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Abstract: Flooding contributes to tremendous hazards every year; more accurate forecasting may
significantly mitigate the damages and loss caused by flood disasters. Current hydrological models
are either purely knowledge-based or data-driven. A combination of data-driven method (artificial
neural networks in this paper) and knowledge-based method (traditional hydrological model) may
booster simulation accuracy. In this study, we proposed a new back-propagation (BP) neural network
algorithm and applied it in the semi-distributed Xinanjiang (XAJ) model. The improved hydrological
model is capable of updating the flow forecasting error without losing the leading time. The proposed
method was tested in a real case study for both single period corrections and real-time corrections.
The results reveal that the proposed method could significantly increase the accuracy of flood
forecasting and indicate that the global correction effect is superior to the second-order autoregressive
correction method in real-time correction.
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1. Introduction

Each year, significant social and economic losses and casualties are caused by extreme storms
around the world, especially in the regions dominated by monsoon climate and areas with slow
development of water conservancy projects [1–5]. Flood forecasting is one of the most important
non-structural measures for flood control [6,7]. The accuracy of forecasting would directly impact on
the reservoir operation, flood control and rescue measures [8].

One of the challenges in flood forecasting is model selection [9]. Rainfall–runoff simulation
research has not stopped since the 1950s. Current hydrologic forecasting is mainly divided into
two categories, namely knowledge-based methods and data-driven methods [10]. Knowledge-based
methods including both conceptual and physical approaches have been widely accepted and applied
because they have definite hydrologic meaning [11–14]. However, hydrological models tend to have
large number of parameters that need to be calibrated and the optimal parameters can hardly be
obtained [15]. Moreover, the calibrated parameters are regionally dependent. On the other hand,
date-driven methods predict the future hydrologic processes based on the statistical relationship
among the hydrologic factors [16]. The developed digital information technology is capable of
handling massive data and extracting and reusing information implicitly existing in the hydrologic
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data. Despite the alluring prospect of data-driven methods, they are often criticized by hydrologists
for the lack of physical hydrologic meanings and poor robustness. As a result, the integration
of data-driving method and knowledge-based method may be an alternative way to overcome
these problems. For this purpose, we proposed to combine artificial neural networks (ANNs) with
the traditional hydrological model. ANNs have shown excellent characteristics in dealing with
nonlinear systems [17,18]. Especially, ANNs using back propagation algorithm in training phase
scilicet BP-ANNs [19], which has been accepted as a major forecasting method in reservoir operation,
water quality classification, and water resource planning [20,21]. If learning data are sufficient, it can
accurately reproduce the target results [22,23]. However, they also suffer from some drawbacks [24].
For instance, there is no standardized way of selecting network architecture [25]. The error of a single
moment can hardly be eliminated as ANNs lack physical meaning [26]. Further, the accuracy of
prediction by ANNs declines as the leading time increases. An incorporation of ANNs into current
hydrological model may solve these problems.

River channel flow calculations are important to hydrological modeling and flood forecasting.
It is especially true for the distributed hydrological modeling which becomes a general consensus
of today [27]. The outflow of each sub-basin needs to be routed along a river channel to the outlet
of the watershed and their concentration times are quite different. The calculation errors in upper
channel segments will accumulate and be enlarged in the simulations in lower channel segment.
To obtain more accurate flood forecasting, it is necessary to estimate the errors of the river channel
flow calculation. Many factors could influence the results of river channel flow calculation such as the
errors of runoff, rainfall, etc. Previous studies have applied BP neural network algorithm for correcting
runoff, etc. [14]. Moreover, for increasing number of sub-basins or fully distributed hydrologic model,
it will cost a high computational demand to apply BP neural network algorithm. Therefore, e channel
routing for updating is considered more realistic for distributed and semi-distributed hydrological
models. To simplify the model construction, we focus on the local inflow errors of the main river
channel instead of those of all river channels.

In this study, we applied the Back-propagation Neural Network Correction (BPC) method to
the semi-distributed Xinanjiang model to update the local inflows for Muskingum channel routine
calculations for main river channel. We aim to take advantages of capability of data-driven methods
and knowledge-based method to provide a more accurate flood forecasting system.

2. Study Area and Data

The Dingan River is located in the central region of Hainan Island in southern China. It is one of
the major inputs to Wanquan River. Dingan River watershed is less affected by the water conservancy
project as a headwaters area. The climate is dominated by tropical monsoon system with annual
average temperature at 22 ◦C. The average annual precipitation is about 1639 mm, of which 70% is
derived from typhoons and summer rainy season. The precipitation has a strong seasonal variability.
About 70% to 90% of precipitation occurs during the period from May to November, which poses a
great challenge on flood control.

In this paper, hourly rainfall data were collected in 11 rainfall stations in the Dingan River
watershed (Figure 1). The corresponding observed hoult streamflow data were collected at Jiabao
station at the outlet of the watershed. The digital elevation model (DEM) with a spatial resolution of
90 m is collected for sub-basin division. The watershed is selected because it is not disturbed by major
water conservancy projects. Moreover, the data quality is good for both precipitation and streamflow
with no missing value.
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Figure 1. Distribution of hydrological stations network in Dingan River watershed.

3. Methods

3.1. BP Neural Networks

BP neural network is a typical multilayer ANN, and uses Back-propagation to train the
network [28]. The common structure used in hydrology to map all continuous nonlinear function
consists of three layers: input layer, hidden layer, and output layer (Figure 2). A neural network
is composed of massive nodes, with thresholds, activation functions and connection weights to
characterize the architecture of the network [29]. The BP algorithm is a supervised learning method
based on the steepest descent method to minimize the global error. The output errors are fed back
through the network to modify the threshold values and connection weights. Finally, the optimal
value can be obtained via iterative adjustment. Objective function takes root mean square error.
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Figure 2. Configuration of a three-layer BP neural network.

The neural network used in this paper has three layers and the number of nodes in hidden layer is
determined by means of “trial and error”. It first employs the initial value calculated by Equation (1)
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and then less and more nodes are conducted to find the best performing one as the final value expressed
as [30]:

Number of nodes in the hidden layer = (input number + output number) × 2
3

(1)

The activation function of output layer is linear while the remaining layers are sigmoid functions.
The outputs are obtained corresponding to the value of inputs using the formula as follow:

Qk =
m

∑
j=1

Vjk × F

(
n

∑
i=1

pi ×Wij + boj

)
+ bhk, k = t, t + 1, · · · , N (2)

where Wij is the connection weight between ith node in the input layer and jth node in the hidden
layer; Vjk is the connection weight between jth node in the hidden layer and kth node in the output
layer; bo and bh are the bias, namely the threshold value, of nodes in the output layer and hidden layer
respectively; Pi is the input of ith node; n, m and N are the number of nodes in the input layer, hidden
layer and output layer, respectively; and F is the activation function of the hidden layer and in this
paper is sigmoid function.

Various improved algorithms exist for building a BP neural network model [31–33]. In this study,
three improved algorithms are selected:

(1) Momentum factor application [26,34]

The application of momentum factor is conducive to avoid oscillation when excessive correction
happens and to speed up training on occasion it encounters flat regions of the error surface.

The biases and corresponding connection weights are adjusted based on the following formula:

∆Wij(n) = −β
∂E(n)
∂Wij

+ η∆Wij(n− 1) (3)

bi(n) = −β
∂E(n)

∂bi
+ ηbi(n− 1) (4)

where Wij is the connection weight between the ith node of preceding layer to jth node of this layer; n
is the training times; E is the simulation error; β is the learning rate; η is the momentum factor; and bi
is the threshold value of ith node of this layer.

(2) Learning rate adaptation [35]

Real-time adjustment of learning rate of the network is essential to accelerate convergence.
This paper selects the multiple of interval (2,5) of the distance from the calculation error to the target and
interval (0.25,5) of the initial learning rate to construction proportional function, choosing the integer
multiple of distance to form the double ratio coefficient array. When the multiple of distance is beyond
the interval, it equals to the boundary value. The specific calculated function is expressed as follow:

β(n) =



k12β0, E(n) ≤ k11Edis
k22β0, k11Edis ≤ E(n) < k21Edis

· · · · · · · · ·
k(m−1)2β0, k(m−1)1Edis ≤ E(n) < km1Edis

km2β0, km1Edis ≤ E(n)

(5)

where n is the training times; Edis is the target error; E is the current calculation error; β0 is the initial
learning rate; km1 is the mth double ratio coefficient to the target error; and km2 is the corresponding
learning rate correction factor to the km1. km1 and km2 increase with the increase of m. The bigger is the
double ratio coefficient of km1, the faster the learning rate of the next training phase becomes.
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(3) Crossing validation [36,37]

Crossing validation is conducted to avoid over fitting by determining when the neural network
begin to over-train. Over fitting happens when the neural network tries to fit the noise component of
the data. Under this circumstance, it performs well over the training dataset, but shows poor results
in forecasting. To apply the crossing validation, the data coverage period should be partitioned into
three periods: calibration period (to calibrate the model parameters of the neural network), validation
period (to stop the calibration phase when over training happens), and verification period (to test the
accuracy of the simulation results). If the available dataset is too small for partitioning, the recommend
solution is to stop the training when the objective error ceases to decrease significantly.

3.2. BP Neural Network Correction Algorithm

3.2.1. Traditional BP Neural Network Correction Algorithm

The traditional BP neural network correction algorithm is based on the principle of error auto
regression. It is validated by the supervised learning method which requires actual value of variables
to guide the training process. The inputs are the forecast error information of past N time periods, thus
the real-time forecast error is calculated by the following equation:

et = Qp,t −Qo,t (6)

et+L = FBP(et, et−1, · · · , et−N+1) (7)

Q′p,t+L = Qp,t+L − et+L (8)

where et is the calculation error at t moment; Qp,t is the calculated value at t moment; FBP(·) is the BP
neural network method and its inputs; and Q′p,t is the corrected calculated value at t moment.

In real-time correction, error autocorrelation in neighboring moment is at its strongest compared
with each period. Therefore, prediction accuracy would decline as leading time increase. Intermediate
variables such as sub-basin runoff yield and local inflow of main river channel generalized cannot be
corrected by this method.

3.2.2. The Hydrological Model

The XAJ model chosen in this paper is a semi-distributed rainfall–runoff model developed in
1992 [38]. It is a typical conceptual hydrological model; the main feature of the model is the concept of
runoff formation on repletion of storage. It means that, after the soil moisture context of aeration zone
of the entire basin reaches field capacity, the runoff equals the rainfall excess. XAJ model has been
proven as an effective model to simulate runoff in humid and semi-humid region. It has been applied
over a large area including almost all of major river basins in China [39,40].

The study watershed is divided into eleven sub-basins and runoff of each sub-basin is computed.
The outflow of each sub-basin (local inflow) is routed down the main river channel to the entire basin
outlet concentrated by the Muskingum method. River concentration time of sub-basin in different
positions is quite different. The outflow of upstream has a significant impact on the prediction results
of downstream. Thus, we focus on the concentration part of XAJ model choosing the local inflow of
main stream to be updated to improve the accuracy of flood forecasting.

3.2.3. Apply BPC Algorithm in the Model

Considering that m channel segments of main river channel have local inflow, the inputs of BPC
are the observed discharge and simulated discharge by XAJ model. The outputs are the estimated local
inflow calculated errors of m channel segments of L hour ago. Then, Muskingum calculation process
of L hours was repeated using the corrected local inflow. The calculation process can be expressed as
follow (Figure 3):
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∆Qm,t−L = FBPC(Qp,t, Qo,t) (9)

Q′p,t = FMSJG(∆Qm,t−L, Qm,t−L) (10)

where Qo,t is the observed discharge at t moment; Qp,t is the calculated discharge after Muskingum
at t moment; FBPC(·) is the BPC method and its inputs; ∆Qm,t is the estimated error of local inflow of
mth channel segment calculated by BPC; Qm,t is the uncorrected local inflow of mth channel segment
calculated by XAJ at t moment; FMSJG(·) is the Muskingum method and its inputs; and Q′p,t is the
corrected local inflow of mth channel segment at t moment after L hours recalculation of Muskingum.
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After the error ∆Qp has been computed by the feed-forward process, the improved part of the
backward propagation is as follows: Based on the characteristics of Muskingum linear calculus, it
assumed that there is also linear relationship between local inflow error of channel segments and
calculus eventually outflow error expressed as follow:

∆Qmo − ∆Qm = km(Qo −Qp) (11)

where ∆Qmo is the ideal mth channel segment local inflow error; ∆Qm is the calculation mth channel
segment local inflow error; Qo is the observed discharge of the basin; Qp is the simulation discharge of
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the basin; and km is the connection coefficient, in this paper is the linear ratio coefficient of the mth
channel segment. Thus, the error function of mth output:

Em =
1
2
(∆Qmo − ∆Qm)

2 (12)

Considering the output layer of the neural network:

∆Qm = V1mO1 + V2mO2 + · · ·+ VnmOn + bom (13)

where Vjm is the connection weight between jth hidden node and mth output node; Oj is the output of
jth hidden node; and bom is the bias of mth output nodes.

Therefore, the weights and the thresholds of each layer of the neural network can be modified by
the formula based on mth channel segment local inflow error expressed as follow:

∆θom = −η
∂Em

∂θom
= ηkm(Qo −Qp) (14)

∆Vjm = −η
∂Em

∂Vjm
= ηkm(Qo −Qp)Oj (15)

∆θhj = −η
∂Em

∂θhj
= ηkm(Qo −Qp)VjmOj

(
1−Oj

)
(16)

∆Wij = −η
∂Em

∂Wij
= ηkm(Qo −Qp)VjmOj

(
1−Oj

)
Pi (17)

where Pi is the ith input value.
Once the linear ratio coefficient (k) of each channel segment has been determined, the correction

of BPC can achieve the intended purpose. km can be obtained by three methods: (1) conducting linear
fitting between each local inflow and streamflow at watershed outlet; (2) calculating the Muskingum
convergence coefficient; and (3) instead of correcting the error based on the exactly ratio coefficient of
each channel segment, the proportion of the correction can be determined by considering whether the
direction of correction is correct. At the cost of a little convergence speed, the two speed convergence
method can be adopted rather than the complete steepest descent method with an accurate km.
Two different correction rates km1 and km2 are constructed to guide propagation. The improved
formula expressed as follow:

km =

{
km1 , sign(∆Qp) = sign(∆Qmp)

km2 , sign(∆Qp) 6= sign(∆Qmp)
(18)

where ∆Qp is the discharge calculation error of the outlet; ∆Qmp is the estimated error of local inflow
of mth channel segment calculated by BPC; and sign(•) is the sign judgment function used to judge
the positive and negative numbers.

Let km1 << km2. In this way, when the direction of calculation error of outlet discharge is consistent
with that of the estimated error of mth channel segment local inflow calculated by BPC, small amplitude
correction (km1) or large amplitude correction (km2) would be applied. Powerful automatic correction
capability of BP neural network would ensure the corresponding weights and thresholds can be
corrected in the right direction and the algorithm can converge well as long as there are sufficient data.
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3.3. Evaluation Criteria

3.3.1. Correction Test Method

To analyze the characteristic of BPC, the single period correction test and real-time correction test
were performed to verify the robustness and reliability of this method. In this paper, robustness is
defined as the sustained correction effect of one time correction, including the prediction results of the
subsequent periods should not be deteriorated. The reliability is defined as the approximation degree
of measured flow and modified flow in actual forecasting circumstance, determining by statistical
criteria such as the standards mentioned in Section 3.3.2.

The purpose of the single period correction test was to verify the robustness of BPC algorithm.
The local inflow correction results of upstream channel segments would not fully appear until 7th h
later because of flow concentration. It probably covers up the defects of the correction algorithm itself if
we only focused on the current correction result. Therefore, all intermediate variables of concentration
part of XAJ were saved. Once the past 1 h local inflows were corrected, we recalculated the Muskingum
for the 2nd, 4th, and 6th h to test that whether the robustness of BPC can be guaranteed.

The purpose of the real-time correction test was to verify the reliability of BPC algorithm. It means
that the forecasting results of discharge will be successive corrected at each period based on the
observed value so as to give a better forecasting of next period. The real-time correction test simulates
the situation in actual flood forecasting. Thus, the performance of the test can represent the correction
effect to some extent in practical application.

3.3.2. Statistical Criteria

To evaluate the performance of measures used in forecasting and correction, multiple statistical
criteria are selected to assess the fitness of simulation results of different schemes. The detailed
equations are expressed as follow:

1. Nash–Sutcliffe efficiency coefficient (NSE) [41]:

NSE = 1−
n

∑
i=1

[Qs −Qo]

/
n

∑
i=1

[
Qs −Qo

]
(19)

2. The relative error of peak flow:

δQ = (Qs −Qo)/Qo × 100% (20)

3. The relative error of runoff depth:

δR = (Rs − Ro)/Ro × 100% (21)

where n is the total number hours of a flood event; Qs and Qo are the simulated and observed peak
flows, respectively; Qo is the mean of observed discharge; and Rs and Ro are the total runoff depth
calculated by simulation and observation, respectively.

4. Results and Discussion

Cross validation mentioned in Section 3.1 was applied to minimize the underlying relationship
between inputs and outputs sufficiently and avoid over fitting at the same time. Based on this theory,
the 20 flood events were divided into groups of seven, six, and seven for the three periods, respectively.
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4.1. Model Construction and Testing

The Dingan River watershed was divided into 11 sub-basin using Thiessen polygon method.
The outflow of each sub-basin was calculated and routed down along the main river channel to the
watershed outlet. Seven channel segments had local inflow based on the overland flow calculations.

To correct the local inflows, the BPC method was applied to the concentration part of the XAJ
model. The inputs of BPC were the discharge observed and simulated directly by XAJ model of the
basin. The outputs were the one hour previous local inflow errors of the seven channel segments.
The optimal number of hidden nodes was six through trial and error. The modified amplitude of each
channel segment was limited to 20% for the security of hydrologic continuous

The neural network of BPC converged rapidly using the parameters in Table 1 and the optimal
value was achieved at 845 times cycle (Figure 4). The error of the calibration data and the validation
data were decreased consistently during the whole training phase. It implied that the neural network
was trained well and might lead to a good simulation. To analyze the characteristic of BPC, the
single period correction test and real-time correction test were performed to verify the robustness and
reliability of this method.

Table 1. BPC parameter setting.

Parameter Value

The initial learning rate 0.1
The initial momentum factor 0.15

Maximum cycle times 3000
Target root mean square error 0.01
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4.1.1. The Single Period Correction Test

All intermediate variables of concentration part of XAJ were saved. Once the past 1 h local
inflows were corrected, we recalculated the Muskingum for the 2nd, 4th, and 6th h. During the
recalculation process, there is no more correction. The results recorded as BPCQ0, BPCQ2 and BPCQ4
to represent the current, the preceding 2 h and 4 h outflow of the basin. The statistical results are
shown in Tables 2–4.

The high average NSE in Table 2 indicated that the forecasting results of XAJ were relatively good.
However, the values of δR and δQ of some flood events are unsatisfactory and could be improved.
The correction effect comparison of BPCQ0, BPCQ2 and BPCQ4 were analyzed.
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Table 2. Single period correction performance for calibration period.

Flood Code

QO XAJ BPCQ0 BPCQ2 BPCQ4

R Q δR δQ NSE δR δQ NSE δR δQ NSE δR δQ NSE

mm m3/s % % - % % - % % - % % -

19981001 166.56 2110 10.16 −18.51 0.929 5.42 −3.63 0.987 6.30 −7.27 0.967 8.54 −14.89 0.943
19990518 52.18 1220 16.25 −16.52 0.932 9.10 -3 0.984 10.31 −14.11 0.954 14.74 −17.19 0.935
20000714 54.15 613 11.75 3.86 0.954 5.54 0.51 0.994 8.09 13.41 0.964 10.62 5.6 0.958
20000901 219.94 1070 2.44 −21 0.889 0.98 −7.91 0.965 1.16 −10.45 0.938 2.01 −16.98 0.909
20001009 680.71 3110 1.40 10.57 0.953 −0.72 0.23 0.997 −0.31 −0.85 0.986 0.58 6.64 0.968
20010515 31.71 527 10.50 1.23 0.635 10.28 0.44 0.824 8.42 −15.68 0.775 9.90 −4.28 0.673
20010825 296.18 3190 0.99 −5.31 0.976 −0.25 0.23 0.998 0.10 −1.71 0.991 0.63 −3.16 0.981

Mean 214.49 1691.43 7.64 11.00 0.895 4.61 2.28 0.964 4.96 9.07 0.939 6.71 9.82 0.910

Note: Mean is the average of absolute value, not directly added up for average.

Table 3. Single period correction performance for validation period.

Flood Code

QO XAJ BPCQ0 BPCQ2 BPCQ4

R Q δR δQ NSE δR δQ NSE δR δQ NSE δR δQ NSE

mm m3/s % % - % % - % % - % % -

20011021 119.59 1580 7.58 −30.47 0.845 2.24 −16.41 0.949 2.86 −18.14 0.93 4.89 −26.01 0.879
20020817 48.4 357 3.47 −4.36 0.653 3.84 −1.58 0.874 2.87 −6.44 0.824 2.95 −9.08 0.715
20050917 167.11 2020 7.98 −11.22 0.975 2.84 0.43 0.997 3.77 −1.23 0.987 6.15 −6.74 0.977
20051006 224.19 2560 1.85 10.54 0.877 1.90 0.12 0.96 1.56 −3.91 0.927 1.40 4.52 0.895
20071011 254.28 1620 −5.52 0.86 0.907 −1.60 0.24 0.977 −2.57 −6.44 0.958 −4.29 −1.88 0.929
20081003 87 1090 6.48 2.85 0.949 3.18 0.37 0.989 3.53 −9.73 0.972 5.14 −1.41 0.957

Mean 150.10 1537.83 5.48 10.05 0.868 2.60 3.19 0.958 2.86 7.65 0.933 4.14 8.27 0.892

Note: Mean is the average of absolute value, not directly added up for average.

Table 4. Single period correction performance for verification period.

Flood Code

QO XAJ BPCQ0 BPCQ2 BPCQ4

R Q δR δQ NSE δR δQ NSE δR δQ NSE δR δQ NSE

mm m3/s % % - % % - % % - % % -

20081012 434.26 2810 1.89 −0.21 0.971 0.34 0.22 0.997 0.48 −5.27 0.984 1.00 4.39 0.974
20090922 320.15 1860 5.67 −1.96 0.951 0.54 0.3 0.993 1.53 7.4 0.979 3.62 4.63 0.959
20101012 563.04 3250 1.11 1.46 0.971 −1.26 0.19 0.997 −1.34 −2.13 0.988 −0.18 −1.77 0.979
20110923 549.14 2460 −0.09 19.59 0.854 −3.11 0.35 0.974 −2.21 3.33 0.952 −1.18 11.85 0.907
20111103 198.23 2630 0.44 14.07 0.962 −3.75 0.14 0.994 −3.68 2.06 0.99 −1.68 9.74 0.98
20120615 60.86 526 18.81 9.45 0.812 8.82 0.4 0.928 12.18 9.44 0.883 15.97 7.58 0.851
20131109 249.43 3110 −7.25 19.82 0.882 −7.95 0.17 0.968 −9.04 0.85 0.943 −8.04 12.99 0.907

Mean 339.30 2378.00 5.04 9.51 0.915 3.68 0.25 0.979 4.35 4.35 0.960 4.52 7.56 0.937

Note: Mean is the average of absolute value, not directly added up for average.

In term of mean δR, the results in Tables 2–4 indicated that the BPC method could truly improve
the accuracy of prediction of water balance and had a continuous effect as BPQC4 was still much
better than the original prediction (XAJ). The mean δQ represents the accuracy of the flood peak
forecasting. The calculated flood peak is always an essential prediction factor in flood forecasting as it
can distinguish the amplitude of flood event and directly affect flood control, flood rescue, reservoir
operation, and other measures. δQ decreased significantly, which indicated that the proposed method
could improve flood forecasting. After correction, the mean NSE of the three total periods were
obviously improved compared with the previous ones. The increased NSE value shows a better fitness
between simulation and observed records.

Three hydrographs were selected to display the correction effect in total phases (see Figure 5).
The results implied the correction algorithm was effective and stability.
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Figure 5. Single period correction performance comparison of different models: (a) flood 20001009 of
calibration period; (b) flood 20050917 of validation period; and (c) flood 20131109 of verification period.

4.1.2. The Real-Time Correction Test

The neural network used in this test was calibrated by the single period test performed above, thus
there was no need to divide the data into calibration, validation and verification period. The real-time
correction test updates the local inflows of main river channel at each period, successively, which is
different from the single period correction used in calibration phase. It can greatly save the amount of
datasets required as the flood events selected to conduct single period correction can be reused in this
test. Therefore, all flood events were simulated to gain a comprehensive cognition of BPC method.
For comparison, a second-order autoregression AR(2) algorithm was also calculated.

Table 5 shows that the BPC method passed the real-time correction test. The results indicated that
significant improvement had been achieved in respects of mean NSE, δR and δQ after correction by
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BPC and AR(2), respectively. The correction effect of AR(2) was very good for prediction of real-time,
but the accuracy of BPC was slightly better. In addition, the application of BPC in XAJ makes the
real time correction possible without losing the leading time. Above all, the BPC method is an new
alternative choice to AR(2), ensemble Kalman filter, dynamic system response curve, etc. to correct
flood forecasting [42–44].

Two hydrographs are presented to display the correction effect of BPC and AR(2) method. Figure 6
shows that the correction accuracy of BPC was better.
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Figure 6. Real-time correction performance comparison of BPC and AR(2) of floods 20011021 and 20020817.

Table 5. Comparison between original model results and real-time correction results of BPC and AR(2).

Flood Code

QO XAJ BPC AR(2)

R Q δR δQ NSE δR δQ NSE δR δQ NSE

mm m3/s % % - % % - % % -

19981001 166.56 2110 10.16 −18.51 0.929 3.68 −4.77 0.992 2.59 0.13 0.988
19990518 52.18 1220 16.25 −16.52 0.932 5.48 −4.24 0.981 4.94 −1.15 0.974
20000714 54.15 613 11.75 3.86 0.954 4.10 0.16 0.991 0.76 5.43 0.988
20000901 219.94 1070 2.44 −21 0.889 0.82 2.58 0.977 −0.26 −2.82 0.974
20001009 680.71 3110 1.40 10.57 0.953 0.99 −0.95 0.996 −0.48 −1.95 0.996
20010515 31.71 527 10.50 1.23 0.635 7.10 −0.25 0.919 14.13 27.47 0.755
20010825 296.18 3190 0.99 −5.31 0.976 0.24 −0.83 0.997 −0.06 4.95 0.999
20011021 119.59 1580 7.58 −30.47 0.845 2.15 −4.97 0.992 −1.02 −12.09 0.975
20020817 48.4 357 3.47 −4.36 0.653 3.02 −3.89 0.973 4.17 −0.56 0.92
20050917 167.11 2020 7.98 −11.22 0.975 2.50 −1.9 0.997 2.51 −2.13 0.989
20051006 224.19 2560 1.85 10.54 0.877 2.80 0.98 0.974 2.32 7.21 0.968
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Table 5. Cont.

Flood Code

QO XAJ BPC AR(2)

R Q δR δQ NSE δR δQ NSE δR δQ NSE

mm m3/s % % - % % - % % -

20071011 254.28 1620 −5.52 0.86 0.907 −0.35 0.57 0.99 −1.18 3.93 0.98
20081003 87 1090 6.48 2.85 0.949 2.61 −3.28 0.992 3.26 3.81 0.988
20081012 434.26 2810 1.89 −0.21 0.971 0.81 −2.17 0.995 0.14 2.08 0.996
20090922 320.15 1860 5.67 −1.96 0.951 1.47 5.31 0.996 −0.24 −0.65 0.993
20101012 563.04 3250 1.11 1.46 0.971 0.71 2.4 0.997 −0.92 4.55 0.992
20110923 549.14 2460 −0.09 19.59 0.854 −1.02 4.76 0.986 −4.67 1.98 0.987
20111103 198.23 2630 0.44 14.07 0.962 0.18 0.58 0.997 −3.80 −4.24 0.994
20120615 60.86 526 18.81 9.45 0.812 7.15 7.74 0.964 5.29 3.04 0.961
20131109 249.43 3110 −7.25 19.82 0.882 −1.82 −0.33 0.991 −5.53 8.64 0.975

Mean 238.86 1885.65 6.08 10.19 0.894 2.45 2.63 0.985 2.91 4.94 0.970

Note: Mean is the average of absolute value, not directly added up for average.

4.2. Strengths and Shortcomings

Although the robustness and reliability is checked in Section 4.1, more indicators need to be taken
into consideration to comprehensively understand the strengths and drawbacks of BPC. In this paper,
we further evaluated the performance of BPC by comparing it with other correction methods in terms
of three indicators: simplicity, computation time and data demand.

Simplicity is one of the most important characteristics for hydrological models as it largely
influences the application of models. The BPC method was incorporated into traditional hydrological
model, which makes it more complex than BP and AR(2) method. The number of parameters includes
three parts: the parameters of traditional hydrological model, the parameters of BP method, and
the connection coefficients km1 and km2. The parameters of first part need to be calibrated separately.
After km1 and km2 have been set, the parameters of the BP method can be calibrated automatically by
the supervised learning method and learning rate adaptation method. The number of hidden nodes
is determined by trial and error. In general, simple models are more likely to be popularized and
applied. However, in the case of high requirement of flood prediction, complex methods such as BPC
are probably more practical.

The calibration time for neural networks to converge is an important criterion for model evaluation.
The training phase of the BPC method partly depended on the intermediate variables and outputs of
the XAJ model. The intermediate variables and outputs calculated by XAJ model have certain physical
meaning and are more reasonable. Thus, it can largely decrease the calibration time of the neural
network. The number of cycles in the calibration phase in Dingan River watershed is 845 times for
BPC to converge while it usually takes nearly 10,000 times for traditional BP method. Once the neural
network has calibrated, it can be used to correct the flood prediction and no further effort shall be
devoted to it.

As a data-driven forecasting method, the success of BPC requires ample data. In the neural
network calibration phase, the data available need to be divided into three parts. High quality
and quantity of data can largely improve the accuracy of correction by BPC. With the continuous
improvement of hydrometry technology, more accurate and reliable data will become accessible in the
future. Thus, the BPC method could play more important value in hydrologic forecasting.

5. Conclusions

Flood forecasting based on hydrological models is one of the essential non-engineering measures.
The prediction accuracy has a large impact on the flood control and rescue. The forecasting errors of
preceding periods may have significant negative effect on the prediction of following periods, thus
searching for better methods to correct the forecasting error become a research hotspots for hydrologists.
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To handle these problems, we had proposed a new BP neural network correction algorithm in this
paper and gained the following conclusion:

(1) This method is based on the BP neural network and is incorporated into a traditional hydrological
model, thus it combines the advantages of both models. It could obviously correct the forecasting
error of XAJ model and increase the forecasting accuracy without losing the leading time.

(2) The performance of suggested BPC method has been checked by the single period correction test
and real-time correction test. The results of tests implied that this method is stable and reliable.

(3) Although the BPC method increased the number of parameters, most parameters can be
calibrated automatically by the supervised learning method and learning rate adaptation method.
In addition, it can largely shorten the computation time for calibration.

(4) As a data-driven method, The BPC method is especially effective for the areas with adequate data,
and the accuracy of correction was superior to the widespread AR(2) method.

Acknowledgments: The first author thanks the following financial support: the National Natural Science
Foundation of China (No. 51479062/41371048), the Fundamental Research Funds for the Central Universities
(2015B14314), and The UK-China Critical Zone Observatory (CZO) Program (41571130071). The corresponding
author is supported by Open Research Fund Program of State Key Laboratory of Hydrology-Water Resources and
Hydraulic Engineering (2015490611)

Author Contributions: Peng Shi, Peng Jiang, Simin Qu, Jianjin Wang and Jianwei Hu conceived and designed
the numerical modeling; Jianjin Wang, Xingyu Chen, Yingbing Chen and Yunqiu Dai conducted the modeling;
Jianjin Wang and Ziwei Xiao analyzed the data; and Jianjin Wang, Peng Shi and Peng Jiang wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning internal representation by back propagation. In Parallel
Distributed Processing: Exploration in the Microstructure of Cognition; The MIT Press: Cambridge, MA, USA,
1986; Volume 1.

2. Wang, Z.; Lai, C.; Chen, X.; Yang, B.; Zhao, S.; Bai, X. Flood hazard risk assessment model based on random
forest. J. Hydrol. 2015, 527, 1130–1141. [CrossRef]

3. Werner, M.; Reggiani, P.; De Roo, A.; Bates, P.; Sprokkereef, E. Flood forecasting and warning at the river
basin and at the European scale. Nat. Hazards 2005, 36, 25–42. [CrossRef]

4. Jiang, P.; Gautam, M.R.; Zhu, J.; Yu, Z. How well do the gcms/rcms capture the multi-scale temporal
variability of precipitation in the southwestern united states? J. Hydrol. 2013, 479, 75–85. [CrossRef]

5. Yu, Z.; Jiang, P.; Gautam, M.R.; Zhang, Y.; Acharya, K. Changes of seasonal storm properties in california
and nevada from an ensemble of climate projections. J. Geophys. Res. Atmos. 2015, 120, 2676–2688. [CrossRef]

6. Jiang, P.; Yu, Z.; Gautam, M.R.; Acharya, K. The spatiotemporal characteristics of extreme precipitation
events in the western united states. Water Resour. Manag. 2016, 30, 4807–4821. [CrossRef]

7. Moore, R.J.; Bell, V.A.; Jones, D.A. Forecasting for flood warning. C. R. Geosci. 2005, 337, 203–217. [CrossRef]
8. Young, P.C. Advances in real-time flood forecasting. Philos. Trans. A Math. Phys. Eng. Sci. 2002, 360,

1433–1450. [CrossRef] [PubMed]
9. Cloke, H.; Pappenberger, F. Ensemble flood forecasting: A review. J. Hydrol. 2009, 375, 613–626. [CrossRef]
10. Weimin, B.; Wei, S.; Simin, Q. Flow updating in real-time flood forecasting based on runoff correction by a

dynamic system response curve. J. Hydrol. Eng. 2013, 19, 747–756. [CrossRef]
11. Hosseini, S.M.; Mahjouri, N. Integrating support vector regression and a geomorphologic artificial neural

network for daily rainfall-runoff modeling. Appl. Soft Comput. 2016, 38, 329–345. [CrossRef]
12. Tingsanchali, T.; Gautam, M.R. Application of tank, nam, arma and neural network models to flood

forecasting. Hydrol. Process. 2000, 14, 2473–2487. [CrossRef]
13. Shi, P.; Hou, Y.; Xie, Y.; Chen, C.; Chen, X.; Li, Q.; Qu, S.; Fang, X.; Srinivasan, R. Application of a swat model

for hydrological modeling in the xixian watershed, china. J. Hydrol. Eng. 2013, 18, 1522–1529. [CrossRef]
14. Si, W.; Bao, W.; Jiang, P.; Zhao, L.; Qu, S. A semi-physical sediment yield model for estimation of suspended

sediment in loess region. Int. J. Sediment Res. 2015, in press.

http://dx.doi.org/10.1016/j.jhydrol.2015.06.008
http://dx.doi.org/10.1007/s11069-004-4537-8
http://dx.doi.org/10.1016/j.jhydrol.2012.11.041
http://dx.doi.org/10.1002/2014JD022414
http://dx.doi.org/10.1007/s11269-016-1454-z
http://dx.doi.org/10.1016/j.crte.2004.10.017
http://dx.doi.org/10.1098/rsta.2002.1008
http://www.ncbi.nlm.nih.gov/pubmed/12804258
http://dx.doi.org/10.1016/j.jhydrol.2009.06.005
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000848
http://dx.doi.org/10.1016/j.asoc.2015.09.049
http://dx.doi.org/10.1002/1099-1085(20001015)14:14&lt;2473::AID-HYP109&gt;3.0.CO;2-J
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000578


Water 2017, 9, 48 15 of 16

15. Si-min, Q.; Wei-min, B.; Peng, S.; Zhongbo, Y.; Peng, J. Water-stage forecasting in a multitributary tidal river
using a bidirectional muskingum method. J. Hydrol. Eng. 2009, 14, 1299–1308. [CrossRef]

16. Vrugt, J.A.; Gupta, H.V.; Bouten, W.; Sorooshian, S. A shuffled complex evolution metropolis algorithm for
estimating posterior distribution of watershed model parameters. Calibration Watershed Models 2003, 39,
105–112.

17. Wu, C.; Chau, K.; Fan, C. Prediction of rainfall time series using modular artificial neural networks coupled
with data-preprocessing techniques. J. Hydrol. 2010, 389, 146–167. [CrossRef]

18. De Vos, N.; Rientjes, T. Multiobjective training of artificial neural networks for rainfall-runoff modeling.
Water Resour. Res. 2008, 44, W08434. [CrossRef]

19. Jain, A.; Srinivasulu, S. Development of effective and efficient rainfall-runoff models using integration of
deterministic, real-coded genetic algorithms and artificial neural network techniques. Water Resour. Res.
2004, 40, W04302. [CrossRef]

20. Aqil, M.; Kita, I.; Yano, A.; Nishiyama, S. A comparative study of artificial neural networks and neuro-fuzzy
in continuous modeling of the daily and hourly behaviour of runoff. J. Hydrol. 2007, 337, 22–34. [CrossRef]

21. Tiwari, M.K.; Chatterjee, C. Development of an accurate and reliable hourly flood forecasting model using
wavelet–bootstrap–ann (WBANN) hybrid approach. J. Hydrol. 2010, 394, 458–470. [CrossRef]

22. Elsafi, S.H. Artificial neural networks (ANNS) for flood forecasting at dongola station in the River Nile,
Sudan. Alexandria Eng. J. 2014, 53, 655–662. [CrossRef]

23. Hartmann, H.; Becker, S.; King, L.; Jiang, T. Forecasting water levels at the yangtze river with neural networks.
Erdkunde 2008, 62, 231–243. [CrossRef]

24. Maier, H.R.; Dandy, G.C. Neural networks for the prediction and forecasting of water resources variables:
A review of modelling issues and applications. Environ. Model. Softw. 2000, 15, 101–124. [CrossRef]

25. Bebis, G.; Georgiopoulos, M. Feed-forward neural networks. IEEE Potentials 1994, 13, 27–31. [CrossRef]
26. Govindaraju, R.S. Artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Eng. 2000, 5,

115–123.
27. Fares, A.; Awal, R.; Michaud, J.; Chu, P.-S.; Fares, S.; Kodama, K.; Rosener, M. Rainfall-runoff modeling in a

flashy tropical watershed using the distributed HL-RDHM model. J. Hydrol. 2014, 519, 3436–3447. [CrossRef]
28. Fausett, L. Fundamentals of Neural Networks: Architectures, Algorithms, and Applications; Prentice-Hall, Inc.:

Upper Saddle River, NJ, USA, 1994.
29. Parks, R.W.; Levine, D.S.; Long, D.L. Fundamentals of Neural Network Modeling: Neuropsychology and Cognitive

Neuroscience; MIT Press: London, UK, 1998.
30. Han, D.; Kwong, T.; Li, S. Uncertainties in real-time flood forecasting with neural networks. Hydrol. Process.

2007, 21, 223–228. [CrossRef]
31. Yao, X. A review of evolutionary artificial neural networks. Int. J. Intell. Syst. 1993, 8, 539–567. [CrossRef]
32. Zhu, M.-L.; Fujita, M.; Hashimoto, N. Application of neural networks to runoff prediction. In Stochastic

and Statistical Methods in Hydrology and Environmental Engineering; Springer: Norwell, MA, USA, 1994;
pp. 205–216.

33. Yu, X.-H.; Chen, G.-A. Efficient backpropagation learning using optimal learning rate and momentum.
Neural Netw. 1997, 10, 517–527. [CrossRef]

34. Hassoun, M.H. Fundamentals of Artificial Neural Networks; MIT Press: London, UK, 1995.
35. Huijuan, F.; Jiliang, L.; Fei, W. Fast learning in spiking neural networks by learning rate adaptation. Chin. J.

Chem. Eng. 2012, 20, 1219–1224.
36. Senthil Kumar, A.; Sudheer, K.; Jain, S.; Agarwal, P. Rainfall-runoff modelling using artificial neural networks:

Comparison of network types. Hydrol. Process. 2005, 19, 1277–1291. [CrossRef]
37. Rang, M.S.; Kang, M.G.; Park, S.W.; Lee, J.J.; Yoo, R.H. Application of Grey Model and Artificial Neural

Networks to Flood Forecasting. J. Am. Water Resour. Assoc. 2006, 42, 473–486. [CrossRef]
38. Zhao, R. The xinanjiang model applied in China. J. Hydrol. 1992, 135, 371–381.
39. Yao, C.; Zhang, K.; Yu, Z.; Li, Z.; Li, Q. Improving the flood prediction capability of the xinanjiang model

in ungauged nested catchments by coupling it with the geomorphologic instantaneous unit hydrograph.
J. Hydrol. 2014, 517, 1035–1048. [CrossRef]

40. Yuan, F.; Ren, L. Application of the xinanjiang vegetation—Hydrology model to streamflow simulation over
the Hanjiang river basin, China. IAHS-AISH Publ. 2009, 326, 63–69.

http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000120
http://dx.doi.org/10.1016/j.jhydrol.2010.05.040
http://dx.doi.org/10.1029/2007WR006734
http://dx.doi.org/10.1029/2003WR002355
http://dx.doi.org/10.1016/j.jhydrol.2007.01.013
http://dx.doi.org/10.1016/j.jhydrol.2010.10.001
http://dx.doi.org/10.1016/j.aej.2014.06.010
http://dx.doi.org/10.3112/erdkunde.2008.03.04
http://dx.doi.org/10.1016/S1364-8152(99)00007-9
http://dx.doi.org/10.1109/45.329294
http://dx.doi.org/10.1016/j.jhydrol.2014.09.042
http://dx.doi.org/10.1002/hyp.6184
http://dx.doi.org/10.1002/int.4550080406
http://dx.doi.org/10.1016/S0893-6080(96)00102-5
http://dx.doi.org/10.1002/hyp.5581
http://dx.doi.org/10.1111/j.1752-1688.2006.tb03851.x
http://dx.doi.org/10.1016/j.jhydrol.2014.06.037


Water 2017, 9, 48 16 of 16

41. Yapo, P.O.; Gupta, H.V.; Sorooshian, S. Automatic calibration of conceptual rainfall-runoff models: Sensitivity
to calibration data. J. Hydrol. 1996, 181, 23–48. [CrossRef]

42. Komma, J.; Bloschl, G.; Reszler, C. Soil moisture updating by ensemble kalman filtering in real-time flood
forecasting. J. Hydrol. 2008, 357, 228–242. [CrossRef]

43. Chen, H.; Yang, D.; Hong, Y.; Gourley, J.J.; Zhang, Y. Hydrological data assimilation with the ensemble
square-root-filter: Use of streamflow observations to update model states for real-time flash flood forecasting.
Adv. Water Resour. 2013, 59, 209–220. [CrossRef]

44. Si, W.; Bao, W.; Gupta, H.V. Updating real-time flood forecasts via the dynamic system response curve
method. Water Resour. Res. 2015, 51, 5128–5144. [CrossRef]

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0022-1694(95)02918-4
http://dx.doi.org/10.1016/j.jhydrol.2008.05.020
http://dx.doi.org/10.1016/j.advwatres.2013.06.010
http://dx.doi.org/10.1002/2015WR017234
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Area and Data 
	Methods 
	BP Neural Networks 
	BP Neural Network Correction Algorithm 
	Traditional BP Neural Network Correction Algorithm 
	The Hydrological Model 
	Apply BPC Algorithm in the Model 

	Evaluation Criteria 
	Correction Test Method 
	Statistical Criteria 


	Results and Discussion 
	Model Construction and Testing 
	The Single Period Correction Test 
	The Real-Time Correction Test 

	Strengths and Shortcomings 

	Conclusions 

