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Abstract: This paper describes the most important results of a theoretical, experimental and in situ
investigation developed in connection with a water supply pumping pipeline failure. This incident
occurred after power failure of the pumping system that caused the burst of a prestressed concrete
cylinder pipe (PCCP). Subsequently, numerous hydraulic transient simulations for different scenarios
and various air pockets combinations were carried out in order to fully validate the diagnostic.
As a result, it was determined that small air pocket volumes located along the pipeline profile were
recognized as the direct cause of the PCCP rupture. Further, a detail survey of the pipeline was
performed using a combination of non-destructive technologies in order to determine if immediate
intervention was required to replace PCC pipes. In addition, a hydraulic model was employed to
analyze the behavior of air pockets located at high points of the pipeline.

Keywords: air pocket; air valve; pumping pipeline; PCCP failure; fluid transients;
non-destructive inspection

1. Introduction

Prestressed concrete cylinder pipe (PCCP) has been successfully utilized to convey pressurized
drinking water to cities and is also used in wastewater rising mains. Although PCCP is known for its
good strength and capacity to resist high internal pressure and external loading, it deteriorates with
time and can suffer from several problems. For example, when corrosion of the prestressing wires
occurs, they eventually break reducing the strength of the pipe at that location, which creates distress
in the concrete core that might lead to a catastrophic failure. Only in the USA, 435 devastating ruptures
in PCCP were reported in the period of time from 1955 to 2007 [1]. Recently, Lesage and Sinclair [2]
state that several municipalities in Canada and in the USA have experienced rupture of PCCP water
mains, causing considerable damage.

The integrity of a PCCP is threatened internally and externally: internally by corrosion and
externally by contact with aggressive soil and groundwater. The presence of inorganic or organic acids,
alkalis or sulfates in the soil is directly responsible for concrete corrosion [3]. The damage to PCCP
initiates with the development of cracks in the external mortar coating enabling chloride and sulfide
ions to reach the prestressing wires through diffusion. While corrosion develops, the external mortar
coating delaminates, which further increases the exposure of the wires to the aggressive environment.
The number of wires that corrode and break increases with time, leading to eventual pipe failure when
a sufficient number of wires break and the design factor of safety is compromised.

Likewise, it is well known that a hydraulic transient event can cause a serious rupture of a
PCCP [4,5]. For instance, Romer et al. [1] reported 26 PCCP catastrophic failures caused by surge
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events around the USA. The fluid transient phenomenon over-pressurizes the pipe due to transient
modification of flow rate and often this pressure is the strongest physical load a pipeline is exposed to.
The pressure wave variations propagate along the pipes and induce stresses within them. In the same way,
several researchers have demonstrated that the presence of air pockets in pumping pipeline systems can
severely exacerbate the maximum peak pressure during transients, sufficient to cause PCCP failure.

The effect of entrapped air pockets on transient pressures may be either beneficial or destructive;
depending on the air pocket volume; distribution and location; configuration of the system concerned;
as well as the nature and the causes of the transient. For instance; a large air pocket can act as an
effective accumulator suppressing the energy of pressure waves [6–9]. Conversely; various researchers
have demonstrated that there is a considerably increase of surge pressure peaks when the air pockets
are small; sufficient to cause pipe burst [10–16]. Small air pockets have the ability to absorb only part of
the pressure wave and the majority of the wave will pass through to be reflected by the upstream and
downstream boundaries. Moreover, Gahan [17] brought attention to that large and small air pocket
volumes can be defined in terms of their effects on fluid transients.

Regarding the influence of small air pockets on hydraulic transients, Burrows and Qiu [12]
presented case studies to illustrate its effects on pressure transients. In some cases the high peak
pressures can severely arise and a catastrophic effect might be expected to occur, such as the rupture
of the line. Either a single small pocket or multiple small air pockets are shown to be especially
problematic. Peak pressures enhancements as high as 1.6 or even 2 times the normal steady flow duty
pressures have been predicted.

In addition, Qiu and Burrows [13] stated that the presence of small air pockets in pumping
pipelines might have a potential effect on fluid transients, due to an abrupt interruption of flow arising
from routine pump shutdown. It is suggested that this could trigger serious implications for pipeline
systems, where entrained air has not been taken into account.

Burrows [15] reported a real case study in which a pumping pipeline suffered from cracks and
spillage. The author determined that the transient pressures induced by the pump shutdown would
not have been the unique cause for the failures of the line. He found that a small air pocket located at
an intermediate high point of the system was identified as likely to generate the enhancement of the
pressure transients, experienced by a normal pump shutdown.

In the same manner, Larsen and Borrows [18] computed pressure transients and compared them
with field measurements in three different pumping plastic sewer mains. The comparison highlighted
the effect of air pockets at the high points of the pipelines followed by pump run-down. The authors
found that only by including air pockets at the high points of the pumping systems within the
numerical model could be observed that the measured and computed transient pressures adjusted
reasonably well. They pointed out that air pockets can either damp or amplify the pressure transients
depending on their size and causes of the transients. Accordingly, one can expect that air pockets in
some situations can lead to excessive load and even rupture of the line.

Experimental investigations indicated that stationary air pockets could accumulate along the
control section located at the transition between pipes with subcritical and supercritical slopes,
where air valves are not located [19,20]. Although air valves have been placed, they may fail and air
would not be released. In the same way, it is well known that conventional air valves quietly fail
due to lack of change in their design in over the last 100 years. Therefore, these air valves may suffer
premature closure or dynamic closure, in which there is tendency of the hollow floats to seal the valve
fully at very low differential pressures (2 to 5 kPa or 0.2 to 0.5 mH2O) without any further discharge,
resulting in the entrapment of a large volume of air in the pipeline [21].

This paper presents a preventable accident that occurred in a water supply pumping pipeline
system located in Mexico. This was generated after the power failure of the pumping system causing
the burst of a PCC pipe. The strongest hypothesis is that four small stationary air pockets amplified
the pressure transients generating the pipe rupture. In order to fully validate the diagnostic and to
investigate the destructive effect of air pockets on surge pressures in the system, a hydraulic transient
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analysis with entrapped air in the pumping pipeline was carried out. The methodology suggested by
Pozos et al. [22] was used to identify the location of the air pockets in the pipeline and their volume
was computed with a relationship based on the theory of the gradually varied flow. A detail survey of
the pipeline was performed using a combination of non-destructive technologies in order to determine
if immediate intervention was required to replace PCC pipes. A hydraulic model was employed to
analyze the behavior of air pockets located at high points of the line.

2. Pipeline Accident

The pumping pipeline investigated has a length of 3283 m and an internal diameter of 1.37 m (54 in)
and was constructed of PCCP designed for 63.28 meter of water column (mH2O) (620.53 kPa = 90 psi)
working pressure and a total transient pressure, consisting of working pressure plus surge pressure of
77.39 mH2O (758.42 kPa = 110 psi). A safety factor of 3 was considered during the design. The pipes
consist of a 9.11 cm (3.59 in) concrete core, a nominal mortar coating thickness of 2.06 cm (0.81 in) and a
thin steel cylinder of 1.55 mm (0.0610 in). As a result, the total wall thickness of the PCCP is nominally
11.18 cm (4.4 in). The pumping plant is equipped with four centrifugal pumps connected in parallel to
transport a maximum water flow rate of 2.2 m3/s to a constant head tank 241.59 m above the pump
sump level. An air/vacuum valve and a butterfly valve are installed at the discharge of each pump
and an air chamber is located immediately downstream of each pump.

The pumping pipeline was constructed in 2000 and after 15 years of reliable operation, the pipeline
experienced a serious rupture at chainage 0 + 465.80, followed by a shutdown of the four pumps.
The fracture or longitudinal split occurred at the top of the PCCP, which indicates that it was caused
by a severe positive peak pressure. Furthermore, most of the wires exhibited little corrosion whilst the
cylinder showed only superficial corrosion, as shown in Figure 1.
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Figure 1. Rupture of the PCC pipe at chainage 0 + 465.80.

There was significant structural damage to the adjacent dwellings, since a large quantity of water
was released and flooded 20 homes located in a low lying area with poor drainage. In addition,
four people were heavily injured by the rocks and debris transported with the current.

It is important to bring notice that records indicate that simultaneous power failure of the four
pumps occurred at least twice prior to the failure, in September 2012 and April 2013. However,
after these incidents the pipeline was not inspected, because the pipeline is a primary transmission
system and population, industry and business depend on the imported water supply from the water
authority. Therefore, there is a limited ability to shut down the pipeline for examination.

Figure 2 shows the summary of the investigations and simulations developed in order to find and
identify the main causes of this incident. The actions conducted are explained within the next section.
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Figure 2. Investigations and simulations developed to identify the causes of the incident.

3. Materials and Methods

3.1. Field Survey

A detail field survey of the pipeline was performed by using a combination of non-destructive
technologies in order to determine if immediate intervention was required to replace PCC pipes.
For a comprehensive review of the current state of-the-art technologies for condition assessment of
underground water and sewage pipelines, the reader is referred to Costello et al. [23] and Hao et al. [24].

3.1.1. Non-Destructive Testing

Immediately after the accident a detailed internal examination of pipeline was made.
The inspection was conducted by close-circuit television (CCTV) and man entry. It revealed 37 PCC
pipes with longitudinal cracks at the crown and invert. Figure 3 illustrates the longitudinal cracks.
In addition to the visual inspection, soundings with a hammer were performed along the pipeline to
verify it was in good condition. Most of the pipes showed a concrete wall surface hard and dense,
only three pipes in the vicinity of the rupture (station 0 + 465.80 km) and two more near a damaged air
valve (station 0 + 990.42 km) presented hollow areas indicative of delamination often associated with
significant wire break damage [25].
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Further, an electromagnetic survey performed by others was developed throughout the pipeline,
which allows for an estimation of the number of broken wires in the inspected pipes. The results were
recorded on a data acquisition system. The data were subsequently analyzed and used to estimate
the location and quantity of the broken wires. The survey detected 27 pipes with predicted broken
prestressing wires.

The electromagnetic inspection report identified the three pipes with hollow areas located near the
failure and the other two pipes close to a damage air valve as distressed pipes; they had 25 to 30 wire
breaks, and, for this reason, it was recommended to repair them immediately. Fourteen pipes had 10 to
15 wire breaks and ten had five wire breaks or less. To determine the actual number of wire breaks,
27 test pits were excavated along the pipeline to completely expose the circumference of inspection,
but only nine had visual damage, the other 18 did not reveal physical distress nor circumferential or
longitudinal cracking of the mortar coating.

The external inspection of the five distressed pipes permitted to confirm the existence of
delaminated mortar coating sections and as well as the number of corroded broken wires. The wire
break estimates on individual pipe sections ranged from 18 to 37 wire breaks, all of them located at the
upper half of the of the pipes. Figure 4 shows a distressed area with 20 wire breaks. The damage areas
were located in the barrel of the pipes, from approximately the 10:00 o’clock to 2:00 o’clock positions.
Four pipes showed longitudinal cracking of the mortar coating without distressed areas at top of the
pipes with a maximum length of one meter.
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It is important to bring notice that the water authority decided to replace the five distressed
pipes with new PCCP. Moreover, given the catastrophic failure and that, 22 other pipe sections have
electromagnetic anomalies consistent with wire break damage, permanent acoustic fiber optic was
installed along the invert of the aqueduct to continuously monitor the condition of the pipes and
identify pipe sections experiencing ongoing wire break activity. The wire breaks recorded by the data
acquisition system are now added to the assessed wire breaks detected by the electromagnetic survey
and thus at any point in the future, water authority can estimate the total number of wire breaks
and the risk associated with each pipe section can be anticipated. In case a pipe section deteriorates
to an unacceptable level of risk, the water authority can initiate the complete rehabilitation of a
pipe section to avoid pipe failure under normal operation and reduce any additional risk during an
emergency maneuver.

3.1.2. Physical Assessment of the Air Valves

In addition, the in situ survey revealed that a combination air valve had been misplaced at a
point approximately five meter upstream from the high point due to a surveyor’s error, resulting in
the accumulation of an air pocket at the station 0 + 465.80, where the pipe rupture occurred. It was
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also discovered that the float of the air valve located at chainage 0 + 990.42 jammed into the discharge
port, it might occur either in a previous hydraulic transient event or during a filling operation of the
pipeline when the valve could experience dynamic closure. Figure 5 shows the damaged valve.
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A physical assessment of the combination air valves (CAV) that consist of two independent valves
an air release valve and an air/vacuum valve, indicated that most of them are in some degree of
submergence or corroded. The CAV installed in the investigated pipeline are conventional air valves
with a typical cast iron body and hollow floats. Due to lack of change in their design in over the last
100 years, these devices may suffer dynamic closure, resulting in the entrapment of air pockets in the
pipeline [21].

Following the authors’ recommendation, the water authority replaced the actual air valves for
advanced, innovative devices for preventing the accumulation of air pockets and for averting the
above-mentioned damages. The new air valves were re-sized; they are air release and vacuum break
valves and have a small precision orifice to vent air while the pipeline is operating. The components of
these valves are in corrosion free materials, the large orifices diameters equal the nominal size of the
valves to reduce the resistance to the intake of air and reducing considerably the possible negative
pressure within the pipeline during a draining operation. In the same way, the valves design ensures
the effective removal of all air without causing dynamic closure while eliminating the possibilities of
water hammer on closure of the large orifice.

It is important to highlight, that the power failure of the four pumps at the pumping station
occurred at least twice prior to the pipe rupture. It is believed that the severe pressures caused by
the hydraulic transients with four small air pockets experienced by the pipeline in September 2012,
caused a considerable enhancement of the maximum pressure transients throughout the system,
that produced longitudinal cracks at the concrete core and mortar coating of the PCCP; this allowed
water to reach the steel cylinder and prestressing wires. In April 2013, the second interruption
of electricity supply in the pipeline system caused the unplanned shutdown of the four pumps,
this phenomenon over-pressurizes the pipes and induce stresses within them; that produced the
failure of some corroded prestressing wires, which creates distress in the concrete core and the external
mortar coating delaminates. Finally, after power failure occurred in September 2015, the pipeline failed
(see Section 4.2 for details). This hypothesis is then investigated following the methodology addressed
within the next sections.

3.2. Analysis of the Movement of Air in the Pipeline

The analytical relationship used to predict the movement of air in the investigated pipeline is
supported on extensive experimental and theoretical investigations, as well as prototype analyses
developed by Pozos et al. [22]. This relationship was obtained by analyzing a stable air pocket into
flowing water in a downward inclined pipe, where the dimensional analysis of the momentum balance
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on the pocket in the inclined pipe included the balance of drag force of water and the component of
the buoyant force in the direction opposite to the flow. The mentioned equation reads:

Q2

gD5 = S (1)

where Q is the water flow rate and S the pipe slope with s = tanθ, where θ is the angle of pipe inclination
from the horizontal, g is the gravitational acceleration and D is the inner pipe diameter. The term on
the left-hand side of Equation (1) is the dimensionless water flow rate (DWFR).

For a comprehensive explanation of the development of Equation (1), as well as the projects
where it has been successfully used to resolve air entrainment problems the reader is referred
to Pozos et al. [22]. To establish if air pockets are prone to remain stationary at the investigated
pipeline, the DWFR is evaluated for the full range of flow conditions and compared with all the pipe
slopes within the pipeline. If DWFR > S, air will move in the flow direction. On the other hand,
when DWFR < S, air will return upstream.

The DWFR corresponding to pipeline conditions (Q = 2.2 m3/s, D = 1.37 m, Q2/gD5 = 0.102)
was compared with all the pipe slopes along the system. In this case, four stations were identified as
possible candidates for air accumulation, 0 + 465.80, 0 + 990.42, 1 + 656.71 and 2 + 152.18. It is important
to bring notice that at the first station, the pipe burst occurred and that at the second one the air valve
failed. At the other two stations, there were not air valves installed maybe because they were not
considered during the design stage. Therefore, these results reinforce the hypothesis that air pockets
located at slope transitions of the investigated pipeline could be the root cause of the pipe rupture.

3.3. Evaluation of the Air Pocket Volume

Since there is a lack of methodologies to calculate the volume of stationary air pockets accumulated
at high points of pipelines reported in the literature, Pozos et al. [26] developed an experimental
investigation with the aim of deducing a relationship to compute the volume of the air pockets
build-up along pipelines. Likewise, to justify the applicability of the proposed equation a theoretical
study was carried out.

Pozos et al. [26] stated that the flow underneath air pockets may be considered to be analogous
to flow in an open channel. The pressure on the surface of an open channel flow is atmospheric;
the pressure on the air pocket surface, although not atmospheric, is constant throughout. Therefore,
it was concluded that the Gradually Varied Flow theory can be used to compute the water flow profiles
below the pockets. During this investigation the Direct Step Method (DSM) was applied to determine
the shape of the flow profiles.

Equation (2) evaluates the air pockets volume, using the water areas and the lengths of the pipe
reaches estimated with the DSM:

V =
n

∑
i=1

[
A− Ai − Ai+1

2

]
δxi,i+1 (2)

where V is the air pocket volume, A is the cross section area of the pipe, δxi,i+1 is the length of the
pipe reach, and Ai and Ai+1 denote the water areas at the downstream and upstream end of the pipe
reach, respectively.

Equation (2) is useful to evaluate quantitatively the air pocket volumes when the flow underneath
a pocket is steady. On the other hand, pipelines operate with high pressures that compress the air in
the pocket. In such a case, this relationship could overestimate the volume of air. Hence, it should be
used with caution. Nevertheless, this equation is suitable to approximate the volume of the stationary
air pockets, because air accumulated in pipelines is unknown and cannot be observed.

3.4. Experimental Investigation

An experimental setup was implemented to further analyze air pocket accumulation at the slope
transitions of the investigated pipeline and to support the results obtained with the relationship
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suggested by Pozos et al. [22]. The physical model was scaled (1:6.86) following the Froude similarity
owing to presence of free surface flow in the pipeline.

Pothof and Clemens [27], Pothof and Clemens [28] and Pothof [29] stated that surface tension
effects can be considered negligible when the Eötvös number E = γD2/σ is greater than 5000
(or D > 191 mm). Therefore, the test section of the model consisted of a 12 meter long clear PVC
pipe with an internal diameter of 200 mm. The flow was pumped from a constant head tank. The water
flow rate was measured by an electromagnetic flowmeter. Tapping points were installed along the
test section to allow the injection of air either with a piston with an air capacity of 1 L or a compressor.
The clear PVC pipes were connected by a flexible hose to adjust easily the required pipe slopes.

The upward and downward inclined pipe sections of the test facility were set at different sub- and
supercritical slopes to simulate the slope transitions identified as control sections of the stationary
air pockets in the investigated pumping pipeline. The prototype water flow rate was 2.2 m3/s,
corresponding to 17.8 L/s (0.0178 m3/s) model discharge. When the test section of the experimental
apparatus was flowing full, the air was injected through the tapping points, forming air pockets that
accumulated at the slope transition of the model.

The experimental observations confirmed that the air pockets remain at the transition of slope
for the water flow rate. The water flow below the pockets behaved as open channel flow. The test
section is equivalent to a pair of connected prismatic channels with the same cross section but with
different slopes. At the upstream leg of the experimental apparatus the flow profiles were very similar
as the profiles at open channels with adverse and mild slope (Sup). The control section occurred at
the downstream end of the subcritical slope, since the flow in a steep channel has to pass through the
critical control section at the upstream end and then follows the S2 profile (Sdown) ending in a hydraulic
jump, the subscripts “up” and “down” relate to the up- and downstream pipe portions, respectively.

Figure 6 shows the flow profiles A2 (Sup = −0.141) and S2 (Sdown = 0.109) simulated in the
hydraulic model. Part of the results obtained during the tests is summarized in Table 1. It is important
to highlight that the length of the air pocket profiles remain constant upstream of the control section
and the pocket will continue growing only in the downstream direction when more air is injected as
observed by Walski et al. [19] and Pozos et al. [20] during their investigations. In addition, the test
section of the apparatus operated at pressures slightly higher than the atmospheric pressure in Mexico
City (Patm = 8.03 mH2O).
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Table 1. Air pocket volumes and lengths of flow profiles.

Air Volume (L) Length of the Profiles (m)

Injected Equation (2) Profile Upstream Profile Downstream

Sup = −0.380 and Sdown = 0.103

5.0 4.87 0.53 0.33
11.0 10.73 0.53 1.52
18.0 17.78 0.53 3.71

Sup = 0.0021 and Sdown = 0.204

6.0 5.82 0.72 0.61
10.0 9.74 0.72 1.14
19.0 18.67 0.72 3.13

Sup = −0.141 and Sdown = 0.109

6.0 5.76 0.61 0.49
8.0 7.74 0.61 0.78
11.0 10.58 0.61 1.52
22.0 21.71 0.61 4.12

Sup = −0.157 and Sdown = 0.126

5.0 4.79 0.53 0.37
10.0 9.63 0.53 0.86
17.0 16.68 0.53 3.64
22.0 21.67 0.53 4.03

3.5. Hydraulic Transient Simulation

The hydraulic transient simulation was conducted using the numerical model, PTPSliv.for,
developed by Qiu [30]. The computational model is based on the momentum and mass conservation
equations (Equations (3) and (4)) to the water phase. Details of the program PTPS are given in [17]
and a comprehensive review of the program can be found in [30]. For the projects where it has
been successfully used to analyze hydraulic transients with entrapped air, the reader is referred
to [13,15,31,32].

∂Q
∂t

+ gA
∂H
∂x

+
f

2DA
Q |Q| = 0 (3)

a2

gA
∂Q
∂x

+
∂H
∂t

= 0 (4)

where H is the piezometric head, Q is the water flow rate, A is the cross-section flow area, D is the pipe
diameter, a is the celerity of the pressure wave, x is the spatial coordinate along the pipeline, t is the
time, g is acceleration due to gravity and f is the Darcy–Weisbach friction factor.

A general solution to the hyperbolic partial differential Equations (3) and (4) is not available.
The method of characteristics (MOC) is applied to convert the momentum and mass equations into
ordinary differential equations. These are then solved along the characteristic lines by expressing them
in finite-difference form, which can be solved without interpolation to eliminate numerical instability.
The flow remains homogenous and free of entrained air, such that wave propagation velocity remains
invariant during the transient analysis. Further, the Courant condition (∆x ≥ a∆t) was satisfied during
all simulations. A more comprehensive review of the MOC can be found in [9,33,34].

Numerical models based on the MOC are known to give accurate results and have demonstrated
to be effective [35–37]. They have been successfully applied in the design of pumping pipelines
involving transient cavitation and air pockets [12,15,18].

In the same way, to study the effect of the air pockets in hydraulic transients they are considered
as boundary conditions in the model. For computational convenience, the position of the pockets
is restricted to node points, representing junctions between adjacent pipe reaches. It is important to
highlight that the pockets are considered as accumulators, where the pressure at any instant is the
same throughout the air volume. The compressibility of the liquid in the accumulator can be neglected
since it is very small compared with the air compressibility. Further, inertia and friction are ignored.
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The air enclosed at the pocket or accumulator is assumed to follow the reversible polytropic
relation (Equation (5)) (Wylie et al. [34]):

HAbsVm = k (5)

where HAbs is the absolute head in the pocket and is equal to the gauge pressure at the corresponding
nodal points plus atmospheric pressure, V is the air volume in the pocket, k is a constant whose value
is evaluated from the initial steady state condition for the air pocket, and m is the polytropic exponent
that ranged from 1.0 to 1.4. In this study, m = 1.4 was employed, since various researchers have
demonstrated experimentally and numerically that hydraulic transients with entrapped air pockets
are better predicted with a polytropic exponent m = 1.4 [38–40].

Since Equation (5) may apply at any instant, it can be written for the junction (j, n + 1) at the end
of the time increment ∆t, as shown in Equation (6). For the junctions (j, n + 1) and (j + 1,1), the first
subscript refers to the pipe sections between input topographical coordinates and the second subscript
denotes further subdivisions into reaches, of the jth and (j + 1)th pipe sections. Figure 7 shows the
notation for the air pocket.

(HPj,n+1 + Hb − zj,n+1)(Vj,n+1 + ∆Vj,n+1)
m = k1 (6)

where HPj,n+1 is the piezometric head above the datum, Hb the barometric pressure head, zj,n+1 is the
height of the pipe axis above the datum, Vj,n+1 is the volume of the air pocket at the beginning of the
time step ∆t, and ∆Vj,n+1 is the air volume change during the time interval. The continuity equation
for the junction becomes:

∆Vj,n+1 =
∆t
2

[
(QPj+1,1 + Qj+1,1)− (QPj,n+1 + Qj,n+1)

]
(7)

where Qj,n+1 and QPj,n+1 are the water flow rates at the upstream end of the air pocket at the beginning
and end of the time step, respectively; and Qj+1,1 and QPj+1,1 are the water flow rates at the downstream
end of the air pocket at the beginning and end of the time step, respectively. Noting that the variables
with subscript P indicate that these are unknown at the time t + ∆t. Finally, to investigate the effect of
the air pockets in hydraulic transients, Equation (6) yields:(

HPj,n+1 + Hb − z
) [

Vj,n+1 +
∆t
2

{(
Qj+1,1 −Qj,n+1 + C− − C+

)
+ (Bj + Bj+1)HPj,n+1

}]m
= k1 (8)

where C+ and C− are the so-called characteristic lines and B is a coefficient, defined as B = a/gA.
Likewise, HPj,n+1 is the only unknown in Equation (8), which is not linear and the method of
Newton–Raphson is employed for solution.
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In addition, the following assumptions were made during the implementation of the numerical
model Qiu [30]: (1) air pockets will not lead to water column separation during the transients,
because they never occupy the entire cross section of the pipe; (2) it is supposed that the air pockets
remain at the slope transitions during the transient simulation, since the movement of free air can be
neglected in comparison with the quick phenomenon of the travel of pressure waves; and (3) no gas
release and absorption take place during the transients.

Prior to the simulation, Equations (1) and (2) were used to find the potential stations susceptible to
build up air pockets along the investigated pipeline and to compute the air pocket volumes, respectively.
The results obtained are summarized in Table 2. The pipe slopes S correspond to the downward sloping
pipes, where the air bubbles/pockets will return relative to the current, and then air will collect at the
upstream end of the downgrade pipe. Likewise, after several simulations, transient pressures achieved
showed that small volumes of air are the critical air pocket sizes.

Afterwards, a series of numerical transient simulations by using the numerical model were
developed to find the worst-case scenarios. The most critical situation is that when the pumping
plant operates with four pumps and the four small air pocket volumes summed up in Table 2 are
placed at the stations identified in the analysis. In addition, to compare the hydraulic transients
with and without entrapped air in the pumping pipeline, the sudden shutdown of the pumps due to
power failure was simulated without considering air accumulated. The maximum and minimum head
envelopes achieved with and without regarding air are plotted in Figure 7.

Table 2. Air pocket volumes and their location when 4 pumps perform at the pumping station.

Chainage (m) Elevation (m) S Volumes of Air (m3)

465.80 81.31 0.103 1.513
990.42 101.65 0.204 1.431

1656.71 115.10 0.109 1.815
2152.18 129.73 0.126 1.723

4. Results and Discussion

4.1. Simulation Analysis

Because there were no pressure recorders in the failure area, a hydraulic transient analysis was
performed to estimate the magnitude of the pressure increases that may have occurred near the failure
location. The analysis started with a simulation of a transient event caused by power failure for the
four pumps in the plant without considering air pockets. It is important to highlight that the results of
the numerical simulation shows a suitable design of the pumping pipeline due to the highest pressures
did not surpass the design pressure transients achieved for the same scenario in the length of line
affected, as can be observed in Figure 8.

In contrast to the above mentioned, the presence of the four small air pocket volumes occasioned
the worst consequence in the investigated pipeline, they caused a considerable heightening of the
maximum and minimum head envelopes along the system (see Figure 8). The results show that these
pockets absorbed only a part of the transient pressure wave and the rest is reflected and amplified
towards the boundaries, the butterfly valves at the discharges of the pumps at upstream end and the
constant head tank at downstream end of the pipeline.

It is also observed from the minimum head envelopes (with and without air) that the system never
experience subatmospheric pressure that could lead to water column separation. Therefore, it can be
discarded that the pressures generated when the separated columns rejoin caused the PCCP failure.

Figure 8 also shows that the upstream air pocket location gives the highest transient pressures
at the pump exit. This is possibly as a result of the effect of reflection of the transient wave by the
small air pocket, since it suppresses only partially the energy of pressure waves, this contributes to
an accumulation effect. In addition, the influence of the small pocket further downstream is that the
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transient pressures have reached their maximum value earlier, and, therefore, amplification of the
pressures is lower [17].Water 2016, 8, 395  12 of 16 

 

 

Figure  8. Comparison  of maximum  and minimum  head  envelopes with  and without  air  in  the 

investigated pipeline. 

In the same way, the critical pressure at which the PCCP could fail was estimated to be 510.93 

m of water column (5012.19 kPa = 726.96 psi). This critical pressure occurred at station 0 + 465.80 was 

41.86% higher than that caused by the pumps shutdown without regarding air pockets. This increase 

in pressure could be enough to generate the pipe burst, due to the permissible pressure assumed for 

the design and construction of the investigated pipeline with a safety factor of 3 is 420.99 m (4130 kPa 

= 600 psi). 

4.2. Probable Failure Sequence 

The  authors  suggested  the  existence  of  four  small  air  pockets  at  changes  of  slope  of  the 

investigated pipeline, since the occurrence of the first simultaneous power failure of the four pumps 

in September 2012.  It  is believed  that during  this surge event  the severe pressures caused by  the 

hydraulic transients with entrapped air experienced by the pipeline produced the longitudinal cracks 

in the concrete core and mortar coating of some undamaged PCCP. 

Likewise, Ge and Sinha [41] developed a structural analysis of a 60‐inch (1.52 m) PCC pipe with 

an internal pressure rating of 98.85 mH2O (940 kPa = 137 psi) for different scenarios by using a three‐

dimensional (3D) finite element model (FEM). The authors analyzed the stress level in the pipe to 

understand when the concrete core starts cracking. In this study, the loadings such as internal water 

pressure, the weight of the earth and pipe were considered, as well as PCCP components such as 

mortar coating, concrete core, prestressing wires, steel saddle, and cylinder. The results indicated that 

if the prestressing wires are full prestress the maximum principal stress distribution in concrete core 

and mortar coating occurs at the crown and invert. 

Based  on  the  findings  of Ge  and  Sinha  [41]  and  the  results  obtained  during  the  transient 

simulation with four small air pockets,  it was found that the maximum  internal water pressure  is 

equal to 5012.19 kPa, which is higher than the tensile strength of concrete (4020 kPa). Therefore, the 

internal pressure could have been enough to enhance the maximum principal stress distribution in 

concrete  core  and mortar  coating  to  generate  the  cracks  at  the  pipeline.  This  could  explain  the 

longitudinal cracks found at crown and invert of some pipeline sections during the field survey.   

Once  the  cracks  appeared  at  the  concrete  core  and mortar  coating,  the  treated water with 

chlorine could penetrate into the pipe and corrode the steel cylinder, since the cylinder has contact 

with inner core. In the same way, the cracks at the mortar coating allow groundwater intrusion and 

also enabling chloride and sulfide ions to reach the prestressing wires and cylinder through diffusion, 

facilitating corrosion [3]. 

Figure 8. Comparison of maximum and minimum head envelopes with and without air in the
investigated pipeline.

In the same way, the critical pressure at which the PCCP could fail was estimated to be 510.93 m
of water column (5012.19 kPa = 726.96 psi). This critical pressure occurred at station 0 + 465.80 was
41.86% higher than that caused by the pumps shutdown without regarding air pockets. This increase
in pressure could be enough to generate the pipe burst, due to the permissible pressure assumed
for the design and construction of the investigated pipeline with a safety factor of 3 is 420.99 m
(4130 kPa = 600 psi).

4.2. Probable Failure Sequence

The authors suggested the existence of four small air pockets at changes of slope of the investigated
pipeline, since the occurrence of the first simultaneous power failure of the four pumps in September
2012. It is believed that during this surge event the severe pressures caused by the hydraulic transients
with entrapped air experienced by the pipeline produced the longitudinal cracks in the concrete core
and mortar coating of some undamaged PCCP.

Likewise, Ge and Sinha [41] developed a structural analysis of a 60-inch (1.52 m) PCC pipe
with an internal pressure rating of 98.85 mH2O (940 kPa = 137 psi) for different scenarios by using
a three-dimensional (3D) finite element model (FEM). The authors analyzed the stress level in the
pipe to understand when the concrete core starts cracking. In this study, the loadings such as internal
water pressure, the weight of the earth and pipe were considered, as well as PCCP components such
as mortar coating, concrete core, prestressing wires, steel saddle, and cylinder. The results indicated
that if the prestressing wires are full prestress the maximum principal stress distribution in concrete
core and mortar coating occurs at the crown and invert.

Based on the findings of Ge and Sinha [41] and the results obtained during the transient simulation
with four small air pockets, it was found that the maximum internal water pressure is equal to
5012.19 kPa, which is higher than the tensile strength of concrete (4020 kPa). Therefore, the internal
pressure could have been enough to enhance the maximum principal stress distribution in concrete
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core and mortar coating to generate the cracks at the pipeline. This could explain the longitudinal
cracks found at crown and invert of some pipeline sections during the field survey.

Once the cracks appeared at the concrete core and mortar coating, the treated water with chlorine
could penetrate into the pipe and corrode the steel cylinder, since the cylinder has contact with
inner core. In the same way, the cracks at the mortar coating allow groundwater intrusion and also
enabling chloride and sulfide ions to reach the prestressing wires and cylinder through diffusion,
facilitating corrosion [3].

In April 2013, the second power failure of the four pumps occurred at the pumping plant;
likewise, the pipeline could withstand the high internal pressure generated by the transient event
with entrapped air. However, this phenomenon over-pressurizes the pipes and induce stresses within
them; the increase in the stresses in the wires produced the failure of some corroded prestressing wires,
since a relatively small amount of corrosion can cause a wire to break [42]. When wires break the
strength of the pipe is reduced, which creates distress in the concrete core and the external mortar
coating delaminates.

In September 2015, more than two years after the last transient event, once again occurred the
simultaneous shutdown of the four pumps. Further, it is considered that the cracks at the inner concrete
core and the mortar coating, the corroded steel cylinder, and eventual breakage of enough wires at the
barrel led to reduce the strength of the pipe. Hajali et al. [43] and Hajali et al. [44] investigated the effect
of the number and location of broken wire wraps on the structural performance of a 96-inch (2.44 m)
PCCP with an internal pressure rating of 87.69 mH2O (860 kPa = 125 psi) by using advanced numerical
modeling (3D-FEM). The stresses and strains in the various components of PCCP are evaluated with
increasing internal fluid pressure. They found that with only five broken wire wraps at the barrel
of the PCC pipe the cracking in the concrete core and in the mortar coating occurs at 140.52 mH2O
(1379 kPa = 200 psi) and at 154.58 mH2O (1517 kPa = 220 psi) internal fluid pressure, respectively.
The rupture for the prestressing wire wraps takes place at internal fluid pressures of 234.37 mH2O
(2300 kPa = 334 psi). Therefore, based on the above, it is believed that the maximum transient pressure
equal to 510.93 mH2O (5012.19 kPa = 726.96 psi) that occurred at station 0 + 465.80 was enough to
generate the pipe rupture.

It is important to highlight that a structural analysis was not conducted due to the lack of pipe
material data. Likewise, it can be expected that the findings of Ge and Sinha [41], Hajali et al. [43] and
Hajali et al. [44] remain valid for the Class 90-14 54-in. PCCP of the investigated pipeline.

5. Recommendations

Based on the results of the forensic evaluation, it can be stated that the sudden and catastrophic
failure of the pipe at station 0 + 465.80 is the result of a combination of factors. During the pipeline
construction a combination air valve had been misplaced, conventional air valves with hollow floats
were installed and one of this devices suffered from dynamic closure and the float jammed into the
orifice. In the same way, two small air pockets accumulated at two high points (stations 1 + 656.71
and 2 + 152.18) where air valves were not located. Furthermore, the power failure of the four pumps
occurred at least twice (September 2012 and April 2013) before the pipe rupture, unfortunately,
after these hydraulic transient events the pipeline was not inspected. It is considered that the severe
internal pressure transients created longitudinal cracks in the concrete core and mortar coating,
enabling the water to corrode the wires and cylinder, and after some months the prestressing wires
break. Finally, in September 2015, the unexpected shutdown of the four pumps caused the catastrophic
failure of the pipeline.

Although the water authority replaced the five distressed pipe sections, installed permanent
acoustic fiber optic along the invert of the pipeline to continuously track the time and location of wire
breaks in the prestressing wire of the pipes, and made the replacement of the conventional air valves
with advance devices for preventing the accumulation of air pockets. It is recommended to perform
additional works to reduce risk of failure in the future.
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Given the performance history of the pumping pipeline, the water authority should implement
the following actions for this system; the activities are numbered in order of priority from authors’
engineering judgment:

(1) A laboratory analysis should be performed to the failed pipe and the five distressed pipes
replaced, with the main aim of evaluating the condition of the mortar, prestressing wires, and the
steel cylinder.

(2) Develop a structural analysis of the pipeline based on the electromagnetic testing, using Finite
Element Analysis to determine the capacity of the damaged pipeline segments and to determine future
repair priorities.

(3) A transient pressure monitoring system should be installed; it can reliably detect the presence
of a pressure transient in the pipeline to have better understanding about behavior of the system.
Under steady and unsteady flow conditions, the pressure monitoring system samples pressure data
that could be useful for a detail analysis in case of future pipeline failures.

(4) An additional longitudinal and circumferential strength should be provided to the 22 pipe
sections with wire break damage. The strengthening method recommended is the Carbon Fiber
Reinforced Polymer (CFRP) to line the interior of the pipes.

(5) Soil corrosivity testing in the full length of the pipeline to determine corrosion damage and to
identify areas of corrosion activity to install cathodic protections.

(6) External and internal inspection once a year, during low demand periods. The inspections
have to be closely coordinated and well planned to allow time to drain, inspect and fill the pipeline.
Technologies and inspection techniques are available to reliably assess the condition of these systems
so that problematic sections of pipe can be identified and repaired prior to failure.

(7) Electromagnetic calibration of pipeline segments for future surveys. When feasible, it is
advisable to perform a calibration of the electromagnetic inspection equipment on the pipeline to be
inspected. Calibration involves cutting a known amount of prestressing wire wraps on a pipe section
and performing an electromagnetic test to determine the electromagnetic response to a known level of
damage in a pipe section. Numerous wire cut scenarios are created and electromagnetic signatures are
obtained for each of them. This type of calibration provides the most accurate reliable electromagnetic
inspection results.

As a result, it is clear that proactive assessment and management of pipelines can extend the
service life of these systems, avoiding outages because of unexpected failures.

6. Conclusions

Based on the forensic evaluation, the failure does not appear to have been caused by a single
factor but by a combination of several factors that include air accumulation in the pipeline, power loss
events, and installation of conventional air valves. Likewise, after the unexpected shutdowns of
the four pumps that occurred in September 2012 and April 2013 the pipeline was not inspected.
The accident could have been avoided if there had been better coordination during the design process,
system construction and operation.

The accident under consideration should be a warning that in pumping pipelines, even those
equipped with air valves, there is a real danger of a pipe burst caused by severe transient pressures,
when power failure occurred in a pumping plant and there are small air pockets located along the
pipeline profile. To prevent these situations, it is desirable to analyze the potential destructive effects
of air pockets on hydraulic transients for various conditions of pumps operation as a matter of routine
during design stage of pumping systems.

The severe pressure transients achieved by the hydraulic transient analysis with entrapped air
appears to ratify the PCCP failure diagnostic and show that the small air pocket volumes located
at points 1 to 4 (Figure 8) of the pumping pipeline have the potential harmful effect to exacerbate
pressure transients that could lead to the pipeline rupture, since during the transient simulation of the
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simultaneous power failure of the four pumps regarding entrapped air, the pressures in the whole
length of the pipeline remain above allowed working pressure.

In the case of the damaged air valve and the air valve that was misplace, they were directly
responsible for the pipe rupture, since they aggravated the transient pressures during the power
failure, because of the entrapment of air in the pipeline. It was therefore recommended to change the
actual air valves to modern ones for preventing the accumulation of air pockets and for averting the
above-mentioned accident. Further, the installation of permanent acoustic fiber optic will help the
water authority to avoid pipe failure under normal operation and reduce any additional risk during
an emergency operation.

Finally, it was recommended to perform additional works to reduce risk of failure in the future.
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