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Abstract: In this study, in order to determine the efficiency of estimating annual water pollution loads
from remote-sensed land cover classification and ground-observed hydrological data, an empirical
model was investigated. Remote sensing data imagery from National Oceanic and Atmospheric
Administration (NOAA) Advanced Very High Resolution Radiometer were applied to an 11 year
(1994-2004) water quality dataset for 30 different rivers in Japan. Six water quality indicators—total
nitrogen (TN), total phosphorus (TP), biochemical oxygen demand (BOD), chemical oxygen demand
(COD), and dissolved oxygen (DO)—were examined by using the observed river water quality
data and generated land cover map. The TN, TP, BOD, COD, and DO loads were estimated for the
30 river basins using the empirical model. Calibration (1994-1999) and validation (2000-2004) results
showed that the proposed simulation technique was useful for predicting water pollution loads
in the river basins. We found that vegetation land cover had a larger impact on TP export into all
rivers. Urban areas had a very small impact on DO export into rivers, but a relatively large impact on
BOD and TN export. The results indicate that the application of land cover data generated from the
remote-sensed imagery could give a useful interpretation about the river water quality.

Keywords: Japan; river; water quality; remote sensing; AVHRR

1. Introduction

Changing land use and land management practices are regarded as amongst the most important
factors that can alter hydrological systems and water quality, which have become increasingly
important to catchment stakeholders, such as management groups, land owners and government
departments [1-4]. Generally, a river’s water quality is linked to the land cover in the watershed and is
degraded by changes in the land cover patterns on their watersheds as human activities increase [5-8].
Different studies have increasingly recognized that human action at the landscape scale is a principal
threat to the ecological integrity of river ecosystems and water quality [9-15]. However, the information
on the sources of pollutants in catchments and on the response of water quality to changing land
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use practices is still limited in many catchments [16-20]. It is therefore important to understand the
relationships between catchment characteristics and river water chemistry, which provides a base for
determining how future changes in land cover and use and climate will impact on river water quality.

In Japan, the water quality of rivers has been improved by legislation on sewage, drainage, etc.
However, the water quality cannot be said to have been restored to its natural conditions because the
pollution from non-point sources can increase even when factory drainage and domestic drainage are
improved by law [21]. Therefore, it is still necessary to take prevention measures to control non-point
source pollutants for maintaining the natural ecosystem and environment [22,23]. Among these,
identification of the water pollution loads from different sources is important. To this end, statistic
methods and hydrological modeling have been proposed and applied to estimate the contribution
from different water pollution sources. By using multivariate statistical techniques, Shrestha and
Kazama [24] evaluated the temporal /spatial variations in the Fuji river basin, illustrating the usefulness
of multivariate statistical techniques for identifying pollution sources/factors and understanding
temporal/spatial variation. Duan et al. (2015) developed a SPARROW-based (SPAtially Referenced
Regression on Watershed Attributes) watershed model to estimate the sources and transport of
suspended sediments in surface waters of the Ishikari River basin [25]. Recently, remote sensing was
used to evaluating water quality. Oki and Yasuoka [26] mapped the potential annual total nitrogen
load in the river basins of Japan with remotely sensed imagery of 2006. However, the non-point source
pollutants are transported to water body is still unclear.

Therefore, in a previous study we have analyzed the relationship between land cover types and
potential annual water pollution loads and improved an empirical model to successfully calculate
potential annual water pollution loads in 30 river basins in Japan by using the collected dataset in
the year of 1996 [27]. Based on these previous results of estimating total water pollution loads in
year 1996 for 30 river basins, the objectives of the present study are to (1) test the model prediction
capability with long term dataset; (2) modify the original empirical model to account for the water
pollution loads from each land cover classification; (3) examine and analyze the capability of this
method for apportioning long term potential annual loads of water quality indicators such as total
nitrogen (TN), total phosphorus (TP), biochemical oxygen demand (BOD), chemical oxygen demand
(COD), and dissolved oxygen (DO) in river basins. The results of this study will be very useful to
model the linkage between river water quality and land cover classes by separately considering the
impact of each land cover type on the water pollution loads.

2. Materials and Methods

2.1. Collection of Long-Term Dataset

In order to measure and assess changes in vegetation phenology and conditions as well as perform
land cover type classification, this study uses 26 National Oceanic and Atmospheric Administration
(NOAA) Advanced Very High Resolution Radiometer (AVHRR) images showing maximum annual
normalized difference vegetation index (NDVI), at 1.1 km pixel resolution, across Japan for each
year between 1984 and 2009. The NOAA AVHRR data was produced by the Sawada and Takeuchi
Laboratory, Institute of Industrial Science, University of Tokyo. They were used to produce a land
cover distribution map [28]. AVHRR data were geometrically corrected based on ground control point
(GCP) matching by using PaNDA software, and registration error over the image was less than 1 pixel.
PaNDA is a free software package for NOAA data analysis [29]. The AVHRR NDVI products were
also provided by laboratory of Sawada and Takeuchi [28]. The NDVI can be calculated according to
the following equation [30]:

NDVI = M 1)
(P780 + Pe70)

where, p,g, represents the near infrared band value for a cell, p,;, represents the red band value
for the cell. Daily NDVI was calculated using Band 1 (0.58-0.68 um) and Band 2 (0.725-1.10 pum)
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images to produce the monthly maximum NDVI imagery, and by using the 12 monthly maximum
NDVI imagery datasets, the effects of clouds on seasonal land cover changes can be removed to
produce each yearly maximum images. All the processing was conducted by using the remote
sensing software ERDAS IMAGE (Version 9.2). The Iterative Self-Organizing Data Analysis Technique
Algorithm (ISODATA) [31,32], which is an unsupervised classification, was used to produce a yearly
land cover classification map of Japan using the 12 monthly maximum NDVI imagery datasets.
Figure 1 shows an example of the generated land cover maps in 1996. The river basin map was
superimposed on the land cover classification map to calculate the area of land cover types of each
river basin. The results were then divided by the river basin area to determine the percentage of the
area covered by each type of the land cover. Table 1 shows some characteristics of the land cover
classes, suggesting that Camellia japonica community (LUs) was the largest land cover, occupying
about 29.2%, followed by beech type secondary vegetation (LU3, about 26.2%), beech type natural
vegetation (LU,, about 20.4%), and plantation and field weed community (LUs, about 14.1%). It can
be found from this table that the maximum variation in land cover was observed for beech type
natural vegetation (235.4%) and minimum of variation was observed for Ccamellia japonica community
(117.7%). For detecting the relationships between pollutant load and basin characteristics, the Pearson
correlation [33] was conducted by using MATLAB for the above-collected dataset. As for the pollutant
load per area, we did not find a significant correlation coefficient between them and the five land
cover classes. Only for beech type natural vegetation were the correlation coefficients of TN, COD,
and DO a little bit higher. However, significant correlation coefficients between pollutant loads and
land cover were found for land cover of urban area, beech type natural vegetation, and beech type
secondary vegetation. The urban area is highly related to the export of TN, TP, BOD, COD, and DO
from river basins.
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Figure 1. Generated land cover from National Oceanic and Atmospheric Administration (NOAA)
Advanced Very High Resolution Radiometer (AVHRR) remote sensing imagery (example from 1996).

Table 1. Statistical parameters of land cover (SD means standard deviation; CV means coefficient

of variation).
Variables Mean Range SD CV% Mean Percent
LU; (km?) 2223 4.0-1363.0 299.8 134.8 10.1%
LU, (km?) 4502  <0.01-4721.0 1059.7 235.4 20.4%
LU; (km?)  579.7  <0.01-5365.0 1091.1 188.2 26.2%
LU, (km?) 646.0  <0.01-2696.0 760.6 117.7 29.2%
LUs (km?)  311.0  <0.01-1653.0 464.9 149.5 14.1%

Notes: Abbreviations are as follows: LU, urban area; LUj, beech type natural vegetation; LU3, beech type
secondary vegetation; LUy, Camellia japonica community; LUs, plantation and field weed community.
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As for the hydrochemical datasets, we collected available long-term observation data of river
discharge, TN, TP, BOD, COD, and DO concentration for 30 selected river outlets (Figure 2),
which represented different regions of Japan, for 11 years (1994-2004). Statistical analysis has
been conducted for the collected monthly hydrochemical database from the National Land with
Water Information (http://wwwl.river.go.jp/) monitoring network [14]. Table 2 shows the statistical
description of the collected water quality data. For all 30 sites over Japan, large variations of annual
concentration of TN, TP, and BOD were observed between rivers, with a smallest coefficient of variation
as 10.3% for DO and highest value as 162.6% for TP [14]. The large spatial variation of TP concentration
are corresponding to the large differences in regional characteristics including population, topography,
geology, agricultural activities, and land use in 30 river basins. Furthermore, significant correlation
coefficients from the Pearson correlation analysis [32] for detecting the relationships between water
pollutant loads and land cover have been found [14].
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Figure 2. Location of the selected 30 river basins in Japan.

Table 2. Statistical parameters of the studied water quality variables (5D means standard deviation;
CV means coefficient of variation).

Variables Mean Range SD CV%
TN (mg/L) 1.7 0.5-11.3 22 129.7
TP (mg/L) 0.1 <0.01-0.8 0.2 162.6

BOD (mg/L) 1.8 0.2-14.2 2.5 137.9
COD (mg/L) 2.9 0.8-9.5 19 63.5

DO (mg/L) 10.1 6.7-11.7 1.0 10.3

For a clearer understanding of the spatial distribution of water pollution loads in Japan, the basin
area and river mouth discharge for each catchment are listed in Table 3. The catchment areas which
have an area larger than 2000 km? are highlighted with shaded color. We found that catchments 2, 3, 4,
5,7,12,15,16, 17, 18, and 28 are relatively large compared to others and also have large total river
discharge volumes, both of which contribute to large total water pollution loads.
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Table 3. Basin area and river mouth discharge for each catchment.

Catchment 1 2 3 4 5 6 7 8 9 10

Area (km?) 1078 10,617 2252 4198 4594 1189 6869 858 1539 1217
Q m3/L) 3.1 163.2 56.6 186.8  235.0 60.6 367.7 86.3 9.3 11.6

Catchment 11 12 13 14 15 16 17 18 19 20
Area (km?) 237 3878 582 1277 4854 4762 3695 2069 831 361
Q(m3/L) 32 40.4 6.4 34.7 132.6 2053 80.4 40.2 4.2 6.8
Catchment 21 22 23 24 25 26 27 28 29 30

Area (km?) 511 929 1202 557 650 1368 509 2164 510 922
Q(m3/L) 14.1 18.6 45.1 18.5 17.9 36.7 11.3 47.0 19.3 24.2

Among the collected hydrochemical datasets, the data from 1994 to 1999 (6 years) were used
for model calibration. The remaining 5 years of data (2000-2004) were used for model validation.
Annual water pollution load in rivers was estimated as the product of the annual average water
quality concentration and the annual discharge at the outlet of each river. All the original water
quality and river discharge data were measured by the National Land with Water Information
(http:/ /wwwl.river.go.jp/) monitoring network.

2.2. Estimating Water Poolution Loads from Different Land Cover Classifications by a Modified Empirical Model

An empirical model based on the above data was used to simulate annual pollutant loads by
linking load with different anthropogenic and natural variables [14,26]. To estimate annual pollutant
loads from each land cover classification for each river basin, this model was modified in this study.
The water pollution load exported from each river basin i can be presented as follows:

Li Qivn (S

E_k(E‘) '(E) @
where L; (kg/year) is the total annual water pollution load exported from river basin i, which can
be calculated as the product of average water quality concentration and river discharge. A; (km?) is
the area of river basin i, Q; (m3/year) is the annual river discharge at the river outlet of river basin i,
S; (kg/year) is the annual runoff load accumulated from different land covers in river basin i; k and n
are empirical coefficients which are calibrated value by using optimization method or trial and error
method. In this equation, the effect of basin area on water pollution load is removed with the division
by basin area.

The annual water pollution load accumulating in river basin i, i.e., S;, is expressed by:

5
Si =Y (LU;- Aj) ®)

]

where j (values 1-5) means each land use category of class 1 to class 5 shown in Figure 1.
Lu; (kg/ km2~year) is the coefficient named as runoff load factor of each category j, and Aij (km?) is
the land cover area of each category j in river basin i. Here, LU; (kg/ km?-year) represents the average
value of the annual total water pollution loads accumulating in each category j in all of Japan.

As shown in the above Equation (2), there are several parameters which should be estimated using
the collected hydrochemical and land cover dataset. In this study, the simplex method (also known as
the polytope method), which linearly adjusts model parameters to meet convergence criteria [34,35],
was used to estimate k, n, and LU; (j=1tob5).

3. Results

3.1. Model Calibration (1994-1999) and Validation (2000-2004)

We estimated annual discharged water pollution loads using the data from 1994 to 1999 for the
30 study basins. The observed and predicted water pollution loads were compared in the 30 river
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basins for the calibration period (1994-1999). The regression of predicted versus observed water
pollution loads resulted in high correlation coefficients: R? =0.92, 0.72, 0.90, 0.98, and 0.94 for TN,
TP, BOD, COD, and DO, respectively, indicating that water pollution loads estimates had sufficient
reproducibility for the calibration period (Figure 3). Furthermore, we can see from Table 4 that the
calibrated river discharge factor, i.e., coefficient n in Equation (1), has the smallest value for DO and
largest for TN, and has almost the same value for BOD, COD, and TP.
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Figure 3. Comparison of observed and predicted pollutant loads in 30 river basins in Japan for the
6 year calibration period (1994-1999). The 1:1 line is plotted for comparison.

Table 4. Estimated values of model parameters.

Parameter k n LU, LU, LUj3 LU, LUs
N 0.09 0.81 0.80 0.04 0.09 0.00 0.34

P 0.17 0.44 0.36 0.83 0.91 0.52 0.76
BOD 0.14 0.73 0.68 0.29 0.32 0.15 0.28
COD 0.19 0.70 1.50 0.97 0.76 0.55 0.50

DO 1.62 0.34 0.00 115.73 33.40 47.92 71.08




Water 2016, 8, 361 7 of 14

Figures 3 and 4 show the model calibration and validation results with the comparison of the
measured and validated annual water pollution loads. The magnitude of the predicted annual water
pollution loads closely followed the measured data in most of the studied rivers. We found good
simulation results for TN, BOD, COD, and DO when comparing the figures with the calibration results.
The simulation of TP showed the smallest correlation coefficient between the observed and modeled
TP load. In terms of the description itself, it appears that the model overestimates TP loads from some
basins in which the actual TP is very low.
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Figure 4. Comparison of observed and predicted water pollution loads in 30 river basins in Japan for
the 5 year validation period (2000-2004). The 1:1 line is plotted for comparison.

The above calibration and validation were conducted at the whole-of-catchment scale, which
includes all the land cover types. To evaluate the accuracy of the predictions at the scale of individual
land cover types, the water pollution loads were predicted from different land cover type. Table 5
shows the R? coefficients for predicting TN, TP, BOD, COD, and DO by using each land cover type.
From this table, it can be found that the most accurate prediction of water pollution loads is that
predicted by using land cover of urban area. The second accurate prediction of water pollution loads is
that predicted by using land cover of beech type natural vegetation. The least accurate predictions of
water pollution loads are those predicted by land cover of Camellia japonica community, and Plantation
(Cryptomeria japonica and Cryptomeria) and field weed community.
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Table 5. Accuracy of the predictions at the scale of individual land cover types.

LU; LU, LU; LU, LUs

TN 0.71 0.35 0.33 0.00 0.00
P 0.43 0.34 0.44 0.00 0.00
BOD  0.74 0.66 0.60 0.00 0.00
COD 083 0.78 0.66 0.00 0.00
DO 0.79 0.72 0.68 0.00 0.00

3.2. Spatial Comparison of Water Pollution Loads in the 30 Rivers

Considering the water pollution loads of 1996 from our previous study [24], Figure 5 shows the
water pollution loads associated with different land cover classifications in the 30 catchments for
1996, as an example. There was good agreement between the observed and modeled water pollution
loads for TN and COD. For most of the catchments, the results are good at simulating water pollution
loads for BOD and DO. As for TP, there are differences between the observed and modeled load.
Moreover, it can be found from the figure that urban areas mainly impacted TN, BOD, and COD loads.
The effect of urban areas on TP and DO was very small. Additionally, it is interesting to find that
the large water pollution loads of TN, TP, BOD, COD, and DO mostly belong to the river basin in
the northern part of Japan, namely Kanto Region (from catchment 1 to 9). The second highest water
pollution loads are found in central part of Japan, namely Kansai Region (from catchment 10 to 17).
The water pollution loads are mostly very small in the western part of Japan (from catchment 18 to 30).
It can be also found that the impact of urban area on water pollution loads is large in both Kanto
Region and Kansai Region, in which the economic is well developed and population density is much
higher than other parts of Japan.
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Figure 5. Water pollution loads from different land covers in 30 Japanese catchments (1996). The lines
represent the observed water pollution loads; the colored bars represent the water pollution loads
associated with the different land covers.
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3.3. Long-Term Variation in Water Pollution Loads Estimated from Different Sources

As evident from the calibration and validation results, the model exhibited a good association
between measured and predicted water pollution load values. Based on the above simulation,
seven river catchments including Koyoshi, Sendai, Oze, Oita, Kitakami, Kuji, and Abe, which are
representative of the 3 main regions (north, central, and western), were selected to take as the examples
to elaborate long-term variation in water pollution loads estimated from different sources from 1994
to 2004. Contributions of different sources to major water quality variables can be then identified
for the investigated river basins. Figures 6 and 7 show examples of TN and COD for seven typical
rivers for which long-term observation data were available. The yellow line represents the observed
water pollution loads. The vertical bars indicate the water pollution loads from different land covers.
From Figure 6, it can be found that urban areas had a large impact on TN export into rivers. It is
probably because there are many nitrogen sources such as residential fertilizers, septic systems, and
domestic animal waste in urban areas. Even though the urban area ratios were low for the Kitakami,
Kuji, Oita, Sendai, and Koyoshi Rivers, the water pollution load from urban areas was still very
high. Therefore, beech type secondary vegetation (LU3) and plantation field weed community (LUs)
contributed strongly to the TN loads in the rivers, whereas beech type natural vegetation (LU,) made
a small contribution. Discharge from the Abe River increased dramatically in 2003, from 10 m?/s to
146 m3 /s, and TN export increased accordingly. It also can be found that a small contribution of TN
might make a large difference to riverine TN in small catchments.
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Figure 6. Total nitrogen (TN) loads associated with different land covers in 30 Japanese catchments
from 1994 to 2004.

From Figure 7, it can be found that urban areas also had a high impact on COD export into rivers.
As with the COD results, the pollutant load from urban areas (LU;) was high for the Kitakami, Kuji,
Oita, and Sendai Rivers. Land cover of beech type secondary vegetation (LU3) and Camellia japonica
community (LUy4) had a large effect on COD export into rivers. The impact from land cover beech type
natural vegetation (LU,) was small, except for its effect on the Koyoshi River. As mentioned above,
discharge from the Abe River increased suddenly in 2003, and COD export increased accordingly.
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The same analysis was conducted for the other water pollutant indicators. We found that beech
type natural vegetation (LU,) and beech type secondary vegetation (LU3) had a larger impact on
TP export into all rivers. Urban areas (LU;) had a very small impact on DO export into rivers,
but a relatively large impact on BOD export.
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Figure 7. Chemical oxygen demand (COD) loads associated with different land covers in 30 Japanese
catchments from 1994 to 2004.

4. Discussion

4.1. Model Advantage Compared with Conventional Method

As stated in the above, Figures 3 and 4 showed good agreement between modeled and measured
water pollution loads for the calibration and validation periods. In the calibration phase, attempts were
made to minimize the root mean square error and obtain R? values closest to a value of unity.
However, except for the BOD validation period, the model underestimated pollutant fluxes. This may
be partly due to the model’s inability to capture the effects of consecutive heavy rainfalls that caused
floods throughout Japan. A statistical evaluation of the measured and observed water pollution
loads yielded high R? values close to 1.0, with a high slope close to 1.0 for all pollution indicators,
except TP. Therefore, using this method, it was possible to estimate the annual total water pollution
load discharged from the river basins in Japan and identify water pollution load changes compared
with conventional methods that estimate annual total water pollution loads based on the sum of
a basic unit, which is the discharge rate of total pollutant load to each land cover category in a basin.
Determining a basic unit for each land cover category is difficult, because there are many databases
supplying basic units of total pollutant loads evaluated in various river basins, gained by different
methods, and covering different sites and seasons. Compared with the conventional method (such as
water quality basic unit method), it was easier to assess annual pollutant loads in river basins using
the model proposed in this study.
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4.2. Problems of Water Pollution Loads

Since Figures 3 and 4 are the results of multiple years of different basins, land cover in those
basins for different years is changing. The precipitation and TP leaching may rates may have differed
from the rates at which the models were calibrated. Another reason may be that diffuse phosphorus
source pollution is associated with agriculture because of the potential movement of fertilizers from the
land surface directly into rivers and streams or through permeable soil to groundwater. For example,
Camellia japonica community should be fertilized in late winter or very early in the spring when new
growth begins, using a slow-release. The main mechanism of phosphorus loss from agricultural soil is
through erosion, while leaching to groundwater and phosphorus loss due to landslide and debris flow
cannot be considered in this method. Therefore, the effects of landscape management and of specific
pollution practices on TP were difficult to define or quantify in the current study. Figures 6 and 7 give
us a brief image of the trend of water pollution loads and indicate that in most of the rivers in Japan,
water quality management has proven successful in improvement of BOD and COD through stringent
discharge regulation, development of sewage systems, etc. However, the risk of water pollution still
exists in some rivers. For example, in the Oita River the water pollution loads of both TN and COD are
not decreasing, as shown in Figure 6. In some water bodies, the environment status of DO has been
worsening rather than improving [36].

4.3. Model Limitation

On the other hand, the approach used in this study has some limitations. The most important
limitation is the uncertainty in parameter calibration. The polytope method linearly adjusted model
parameters to meet convergence criteria for the estimation of k, 11, and LU]-. The parameter values shown
in Table 4 may change, however, as characteristics of the river basins change. Additionally, we found
that the TN, BOD, and COD runoff load factors from urban areas were higher than those of other
land cover types (beech type natural vegetation, beech type secondary vegetation, Camellia japonica
community, and plantation field weed community). In another word, these results indicate higher
levels of TN, BOD, and COD from urban areas. In urban areas, the nitrogen concentration of rain is
higher than for other natural land covers due to various factors such as atmospheric pollution [26].
Moreover, total water pollution loads are discharged from urban areas, unlike in forested areas,
where the total water pollution loads cannot be discharged easily due to forest uptake and soil
absorption. In addition, the BOD and COD concentrations of urban area river waters were higher
than those of other natural land cover areas due to human activities. Furthermore, the results of river
discharge factor, i.e., coefficient n in Equation (1), differed slightly from those of He et al. [14], who used
the hydrochemical dataset from 1996. In the present study, we used the average of values from 1994
to 2004 for all hydrochemical datasets (river discharge, TN, TP, BOD, COD, and DO). This means
the size of the calibration dataset also has impact on the parameter calibration. In addition, n was
small, which does not mean that the correlation between DO load and river discharge was weak;
rather, the value of the coefficient n was attributable to the magnitude of the data, and BOD load
ranged from several hundreds to tens of thousands, and TP load ranged from zero to several hundred.

Furthermore, the parameterized water quality model in this study simplified the complex
surface water hydraulics, chemical process, and transport processes. It works on yearly time scale
simulation without providing the seasonal change of water quality in rivers and the impact of river
discharge on water quality concentration. Therefore, the process-based water quality model can
be more useful in case the detailed hydrochemical process needs to be accounted for. In addition,
the NOAA-NDVI generated land cover classification map decides the reliability of the water quality
model. However, the relationships between NDVI and water quality are likely to change with
atmospheric CO, concentrations, temperature, precipitation, and so on in the future. This can be more
clearly demonstrated in process-based water quality models. Even though there are various limitations
with this approach, this study gives a simple and efficient way to source apportionment of annual
water pollution loads in river basins by remote-sensed land cover classification.
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5. Conclusions

The major objective of this study has been to apply a simple empirical water quality model
for examining the water pollution loads from land cover classifications. The authors analyzed
the relationship between long-term observation hydrochemical data and land cover classifications
estimated from NOAA AVHRR imagery. Statistical analysis revealed large spatial variations in
pollutant concentrations of TN, TP, BOD, river discharge, and land use. Urban areas were highly
associated with the export of TN, BOD, and COD from river basins. This study indicated that urban
and forest land may be the dominant sources of water pollution loads. The simple empirical water
quality model was modified and applied successfully in 30 rivers in Japan. Calibration and validation
results also indicated that the proposed simulation technique was useful for predicting water pollution
loads in the river basins. As a conclusion, this study illustrated the usefulness of using land cover
classification and an efficient empirical model for identification of pollution sources and understanding
variations in water quality for effective water quality management.
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