In the article, we mainly investigated the ability of the Relevance Vector Machine (RVM)
model and its applicability for long-term streamflow forecasting. We chose the Dahuofang (DHF)
Reservoir in Northern China and the Danjiangkou (DJK) Reservoir in Central China as the study sites,
and selected the 500 hpa geopotential height in the northern hemisphere and the sea surface
temperatures in the North Pacific as the predictor factors of the RVM model and the Support
Vector Machine (SVM) model, and then conducted annual streamflow forecasting. Results indicate
that forecasting results in the DHF Reservoir is much better than that in the DJK Reservoir when
using SVM, because streamflow process in the latter basin has a magnitude bigger than 1000 m3/s.
Comparatively, accurate forecasting results in both the two basins can be gotten using the RVM
model, with the Nash Sutcliffe efficiency coefficient bigger than 0.7, and they are much better than
those gotten from the SVM model. As a result, the RVM model can be an effective approach for
long-term streamflow forecasting, and it also has a wide applicability for the streamflow process with
a discharge magnitude from dozen to thousand cubic meter per second.

Keywords: long-term streamflow forecasting; relevance vector machine; support vector machine;
hydrological process

1. Introduction

Conducting streamflow forecasting, especially long-term streamflow forecasting at monthly,
annual, inter-annual or even decadal scales, is an important precondition for reservoir scheduling,
water resources management, flood control and many other practical water activities [1,2]. However,
it is a difficult task in practice due to the stochastic and nonlinear characteristics of streamflow
process at multi-time scales [3,4]. During the recent decades, a large number of methods have
been developed and improved for the streamflow forecasting. They can be generally divided
into two types: process-driven methods and data-driven methods [5]. The former are based on
mathematical simulation of streamflow process and the internally physical mechanisms that contribute
to the hydrological cycle [6]. Process-driven methods usually require a large number of data inputs
and parameter calibration. Comparatively, data-driven methods usually identify and describe the
correlation between inputs and outputs, without considering the physical mechanisms of hydrological
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process in a watershed, and thus they have two advantages of low quantitative demand of data and
simple formulation.

Owing to the complexity of physical mechanism in streamflow process and the influences of many
random factors, the results gotten from process-driven methods cannot meet practical needs enough
in some situations, especially in those data-ungauged basins. Comparatively, data-driven methods are
an effective alternative, and they have been more widely used for long-term streamflow forecasting [7].
Data-driven methods generally include times series analysis-based and artificial intelligence (AI)-based
methods [8–11]. They are simple and can be easily implemented, and so play an important role in
hydrology research. However, the data should be stationary and follow normal distribution when
using traditional times series analysis-based methods, which perform poorly in predicting extreme
(both peak and small) streamflow values. Recently, AI technique has become increasingly popular
in hydrology. Artificial neural networks (ANNs) model, one type of AI models, has gained more
popularity for hydrological forecasting [12,13]. An extensive review about the model type can be
found in the references [7,8]. However, a hard problem for ANNs is underfitting or overfitting [14],
which would influence their fault-tolerant capability.

Another type of AI-based methods, called Support Vector Machine (SVM), has attracted the
concerns from many researchers [15–20]. SVM is based on the structural risk minimization (SRM)
principle and is an approximation implementation of SRM, with a good generalization capability [15].
It is considered as a kernel-based learning system rooted in the statistical learning theory, and has
been applied widely for streamflow forecasting. For example, Asefa et al. used SVM to forecast
flows at seasonal and hourly scales in the Sevier River Basin [17]; Lu et al. indicated a superior SVM
performance over ANN in forecasting annual runoff [18]; and Li et al. predicted runoff by coupling
SVM with the chaos analysis [19]. An improved SVM model, called Relevance Vector Machine (RVM),
was proposed by Tipping [21,22]. It has the identical functional form as SVM [23,24]. RVM introduces a
general Bayesian framework for obtaining sparse solution, and can derive accurate prediction models
which typically utilize fewer basis functions than SVM; further, it can offer a number of additional
advantages such as the benefit of probabilistic prediction, automatic estimation of parameters, and
the facility to utilize arbitrary basis functions. The RVM model has been successfully applied for
the pattern recognition and regression in different fields, including power load forecast and quality
inspection [25]. However, there are relatively fewer applications of RVM in hydrology compared with
other AI-based methods.

The objective of this study is therefore to investigate the performance of the RVM model in
long-term streamflow forecasting, and further demonstrate its applicability for different basins.
To achieve the goal, we chose the Dahuofang (DHF) Reservoir in North China and the Danjiangkou
(DJK) Reservoir in Central China, which have obviously different underlying surface conditions
and climate conditions, as the study areas and conduct long-term streamflow forecasting. Before it
is feasible, how to identify proper physical factors which influence runoff is an important task for
developing reliable model. Many researchers have investigated the statistical relationship between
hydrological variables and ocean-atmospheric signals, such as the El Nino-Southern Oscillation,
sea surface temperature (SST) and others [9,26–32]. Because ocean-atmospheric signals have time-lag
effect on hydrological variables, models based on these factors could extend the forecasting period.
Here the ocean-atmospheric signals, including the atmospheric circulation patterns of 500 hpa
geopotential height in the northern hemisphere and the sea surface temperatures (SSTs) in the North
Pacific, are used as the predictor factors, and the RVM model is applied for annual streamflow
forecasting in the DHF and DJK basins.

2. The RVM Model

A brief description of the RVM model is provided here. The idea of the learning machine was first
proposed by Turing [33]; after then, Vapnik discussed the feature of learning machine and proposed
SVM, based on the statistical learning [16]. Tipping put forward a Sparse Bayesian learning model
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called RVM [21]. It can give more accurate prediction and utilize much fewer basis functions than
SVM; further, the RVM model can describe the distribution function of the predicting variable under
the Bayesian probabilistic framework.

Given a set of training data {xn, tn}N
n=1, where xn is the input vector and tn is the target vector

with the total number of N, the output for the RVM model is given as:

tn = y(wn; w) + εn with y(x; ω) =
N

∑
i=1

ωiK(x, xi) + ω0 (1)

where w = (ω1, ω2, · · · , ωN)
T are parameters, εn are independent samples following a Gaussian

distribution εn ∼ N(0, σ2), and K(x, xi) is a kernel function. Here the Gauss radial basis function

G(x, xi) = exp(− ‖x−xi‖2

σ2 ), which has low complexity and has been used widely, is used as the kernel
for the study of two cases. The parameters are estimated by the maximum likelihood method:

p(t
∣∣∣w, σ2 ) = (2πσ2)

−N/2
exp

{
− 1

2σ2 |t− φw|2
}

(2)

where t = (t1 · · · tN)
T , w = (ω0 · · ·ωN)

T ; φ = [ϕ(x1), ϕ(x2), · · · , ϕ(xN)]
T is a N × (N + 1) designed

matrix, with ϕ(xN) = [1, K(xn, x1), K(xn, x2), · · · , K(xn, x1)]
T . All parameters in Equation (2) compose

a vector of hyperparameters, with the total number of N + 1. Following the general practice, we chose
the Gamma distribution as the hyperpriors of all parameters α:

Gamma (α|a, b ) = Γ(a)−1baαa−1e−bα (3)

with Γ(a) =
r ∞

0 ta−1e−tdt. In order to gain the same hyperpriors, here we fix the intimal values of
those parameters in Equation (3) as 0.001. Then, following the Bayesian inference the posterior of all
parameters can be described as:

p(ω, α, σ2|t ) =
p(t
∣∣ω, α, σ2 )p(ω, α, σ2)

p(t)
(4)

For a new test point x∗, predictions can be made at the corresponding target t∗ in terms of the
predictive distribution:

p(t∗|t ) =
w

p( t∗|w, α, σ2)p(w, α, σ2|t )dwd αdσ2 (5)

After determining the optimal hyperparameters αMP and σ2
MP, we can describe the predictive

distribution as:
p(t∗|t , αMP, σ2

MP) =
w

p( t∗|w, α, σ2
MP)p(w|t , αMP, σ2

MP)dw (6)

Because both terms in the above integrand function are the Gaussian distribution, they can also
be expressed as:

p(t∗|t , αMP, σ2
MP) = N(t∗

∣∣∣y∗, σ2
∗ ) (7)

with y∗ = µTφ(x∗) and σ2
∗ = σ2

MP + φ(x∗)
TΣφ(x∗). Finally, the predictive mean is y(x∗; µ).

More detailed description of the RVM model can be found in [21,22]. The forecasting process of
hydrological variables by RVM can also be found in the flow chart in Figure 1.
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Figure 1. Flow chart of the forecasting process of hydrological variables using the Relevance Vector
Machine (RVM) model.

3. Materials

3.1. Study Area

The Dahuofang (DHF) Reservoir and the Danjiangkou (DJK) Reservoir are chosen as the study
sites (Figure 2), with an average annual precipitation of 800 mm and 870 mm respectively. The DHF
Reservoir is located in the mid reaches of the Hun River, China, with a basin area of 5437 km2 and a
water capacity of 2.27 billion m3. It supplies water to the Shenyang and Fushun cities, provides water
resources for the agriculture in the Liaoning Province, and protects the downstream regions from flood
disasters. The DJK Reservoir, as a tributary of the Yangtze River, is located in the upper reaches of
the Hanjiang River, with a basin area of 96,217 km2 and a water capacity of 30 billion m3. The DJK
Reservoir aims at flood control, power generation, irrigation and shipping functions. Because the
two reservoirs were designed as annual regulation, annual streamflow forecasting has socioeconomic
significance for local regions.

3.2. Data Sets

The data sets used for long-term streamflow forecasting include the oceanic-atmospheric signals
and the naturalized annual streamflow data at the DHF and DJK Reservoir. The annual streamflow
data were measured from 1962 to 2006 in the DHF Reservoir, and those were measured from 1957 to
2006 in the DJK Reservoir. These runoff data were gotten from the Chinese Hydrological Yearbook.

The oceanic-atmospheric signals include the atmospheric circulation patterns of 500 hpa
geopotential height (Z500) in the northern hemisphere and SSTs in the North Pacific. The data of
Z500 in the northern hemisphere are a product of the NCEP/NCAR reanalysis 40-year Project and were
obtained from the NOAA Physical Sciences Center (http://www.cdc.noaa.-gov/cgi-bin/Composites/
printpage.pl). The data of the Z500 index are given on a 2.5◦ by 2.5◦ latitude and longitude grid, and
are available from 1948 to present. The region with the latitude 0◦ N–90◦ N and longitude 0◦ W–2.5◦ W
was considered for the study. The data of SSTs in the North Pacific were obtained from the National

http://www.cdc.noaa.-gov/cgi-bin/Composites/printpage.pl
http://www.cdc.noaa.-gov/cgi-bin/Composites/printpage.pl
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Climatic Data Center (http://www.cdc.noaa.gov/cdc/data.noaa.ersst.html). The SSTs data consist of
average monthly values for a 2◦ by 2◦ grid. The extended reconstructed global SSTs were based on the
comprehensive ocean-atmosphere data set from 1854 to present. The region of the North Pacific Ocean
(120◦ E–80◦ W and 10◦ S–50◦ N) was also considered for the study.

In the modelling practice, both the Z500 and SSTs are used as the predictor factors, that is,
the input data of model; the streamflow data at each reservoir are the output data of model.
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Figure 2. Location of the Dahuofang Reservoir Basin and the Danjiangkou Reservoir Basin in China.

4. Results and Discussion

4.1. Selection of Predictor Factors

How to select proper predictor factors is the first task in streamflow forecasting by the RVM
model. Several methods are commonly used to describe the relationship of spatiotemporal variability
between climate variables and streamflow data. Here we used the correlation analysis method to
investigate the major predictor factors which influence the annual streamflow process in the DHF and
DJK Reservoir. The main steps are explained as follows. First, we calculate the correlations between
the average annual streamflow and the average monthly indices of Z500 and SSTs from January to
December at last year; and then, we select those variables which have stably high correlation (with a
confidence level bigger than 0.95) as the predictor factors.

Those predictor factors selected above show good correlations (i.e., multi-collinearity),
which would influence the generalization ability of the RVM model. Therefore, useful information
included in these predictor factors cannot be utilized simultaneously. To solve this problem,
we further employed the two-step stepwise regression method to pick the effectively primary
predictors, and reduce the impact of multi-collinearity. Finally, we selected 6 predictor factors for the
annual streamflow forecasting in the DHF Reservoir (Table 1), and selected 7 predictor factors for
the DJK Reservoir (Table 2). From Table 3 we can see that the multiple correlations using all selected
factors in the first step exceed 0.8. However, the multiple correlations using those selected factors in the
second step, with the values bigger than 0.92, become much better. It indicates that the combination
of these predictor factors would have better forecasting performance, and they are used for the RVM
modelling. Besides, these selected factors are also considered as the input signals of SVM.

http://www.cdc.noaa.gov/cdc/data.noaa.ersst.html
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Table 1. Predictor factors used for annual shreamflow forecasting in the Dahuofang Reservoir.

Order Predictor Factor Correlation Coefficient Description of Factor

1 500 hpa_4_218 −0.457 Z500 in the grid 218 in April of the last year
2 500 hpa_3_260 −0.397 Z500 in the grid 260 in March of the last year
3 500 hpa_8_164 0.456 Z500 in the grid 164 in August of the last year
4 SST_9_591 0.490 SSTs in the grid 591 in September of the last year
5 SST_5_409 0.411 SSTs in the grid 409 in May of the last year
6 SST_3_418 −0.408 SSTs in the grid 418 in March of the last year

Table 2. Predictor factors used for annual shreamflow forecasting in the Danjiangkou Reservoir.

Order Predictor Factor Correlation Coefficient Description of Factor

1 500 hpa_6_193 0.337 Z500 in the grid 193 in June of the last year
2 500 hPa_4_182 0.471 Z500 in the grid 182 in April of the last year
3 500 hpa_11_126 −0.468 Z500 in the grid 126 in November of the last year
4 500 hpa_7_221 0.451 Z500 in the grid 221 in July of the last year
5 SST_9_187 −0.522 SSTs in the grid 187 in September of the last year
6 SST_7_189 −0.395 SSTs in the grid 189 in July of the last year
7 SST_6_412 −0.417 SSTs in the grid 412 in June of the last year

Table 3. Number of predictor factors in the first- and two-step stepwise regression and the multiple
correlations for the Dahuofang (DHF) and Danjiangkou (DJK) Reservoir.

Step Predictor Factor
Factor Number Multiple Correlation

DJK DHF DJK DHF

First step Z500 7 6 0.90 0.85
SST 4 5 0.79 0.81

Second step Factor set 7 6 0.92 0.94

After selecting the predictor factors for the annual streamflow forecasting in the DHF and DJK
Reservoir, we determine the specific RVM model through the training and testing practice using
different data (Table 4). The Gauss radial basis function (RBF) is used as the Kernel function of RVM
here. Various studies have indicated the favorable performance of the RBF kernel in hydrological
forecasting [17,34–36]. In the RVM model, the “leave-one-out” cross validation is used to optimize
parameters σ, as the width of the RBF kernel. Through calculation, the optimal value 2.25 and 3.00 of
parameter σ is determined for the DHF and DJK Reservoir respectively. Furthermore, we also compare
the results gotten from RVM with those from SVM.

Table 4. Data used for training and testing the relevance vector machine (RVM) model and support
vector machine (SVM) model in the Dahuofang (DHF) and Danjiangkou (DJK) Reservoir.

Area Data for Model Training Data for Model Testing

DJK 1962–2000 2001–2006
DHF 1957–2000 2001–2006

4.2. Model Performance Evaluation

Three quantitative indexes are used to evaluate the effectiveness of the RVM and SVM model,
including correlation coefficient (R), root means squared error (RMSE) and Nash Sutcliffe Efficiency
Coefficient (E), with the computation equations as:

R =

1
n

n
∑

i=1
(Q0(i)−Qo)(Q f (i)−Q f )√

1
n

n
∑

i=1
(Q0(i)−Qo)

2
√

1
n

n
∑

i=1
(Q f (i)−Q f )

2

RMSE =

√
1
n

n
∑

i=1
(Q f (i)−Q0(i))

2

E = 1−

n
∑

i=1
(Q0(i)−Q f (i))

2

n
∑

i=1
(Q0(i)−Q0)

2

(8)
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where n is the number of years, Q0(i) are the observed values, Qo is the average observed values, Q f (i)
are the predicted values and Q f is the average predicted values. The R is an index used commonly to
describe the correlation of two series. The RMSE can measure the difference between the observation
and simulated data. The E coefficient is widely used for the evaluation of model’s performance.
Generally, high NSE and R values, and small RMSE values, reflect good modeling performance [37].

4.3. Results Discussion

The observed streamflow data and the simulated data by SVM and RVM during the training
period are shown in Figure 3 (left, DHF Reservoir; right, DJK Reservoir). The observed data and
the simulated streamflow data by SVM and RVM during the testing period can be found in Figure 4
(left, DHF Reservoir; right, DJK Reservoir). In Figures 3 and 4 the solid line represents the observed
data, and the hollow triangle shows the simulated data gotten from the RVM model, with the solid
square indicating the simulated data by SVM. Table 5 shows the forecasting performance of different
models for the DHF Reservoir, and the results of the DJK Reservoir are presented Table 6.
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From Table 5 we can find that for the streamflow forecasting in the DHF Reservoir, the values
of three indices R, RMSE and E in the training period, gotten from the SVM model, are 0.91,
7.58 m3/s and 0.89, which are similar as those gotten from the RVM model, with the R, RMSE
and E value of 0.95, 6.78 m3/s and 0.90. However, the RVM model performs much better than the
SVM model during the testing period. To be specific, the indices R and E in the testing period gotten
from the SVM model is 0.74 and 0.63, which are much smaller than those of 0.83 and 0.78 for the
RVM model, but the index RMSE value of 19.01 m3/s for the SVM model is much bigger than that
of 13.76 m3/s for the RVM model. The results from the DHF Reservoir indicate the better performance
of the RVM model compared with SVM. Many previous studies used the traditional auto-regression
models and the ANN, wavelet-based ANN models to conduct streamflow forecasting in the DHF
reservoir [38,39]. Those results indicated the poor performance of the auto-regression models,
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which are just based on linear characteristics and long-memories of time series, and cannot deal
with the decadal variability of streamflow process; besides, although those results gotten from the
ANN or wavelet-based ANN models considered the influences of climate factors, they had the relative
errors bigger than 20%. Comparatively, the results gotten form the RVM model in this study have
higher accuracy, thus it is thought that RVM also performs better than those traditional auto-regression
models and ANN models.

Table 5. Results of indices used to evaluate the performance of the relevance vector machine (RVM)
and support vector machine (SVM) model for streamflow forecasting in the Dahuofang Reservoir.

Model
Training Testing

R RMSE (m3/s) E R RMSE (m3/s) E

SVM 0.91 7.58 0.89 0.74 19.01 0.63
RVM 0.95 6.78 0.90 0.83 13.76 0.78

Table 6. Results of indices used to evaluate the performance of the relevance vector machine (RVM)
and support vector machine (SVM) model for streamflow forecasting in the Danjiangkou Reservoir.

Model
Training Testing

R RMSE (m3/s) E R RMSE (m3/s) E

SVM 0.84 191.18 0.81 0.67 339.01 0.57
RVM 0.92 163.06 0.85 0.88 231.92 0.68

As for the DJK Reservoir, the results gotten from the RVM model are also much better than those
of the SVM model, no matter considering the training period or testing period. In the training
period, the RVM model reduces the RMSE value with respect to SVM by 14.7% (163.06 m3/s
compared to 191.18 m3/s), and increase the R and E value by 9.5% (0.92 compared to 0.84) and 4.9%
(0.85 compared to 0.81) respectively. In the testing period, the RVM model reduces the RMSE value
by 31.6% (231.92 m3/s compared to 339.01 m3/s) compared with SVM, and increase the R and E value
by 31.3% (0.88 compared to 0.67) and 19.3% (0.68 compared to 0.57) respectively. Previous studies
have compared the different capabilities of the traditional auto-regression models and ANN models
with that of the SVM model [40], and indicated that the forecasting results gotten from the later have
high accuracy, more stability and reliability. By comprehensively analyzing the results here and the
previous study results, it can be found that the RVM model performs the best among these models for
the streamflow forecasting in the DJK reservoir.

Presently the SVM model has been widely applied in the streamflow simulation and forecasting,
and a great number of studies have verified the ability of the SVM model in vast majority of cases;
especially, its better performance compared with conventional auto-regression models or ANN models
has been clearly verified in the DJK reservoir basin. Therefore, SVM can be taken as the reference to
evaluate the ability of the RVM model, while other data-driven models and the results gotten from
them, as discussed above, were not considered and compared again. On the whole, all the results
in the two reservoirs indicate the better performance of RVM compared with SVM for long-term
streamflow forecasting, although the results in the testing period is a little worse compared with those
in the training period. In addition, our previous study results also indicated the better performance
of the RVM model for monthly and seasonal streamflow forecasting in the two reservoirs, compared
with the SVM model [41,42]. Because the RVM model is based on the Bayesian theory, posterior
distributions of all parameters and characteristics of hydrological variables can be accurately and
reasonably evaluated, following which more accurate forecasting results can be gotten, but the SVM
model cannot do this. Thereby, it is thought that the RVM model can be effective method for long-term
streamflow forecasting.

Besides, the two reservoir basins chosen for the study have obviously different underlying
surface conditions and climate conditions; further, the average streamflow magnitudes in the two
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basins are about 40 m3/s and 1000 m3/s, also showing obvious difference. It can be found that the
results in the DHF Reservoir is better that that in the DJK Reservoir when using the SVM model,
indicating the worse performance of the SVM model for those streamflow process with big magnitudes.
From Figure 3 we know that both the RVM and SVM model show good performance for the forecasting
of peak and small values of streamflow process in the DHF Reservoir; however, peak values of
streamflow process in the DJK Reservoir can only been accurately simulated by the RVM model,
which cannot be achieved by the SVM model. Especially, for those peak values bigger than 2000 m3/s
in the streamflow process in the DJK Reservoir, the relative errors gotten from RVM are about 20%
in 2003 and 2005, but the results of SVM are much worse, with the relative errors bigger than 40%.
As a result, it is thought here that the limited ability of forecasting peak magnitudes of streamflow
process cause the poor performance of the SVM model. Comparatively, all the results gotten from
the RVM model are stable and accurate, not matter analyzing the DHF or DJK Reservoir. Therefore,
it is thought that the RVM model also has a wide applicability for long-term forecasting of streamflow
process with a magnitude of dozens to thousands discharge units.

5. Conclusions

Long-term streamflow forecasting is an important issue for the reservoir scheduling and water
resources management, but it is also a difficult task due to the complexity in streamflow process.
In the article, we presented a data-driven model, called RVM, for annual streamflow forecasting.
The RVM model was applied to the DHF Reservoir in Northern China and the DJK Reservoir in
Central China. Results indicate the better performance of the RVM model compared with the SVM
model which has been widely used for hydrological forecasting. Therefore, RVM can be a more reliable
and effective model for long-term streamflow forecasting rather than SVM. Compared with SVM,
the RVM model has relatively limited applications in the hydrology and water resources studies.
Through this study, we can find the RVM model is suitable for the forecasting of annual streamflow
process with obviously different magnitudes in two different basins, thus it is thought that the RVM
model has a widely applicable scopes for long-term hydrological forecasting. In the future, more
studies can focus on the RVM model by applying it to various basins with different climatic conditions.
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