
water

Article

SPI Based Meteorological Drought Assessment over
a Humid Basin: Effects of Processing Schemes

Han Zhou 1,2 and Yuanbo Liu 1,*
1 Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology,

Chinese Academy of Sciences, No. 73 East Beijing Road, Nanjing 210008, China; zhouhan0925@163.com
2 University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
* Correspondence: ybliu@niglas.ac.cn; Tel.: +86-25-8688-2164

Academic Editor: Y. Jun Xu
Received: 12 June 2016; Accepted: 26 August 2016; Published: 31 August 2016

Abstract: Meteorological drought monitoring is important for drought early warning and disaster
prevention. Regional meteorological drought can be evaluated and analyzed with standardized
precipitation index (SPI). Two main processing schemes are frequently adopted: (1) mean of all
SPI calculated from precipitation at individual stations (SPI-mean); and (2) SPI calculated from
all-station averaged precipitation (precipitation-mean). It yet remains unclear if two processing
schemes could make difference in drought assessment, which is of significance to reliable drought
monitoring. Taking the Poyang Lake Basin with monthly precipitation recorded by 13 national
stations for 1957–2014, this study examined two processing schemes. The precipitation mean and
SPI mean were respectively calculated with the Thiessen Polygon weighting approach. Our results
showed that the two SPI series individually constructed from two schemes had similar features and
monitoring trends of regional meteorological droughts. Both SPI series had a significantly positive
correlation (p < 0.005) with the number of precipitation stations. The precipitation-mean scheme
reduced the extent of precipitation extremes and made the precipitation data more clustered in
some certain, it made less precipitation deviate from the precipitation-mean series farther when less
precipitation occurred universally, which would probably change the drought levels. Alternatively,
the SPI-mean scheme accurately highlighted the extremes especially for those with wide spatial
distribution over the region. Therefore, for regional meteorological drought monitoring, the SPI-mean
scheme is recommended for its more suitable assessment of historical droughts.

Keywords: meteorological drought; processing scheme; precipitation; standardized precipitation
index; basin

1. Introduction

As a hydroclimatic hazard, drought poses a serious threat to society, economy, ecosystem and other
sectors [1,2]. The droughts have been increasing worldwide [3,4]. Droughts occur in any climate zone,
and their properties (frequency, duration, and severity) may differ from one to another [5]. Quantitative
assessment of drought features and its development is essential to understanding different drought
types at scales from the local to the global [6]. However, there is currently no general consensus
on the definition of drought [4,6–12], which has been a stumbling block in drought monitoring and
analysis. The American Meteorological Society [13] summarized dozens of drought definitions into
four categories: meteorological, agricultural, hydrological and socioeconomic droughts. The four
categories are associated with different components of hydrologic cycle [14]. Generally, precipitation
is the driving and critical factor in the hydrologic cycle. The absence or reduction of precipitation
instigates meteorological drought. Subsequently, short-term dryness in the surface and subsurface
layers may result in agricultural drought. Finally, when precipitation deficits stay for a prolonged
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period, low recharge from soil to water features (lakes, groundwater, and rivers) causes a delayed
hydrological drought [4,15]. The propagation from meteorological drought to hydrological drought
is characterized in terms of pooling, time lag, attenuation, and lengthening [16–18]. That is to say,
meteorological drought, which is defined as a lack of precipitation over region for a period of time [4],
plays an important role in subsequent drought formation and propagation across different drought
types [19].

In practice, drought assessment for a specific area is often required for disaster prevention from
local agencies or communities [20]. Akhtari et al. [21] pointed out that tracking the droughts in cities is
one of the most objectives of drought mapping. Zhang et al. [22] assessed drought vulnerability with
SPI taking county as a study unit and the assessment was useful for early warning of regional
droughts [23]. The National Temperature and Precipitation Maps of the National Oceanic and
Atmospheric Administration’s National Centers for Environmental Information provides the drought
products at different scales from national, regional, statewide, and divisional. Hydrologically, the
region impacted by drought is not only limited to river network and its vicinity, but also the whole
basin [24]. As an elementary unit of hydrologic processes, basin with a high degree of functional
integrity contains abundant hydrological information. Basin-scale analysis is beneficial to reveal
the interactions among multiple hydrologic variables [25]. Thus, it is highly worthwhile to study
meteorological drought at a basin scale.

In recent decades, many drought indices have been proposed, such as Z-index Palmer [8],
Palmer Drought Severity Index (PDSI) [8], Standardized Precipitation Index (SPI) [26], Effective
Drought Index (EDI) [27], Reconnaissance Drought Index (RDI) [28], Standardized Precipitation
Evapotranspiration Index (SPEI) [29]. Among these indices, the SPI has been widely applied in many
aspects [3,27,30–37], and recommended as a standard index for tracking meteorological droughts
by the World Meteorological Organization [38]. At present, two processing schemes are frequently
adopted for regional drought assessment. In the first case, SPI is first calculated from precipitation
for each individual stations and then regional SPI is obtained by averaging the SPI values of all the
stations (SPI-mean, hereafter, Case A). In the second case, regional precipitation is at first obtained by
averaging the precipitation of all the stations and then SPI is calculated from the average precipitation
(precipitation-mean, hereafter, Case B). Livada and Assimakopoulos applied the Case-A processing
scheme to analyze temporal trend of droughts in Greece [31]. Zhai et al. quantitatively analyzed
frequencies of dry and wet years and its tendency for 7 basins and 3 regions in China with the time
series of averaged annual SPI [39]. Gao and Zhang used the mean annual SDI and SPI series to
disclose a tendency towards wetter condition in the Hexi Corridor, China [40]. Dash et al. investigated
the characteristics of meteorological droughts in Bangladesh using SPI obtained with the Case-B
scheme [41]. The characteristics (frequency, duration, and severity) of historical drought events based
on SPI series obtained from areal mean precipitation are often applied to construct and examine the
probabilistic models (using the Case B processing scheme) [42]. For drought assessment of an entire
region based on local observations, either of two processing schemes is frequently used. Two processing
schemes both involve space average. Hence, the difference between two processing schemes may
result from the heterogeneity of precipitation. Furthermore, the mean-precipitation and mean-SPI
schemes may produce different SPI values, providing that the local observations are generally not
homogeneously distributed [43]. There are few studies to compare two processing schemes, leaving
a gap for users to select a suitable scheme for reliable assessment of regional droughts.

The areal SPI values are the crucial basis and input variables for drought evolution, regional
drought vulnerability assessment, and drought quantitative models. Therefore, the reasonable areal
SPI series are of great importance. However, the different processing schemes might result in the
dissimilar estimation results. Thus, this study uses both processing schemes to compare their pros and
cons, and attempts to provide evidence on selection of an advisable scheme for drought analysis. First,
in combination with the Thiessen polygon weighting approach, it testifies the frequency distribution
of available data of monthly precipitation. Then, the characteristics of drought events obtained from
two processing schemes is analyzed and compared. The Poyang Lake Basin in China is taken to be
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a case study area for its geographic and ecological importance. Moreover, the basin contains Poyang
Lake wetlands which is in the first batch of The Ramsar Convention List of Wetlands of International
Importance [44]. However, during the decade, the Poyang Lake wetlands have been under constant
threat from anthropogenic activities and droughts [45,46]. The study could provide implications for
regional drought analysis. Meanwhile, researches in this region could provide some clues to monitor
drought in other similar areas.

2. Materials and Methods

2.1. Methods

2.1.1. Standardized Precipitation Index

The SPI was established by McKee et al. [26] assuming that precipitation follows the Gamma
distribution. Calculation of 1-month SPI requires a Gamma distribution curve fitting for a given
precipitation data sequence. The Gamma distribution is defined by a probability density function
(See Equation (1)).

f (xi) =
1

βαΓ(α)
xi

α−1e−xi/β (1)

where α and β are the shape and scale parameters. The larger the shape parameter value is, the closer
to normal distribution curve the density curve is. xi (>0) is the precipitation within i consecutive
months, namely, i time scales.

x(j)
i =

i

∑
k=1

Pj k, j = 1, 2, · · · , N (2)

where Pjk is the precipitation value of k-th month of j-th year. N is the number of year. This study uses
1-month time scale, and therefore i = 1.

The Gamma function Γ(α) is given as:

Γ(α) =
∫ ∞

0
tα−1e−td t (3)

The parameters α and β are estimated with the approximation of THOM [47] as follows:

α =
1

4A

(
1 +

√
1 +

4A
3

)
(4)

β =
xi
α

(5)

where A = ln(xi)− 1
n

n
∑

j=1
ln((xi)j).

Based on the probability density function (Equation (1)), the cumulative probability g (xi) at the
selected time scale is given as follows:

g(xi) =
∫ xi

0
f (xi)dxi =

1
βαΓ(α)

∫ xi

0
xα−1

i e−xi/βdxi (6)

The probability of no precipitation can be written as:

F(xi = 0) =
m
n

(7)

where m denotes the number of zero precipitation in the calculated data sequence.
In the case of zero precipitation, the cumulative probability can be expressed as:

H(xi) = F(xi = 0) + (1− F(xi = 0))g(xi) (8)
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Finally, H (xi) can be transformed to SPI using the following equations by Milton et al. [48].

SPI = −(t− c0 + c1t + c2t2

1 + d1t + d2t2 + d3t3 ), t =

√√√√ln

(
1

H(xi)
2

)
, f or 0 < H(xi) ≤ 0.5 (9)

SPI = (t− c0 + c1t + c2t2

1 + d1t + d2t2 + d3t3 ), t =

√√√√ln

(
1

[1− H(xi)]
2

)
, f or 0.5 < H(xi) < 1 (10)

where c0 = 2.515517, c1 = 0.802853, c2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and d3 = 0.001308.
The drought levels can be classified according to SPI range in Table 1.

Table 1. Drought levels according to SPI values [20,26].

SPI Range Drought Classes

[2.0, +∞) Extremely wet
[1.5, 2.0) Very wet
[1.0, 1.5) Moderate wet

(−1.0, 1.0) Near normal
(−1.5, −1.0] Moderate drought
(−2.0, −1.5] Severe drought
(−∞, −2.0] Extreme drought

2.1.2. Thiessen Polygon Approach

The Thiessen polygon approach divides a study area into sub-areas, which is defined by lines
orthogonal to those connecting each nearest pair of meteorological stations. The data point is a proxy
of the average condition for corresponding polygon. The approach is widely used in estimating
areal average precipitation [49,50]. The weighting value of a meteorological station can be described
as follows:

wi =
Si

Area
, ∑M

i=1Si = Area, ∑M
i=1wi = 1 (11)

where wi represents the weighting value of i-th selected meteorological station, Si denotes the area of
the Thiessen polygon of i-th selected meteorological station, Area denotes the whole study area, and M
denotes the number of selected meteorological stations.

2.1.3. Two Processing Schemes for Regional SPI

In Case A, regional SPI (SPIA) is obtained from the SPIs of all the individual meteorological
stations. The expression is given as:

SPIA =
M

∑
i=1

(wi × SPIi) (12)

where SPIi denotes the SPI series of i-th meteorological station.
In Case B, regional precipitation series is the mean of monthly precipitation values of all the

selected meteorological stations in the same period. The expression can be written as follows:

P =
M

∑
i=1

(wi × Pi) (13)

where P represents the average of precipitation observations. Then, the regional SPI for the case (SPIB)
are computed as described in Section 2.1.1.

The difference between SPIA and SPIB is described as follows:

∆SPI = SPIA − SPIB (14)
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2.1.4. Metrics for Comparison

The slope coefficient of linear regression and coefficient of determination (R2) are often applied
to depict the consistency between two measures. The linear regression and R2 can be written as
follows [51]:

yi = aki + b (15)

R2 =

 ∑N
i=1

(
ki − k

)
(yi − y)√

∑N
i=1

(
ki − k

)2
∑N

i=1 (yi − y)2


2

(16)

where ki denotes the number of stations or SPIA, k denotes the average of the number of stations or
SPIA, yi represents ∆SPI or SPIB acquired by the linear regression, y represents the average of the linear
estimates of ∆SPI or SPIB. The greater R2 is, the better results are.

To evaluate performances of different processing schemes for drought identification, probability
of detection (POD) is used [52].

POD(%) =
S
G
× 100 (17)

where G denotes the number of months in the case of a certain number of stations for monitoring
drought. S denotes the number of months in the case of drought detected by a certain number of
stations as well as by SPI series based on either processing scheme.

2.2. Study Area and Data Sources

The Poyang Lake Basin lies between 24◦29′ to 30◦04′ N and 113◦34′ to 118◦28′ E, covering an area
of 1.62× 105 km2 (Figure 1) and enclosing the Poyang Lake. As China’s largest freshwater lake, Poyang
lake plays a significant ecological and hydrological role [53]. The basin is a part of the North-South
Transect of Eastern China defined in the Global Change and Terrestrial Ecosystems project of the
International Geosphere-Biosphere Programme [54]. The basin belongs to a humid subtropical climate
zone with an annual mean near surface air temperature of 17.5 ◦C for 1960–2010 [55]. The monthly
precipitation ranges from 50.2 mm (in December) to 280.8 mm (in June) with a mean of 137.9 ± 74.2 mm
for 1957–2014.Water 2016, 8, 373 6 of 17 
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Figure 1. Study area and location of the selected stations along with their Thiessen polygons.

The data sets of the study were acquired from the China Meteorological Data Sharing Service
System (CMDSSS). Expect for the newly-built stations (after 2007) and stations with default data,
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this study selected 13 national meteorological stations. The monthly precipitation records for the
period of 1957–2014 were available. The locations of the selected national meteorological stations are
shown in Figure 1. In addition, the main characteristics of these stations are listed in Table S1.

3. Results

3.1. Areal Weights Obtained from the Thiessen Polygons Approach

The Thiessen polygons of 13 meteorological stations in the Poyang Lake Basin are shown in
Figure 1. The weighting values of individual Thiessen polygons are listed in Table 2.

Table 2. Weighting values of selected meteorological stations.

Station Code Area of Corresponding Thiessen Polygon (km2) Weighting Value

57598 12,509 0.0772
57793 11,323 0.0699
57799 12,993 0.0802
57896 11,587 0.0715
57993 25,241 0.1558
58519 9797 0.0605
58527 12,417 0.0767
58606 11,966 0.0739
58608 11,324 0.0699
58626 10,472 0.0646
58634 8448 0.0522
58715 10,220 0.0631
58813 13,683 0.0845

Table 2 shows that most weighting values ranged from 0.06 to 0.09. The largest weighting value
was 0.16 for the Ganzhou meteorological station (code: 57993) located in the south of the Poyang
Lake Basin, while the smallest weight value was 0.05 for the Yushan station (code: 58634) lied in the
northeast of the basin. It indicated that the selected meteorological stations were relatively even as
a whole. The values were used in computing areal mean precipitation and SPI.

3.2. Frequency Distribution of Site-Scale and Site-Averaged Precipitation

The Kolmogorov-Smirnov test demonstrated that the monthly precipitation followed Gamma
distribution at all the selected meteorological stations for 1957–2014. So is the site-averaged
precipitation sequence. Table 3 shows the shape parameter values of Gamma distribution. As indicated
in Table 3, in terms of all the selected meteorological stations, the annual tendency of shape parameters
for almost all stations at first increased and then decreased. The greater shape parameters ranged from
4.81 to 8.52 in April, whereas the less shape parameters ranged at 1.11–1.56 in November (or 1.15–1.61
in December). After processing by precipitation-average scheme, the shape parameter values of
Gamma distribution for Case B were generally larger than that for individual stations, especially in
March-September. In addition, the shape parameter values for Case B were greater than 8 in March
(8.31), April (9.96), May (9.22), and June (10.53), but less than 5 in other months. It indicated that
precipitation-density curves were closer to the normal distribution for Case B in March–June.

Figure 2 displays the cumulative-probability curves for 13 stations and Case B in
January–December. The cumulative-probability curves were highlighted in red color for Case B.
The distribution curves were more dispersed in February–September than other months. Moreover,
the growth rate was generally faster for Case B, indicating more clustered precipitation for the
period, which was consistent with that shown in Table 3. Noticeably, the cumulative probabilities at
less precipitation for Case B were generally smaller than that for most of stations, but greater than
that for most of stations at larger precipitation. The phenomenon was more distinctly observed in
February–September (Figure 2). It indicated there was less frequency at relatively less or larger
precipitation, while the majority of precipitation was located in the middle part of the gamma
density distribution.
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Table 3. Shape parameters of Gamma distribution for 13 stations and that for precipitation-average
scheme from January to December.

Station Code Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

57598 3.60 3.12 5.77 4.81 6.18 5.48 2.13 3.05 2.18 1.96 1.46 1.61
57793 2.81 4.68 6.83 8.52 4.80 4.77 2.17 2.35 2.28 1.70 1.56 1.20
57799 2.45 3.15 6.02 7.76 4.58 4.68 2.22 1.49 1.39 1.04 1.22 1.20
57896 1.97 2.12 4.25 6.42 8.77 5.26 1.86 2.53 2.84 1.00 1.24 1.15
57993 1.41 1.70 4.02 5.12 6.10 4.09 1.98 2.86 1.89 0.75 1.11 1.29
58519 2.64 3.32 5.41 5.67 4.09 3.84 2.04 1.52 0.97 1.64 1.39 1.35
58527 2.91 3.14 5.19 5.81 6.09 4.49 1.73 1.59 1.72 1.33 1.32 1.47
58606 2.61 3.04 6.06 5.57 4.17 5.26 2.12 1.71 1.23 1.60 1.19 1.23
58608 2.46 3.70 6.08 8.33 4.83 4.30 2.06 1.67 1.89 1.36 1.31 1.32
58626 2.95 3.77 6.63 6.80 5.55 4.02 2.24 2.13 2.07 1.61 1.33 1.40
58634 3.44 3.53 5.87 6.49 5.47 4.29 1.39 1.97 2.47 1.58 1.23 1.23
58715 2.37 3.60 5.96 6.64 6.04 4.85 1.65 2.51 1.65 1.07 1.21 1.27
58813 1.87 2.76 4.93 5.75 5.89 3.94 1.90 3.02 1.62 0.73 1.12 1.38
Case B 2.65 4.52 8.31 9.96 9.22 10.53 4.34 4.82 4.35 1.37 1.68 1.51
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3.3. Comparison of Case A and Case B for Drought Identification

Figure 3 illustrates the SPI time series obtained from two different processing schemes.
The tendencies of the Poyang Lake Basin meteorological droughts were described by y = 5E-06x− 0.166
(R2 = 0.0018) for SPI time series obtained from Case A and y = 8E-06x − 0.252 (R2 = 0.0025) for
SPI time series obtained from Case B, where x is the calendar month, respectively. Both series had
similar features and trends of regional meteorological droughts. The slope of regression line was
approximately 0 for either case. The fluctuation pattern generally stayed consistent, while their extreme
values were greater for Case B than that for Case A. It implied that the Case A processing scheme
could reduce the spatiotemporal variability in precipitation.
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Figure 3. SPI time series obtained from the SPI-mean scheme (Case A) and from the precipitation-mean
scheme (Case B), along with fitted regression lines, for the Poyang Lake Basin in 1957–2014.

Table 4 shows the statistics of meteorological droughts obtained from two different processing
schemes, in terms of drought event number, drought duration, and drought severity. The Case B
processing schemes identified 162 drought events for 1957–2014, which was only one more than that
for Case A. The drought duration ranged from 1 month to 11 months with 2.13 ± 1.72 months for
Case A, approximately equal to that for Case B (2.13 ± 1.69 months). However, drought severity
ranged at 0–12.26 with 1.70 ± 1.65 for Case B, generally greater than that for Case A. The quantitative
statistical relationship of drought duration and severity of all drought events from two processing
schemes was given in Figure 4. As indicated in Figure 4, the durations of most of drought events
ranged from 1 to 4 months. The severity of drought events was generally aggravated in the case of
Case B compared to that of Case A, which was also exhibited in Figure S1. Severe meteorological
drought events were captured such as in 1963, 1978, 1997, 2003, and 2013 (Figure 4 and Figure S1).
Moreover, the onset and termination time were almost identical for all the individual drought events.
In addition, the slope of linear relationship for Case B was 0.7855 (R2 = 0.649), which was larger than
0.6146 (R2 = 0.6309) for Case A. In general terms, compared with that for Case B, the drought severity
for Case A was generally smaller at the same drought duration. It might impact on drought assessment
and quantitative approaches related to it.

Table 4. Statistics of meteorological droughts obtained from two different processing schemes.

No. of
Drought Events

Drought Duration (Months)
Mean ± SD (max)

Drought Severity
Mean ± SD (Max)

Case A 161 2.13 ± 1.72 (11) 1.36 ± 1.33 (9.63)
Case B 162 2.13 ± 1.69 (11) 1.70 ± 1.65 (12.26)
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Figure 4. Scatter plot with fitted regression line of drought duration and severity of drought events
obtained from two different processing schemes for the Poyang Lake Basin in 1957–2014.

3.4. Difference in Drought Identification between Two Processing Schemes

Figure 5 shows change of probability of detection (POD) varying with available meteorological
stations for regional drought monitoring. As indicated in Figure 5, POD increased gradually with more
available stations in both processing schemes. When the available stations were less than 8 (61.5% of
total stations), POD was obviously higher for Case B than Case A. When the station number was more
than 8, POD approached to 91%–100% for both processing schemes. In this case, both schemes could
identify the regional droughts with a high detectability.

The difference of both processing schemes in drought detectability is related to available stations
for monitoring. Figure 6 illustrates the relationship between ∆SPI and the number of meteorological
stations for monitoring regional droughts. The statistics relationship of x (number of available
meteorological stations) versus y (mean ∆SPI) was described by y = 0.0309x − 0.0026 (R2 = 0.773,
p < 0.005). It indicated that ∆SPI had a positive correlation with the station number in the same period
(p < 0.005). When the number of stations exceeded 10 (76.9% of total stations), ∆SPI was higher
than 0.284. It reached up to 0.489 for 13 stations.
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Figure 6. The relationship between ∆SPI (= SPIA − SPIB) and the number of meteorological stations
for monitoring regional droughts in the same period, along with a regression line for the relationship.

The relationship between ∆SPI and number of stations is also drought-level dependent. Table 5
shows that ∆SPI varied with number of stations for monitoring regional droughts of different levels.
∆SPI increased with the aggravated meteorological droughts. For example, in the case of ≥7 stations,
∆SPI was 0.305 ± 0.313 for moderate droughts and above, 0.412 ± 0.409 for severe droughts and
above, and 0.616 ± 0.559 for extreme droughts. It suggested that the drought levels may have changed
due to the difference in two processing schemes. Moreover, ∆SPI was enhanced with an increase of
the number of stations. For example, when number of stations increased from 7 to 10, in the case of
moderate droughts and above, the ∆SPI mean increased from 0.305 to 0.368. Moreover, the ∆SPI mean
changed from 0.616 to 0.759 for Extreme droughts. Therefore, different processing schemes may result
in significant impacts on regional drought assessment.

Table 5. The difference between two processing schemes (∆SPI) for monitoring regional droughts of
different levels varying with number of stations.

∆SPI ≥7 Stations ≥9 Stations ≥10 Stations

Extreme droughts 0.616 ± 0.559 0.675 ± 0.658 0.759 ± 0.761
Severe droughts and above 0.412 ± 0.409 0.462 ± 0.499 0.496 ± 0.510

Moderate droughts and above 0.305 ± 0.313 0.339 ± 0.360 0.368 ± 0.365

Furthermore, the relationship between ∆SPI and number of stations had seasonal variation.
Figure 7 shows the variation under three different situations. The multi-year mean ∆SPI at first
increased and then decreased. The maximum variation (∆SPI = 0.662 for ≥7 stations) was in June,
whereas the minimum (∆SPI = 0.139 for ≥7 stations) appeared in November. When the number of
stations was≥9, the multi-year mean ∆SPI reached up to 0.916 in June and down to 0.151 in November.
The phenomenon was found in other calendar month with ≥10 stations. Hence, ∆SPI aggravated
gradually with an increase of number of stations for monitoring regional droughts in the same period,
even if the annual tendency remained unchanged.
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Figure 7. Seasonal variation of ∆SPI and its change with station number for monitoring regional
droughts in the same period.

Change in ∆SPI can be explained through inter-comparison between monthly SPI values of two
processing schemes. Table 6 displays the statistical indicators of linear relationship of the SPI values of
two schemes for each calendar month. The SPI series had a significantly positive correlation between
Case A and Case B for every month (R2 > 0.93). The intercept of linear regression relationship was
approximately 0 for each calendar month. The slopes of the linear regression increased from January
and then decreased after June. The maximum slope was 1.5625 in June, but the minimum slope was
1.0925 in December. Meanwhile, the slope values were larger than 1.2 in March–September. It was
in January and December that the slope values were approximately equal to 1. The greater slope
values appeared in March-September, which indicated that the larger difference between two different
processing schemes could occur in these months as well, as shown in Figure 7. The phenomena
confirmed that the SPI series from either processing schemes depicted the annual tendency of the
basin-scale droughts.

Table 6. The linear relationship of SPI series from two processing schemes (independent variable:
SPI series obtained from precipitation-mean scheme, dependent variable: SPI series captured from
SPI-mean scheme).

Month Slope Intercept R2 Min (SPIA, SPIB) Max (SPIA, SPIB)

January 1.1037 0.0004 0.9882 (−2.31, −3.25) (2.37, 2.49)
February 1.1736 −0.0067 0.9899 (−2.19, −2.64) (2.24, 2.72)

March 1.2272 −0.0003 0.9964 (−1.76, −2.10) (2.78, 3.39)
April 1.2631 0.0004 0.9971 (−2.17, −2.62) (1.35, 1.88)
May 1.2879 −0.0010 0.9943 (−2.03, −2.57) (1.53, 1.97)
June 1.5625 0.0002 0.9816 (−1.45, −2.37) (1.60, 2.48)
July 1.4022 −0.0045 0.9752 (−1.79, −2.33) (1.45, 2.10)

August 1.4210 −0.0052 0.9912 (−1.88, −2.55) (1.60, 2.50)
September 1.3862 −0.0104 0.9798 (−1.75, −2.59) (1.88, 2.75)

October 1.1900 0.0002 0.9318 (−2.04, −4.20) (1.63, 1.94)
November 1.1235 −0.0057 0.9956 (−2.31, −2.58) (1.80, 2.02)
December 1.0925 −0.0032 0.9965 (−2.27, −2.65) (1.80, 1.97)

Notably, some points deviated away from their sequences in different degrees, namely, in January
and October (Table 6). For example, the SPI value for Case B in October 1979 was as low as −4.20,
whereas the SPI value for Case A was −2.04. In terms of 13 selected meteorological stations, the
SPI values of 2 stations (15.4% of total stations) were −1.74 and −1.82 (belongs to −2.0 ~ −1.5),
which represented the severe meteorological droughts. The SPI values of 11 stations (84.6% of total
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stations) were smaller than −2.0, which indicated the extreme meteorological droughts. Moreover,
the cumulative probabilities of 13 meteorological stations ranged from 0.015 to 0.05. However,
the cumulative probability for Case B was 1.3E-05 in the period, which was approximately equal
to zero. Hence, when cumulative probability was transformed into SPI by the inverse of cumulative
standard normal function, the SPI value for Case B was far less than that for Case A. the phenomena
confirmed that the precipitation-mean processing scheme (Case B) could make the less precipitation
recorded by most or all of stations deviated from the precipitation-mean series more seriously.

Figure 8a shows three precipitation-density curves. Curve I and Curve II exhibited positive
skew-distribution, whereas the curve for Case B was close to normal distribution. The maximum
precipitation frequency peak was found in Case B obtained from the precipitation-mean scheme.
Therefore, the precipitation-mean processing scheme generally weakens the extreme precipitation
and made the precipitation series smoother. Then, when the precipitation was P, the cumulative
probabilities from largest to smallest were in Curve I, Curve II, and Case B (Figure 8b). Furthermore,
when the precipitation was less than P, the cumulative probability for Case B was even much smaller.
Finally, the cumulative probabilities for three curves at P value were transformed into SPII, SPIII,
and SPIB through the inverse of the cumulative standard normal distribution function respectively
(Figure 8c). The mean of SPII and SPIII was distinctly larger than SPIB.
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Figure 8. Explanation of transformation from precipitation density (a) to precipitation cumulative
probability (b) to SPI (c), Curve I and Curve II represents the corresponding gamma density curves of
a station with minimum mean precipitation and a station with maximum mean precipitation, respectively.

In essence, when the P represented dry condition (i.e., less precipitation), the frequency of less
precipitation in their individual long-term precipitation series observed by meteorological station was
higher relatively (e.g., in Curve I and Curve II). Moreover, the varying gradients of precipitation were
also more even and more stationary relatively. However, when the less precipitation happened to
record by most or all of selected meteorological stations at the same period, the precipitation density at
P for Case B processed by the precipitation-mean processing scheme was much smaller (e.g., in curve
for Case B). That is to say, the less precipitation in the period for Case B would deviated away from the
precipitation-mean series more seriously, as indicated in Figure 8a,b. In this case, then, the precipitation
density integration at P was transformed into the cumulative probability by the gamma cumulative
distribution function. The cumulative probability at P for Case B was much smaller than that for the
other curves (Figure 8b). Finally, when the less precipitation was transformed to SPI value, the extreme
SPI value would be calculated. Moreover, the smaller the precipitation was, the less the SPI value
was. This was why the some points deviated from the SPI series in Table 6 such as in January, June,
and October.



Water 2016, 8, 373 13 of 16

4. Discussion

This study investigated the effects of two different processing schemes on meteorological
drought assessment with long-term precipitation data in the Poyang Lake Basin for 1957–2014.
The results provide the important evidences on selection of a suitable scheme for reliable assessment
of regional droughts.

In a view of drought identification, both processing schemes revealed the similar long-term trend,
number of drought events, and drought duration as well. Hence, the two schemes were often used to
analyze the characteristics and tendency of regional drought [31,56]. However, the drought severity
was generally alleviated in the case of the SPI-mean scheme compared to that of the precipitation-mean
scheme. In the study of Dash et al. [41], we noticed that the SPI series from selected individual stations
had barely extreme SPI values (SPI > 3.0 or SPI < −3.0), whereas the extreme values (even SPI > 4.0
or SPI < −4.0) were found frequently in SPI series obtained from the regional average of observed
data in the research. The details exhibited by Dash et al. are consistent with the results of the
research. Additionally, the relationship between drought characteristics, especially drought duration
and drought severity, is often used for constructing drought probabilistic models [42,56]. However, due
to the difference in drought duration and severity obtained from two processing schemes (Figure 4),
it might affect the drought quantitative approaches related to them.

From a perspective of regional drought monitoring, ∆SPI between two SPI series had
a significantly positive correlation with the number of stations (p < 0.005). The number of stations
recording less precipitation at the same period could be applied to represent the severity of dry
condition (i.e., precipitation deficit). Therefore, the more the number of stations (i.e., precipitation
deficit) were, the larger the difference obtained from two processing schemes was (Table 5). When one
drought occurs over the region, the quantitative assessment should be taken seriously. In addition,
the study is relevant in satellite remote sensing of precipitation and its application to monitor regional
drought [57]. Satellite precipitation data generally cover large areas (e.g., 25 km for TRMM). In essence,
these data can be considered as spatially averaged. Use of these data may generate different results
from those of ground observations. Therefore, the research can provide implications for accurate
drought monitoring using satellite precipitation data.

A quantified comparison with two SPI series was carried out addressing a significantly positive
correlation between Case A and Case B for every month. The annual tends of the slope values of the
linear regression at first increased from January and then decreased after June. The slope values were
larger than 1.20 in March-September, suggesting the greater difference between precipitation-mean
scheme and SPI-mean scheme. From a perspective of the transformation from precipitation density
to cumulative probability to SPI calculation, the study revealed the causes of the difference between
two processing schemes. The precipitation-mean processing scheme averaged and weakened the
extreme precipitation situations and made the precipitation more clustered in some certain (Table 3 and
Figure 2). However, when less precipitation was recorded by most or all of the meteorological stations
over the basin, less precipitation would be deviated from the new precipitation-mean series more
seriously (Figure 8). Smaller density was found in the precipitation-density curve. Comparison with
the cumulative probabilities for other meteorological stations at the less precipitation, the cumulative
probability for Case B was less. Therefore, the less SPI value was calculated through the inverse
of cumulative standard normal distribution function (Figure 8). Based on calculation principles,
the mean-precipitation processing scheme is first linear and then nonlinear transformation, and the
mean-SPI scheme just the opposite. It is just in the homogeneous areas that the two processing schemes
may produce the same results.

5. Conclusions

Compared with the performances in assessing the regional meteorological drought from two
different processing schemes, the following conclusions may be made:
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(1) Both processing schemes could express the similar monitoring trends, number of drought events,
and drought duration as well. However, the drought severity in the case of the precipitation-mean
scheme was generally smaller than that of the SPI-mean scheme.

(2) The difference from two processing schemes had a significantly positive correlation with the
number of stations monitoring drought (p < 0.005). Moreover, sometimes, the difference was so
large that it could change meteorological drought levels.

(3) The precipitation-mean scheme reduced the extent of precipitation deficits and made the
precipitation more clustered in some certain. Meanwhile, it made less precipitation deviate from
the precipitation-mean series farther when the less precipitation has wide spatial distribution
over the region. However, the SPI-mean scheme can accurately highlight the relatively serious
and universal dry situations occurred over the region. Therefore, on regional meteorological
drought monitored effectively basis, for representing regional meteorological drought reliably,
the SPI-mean scheme is more likely to satisfy the physical.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/8/9/373/s1,
Table S1: Characteristics of the meteorological station, Figure S1: Time series of drought severity obtained
with two different processing schemes for the Poyang Lake Basin in 1957–2014.
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