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Abstract: The Upper Indus Basin (UIB) and the Karakoram Range are the subject of ongoing
hydro-glaciological studies to investigate possible glacier mass balance shifts due to climatic change.
Because of the high altitude and remote location, the Karakoram Range is difficult to access and,
therefore, remains scarcely monitored. In situ precipitation and temperature measurements are
only available at valley locations. High-altitude observations exist only for very limited periods.
Gridded precipitation and temperature data generated from the spatial interpolation of in situ
observations are unreliable for this region because of the extreme topography. Besides satellite
measurements, which offer spatial coverage, but underestimate precipitation in this area, atmospheric
reanalyses remain one of the few alternatives. Here, we apply a proven approach to quantify the
uncertainty associated with an ensemble of monthly precipitation and temperature reanalysis data for
1979–2009 in Shigar Basin, Central Karakoram. A Model-Conditional Processor (MCP) of uncertainty
is calibrated on precipitation and temperature in situ data measured in the proximity of the study
region. An ensemble of independent reanalyses is processed to determine the predictive uncertainty of
monthly observations. As to be expected, the informative gain achieved by post-processing temperature
reanalyses is considerable, whereas significantly less gain is achieved for precipitation post-processing.
The proposed approach indicates a systematic assessment procedure for predictive uncertainty through
probabilistic weighting of multiple re-forecasts, which are bias-corrected on ground observations.
The approach also supports an educated reconstruction of gap-filling for missing in situ observations.

Keywords: Karakoram; Shigar; Upper Indus; predictive uncertainty; reanalysis; ensemble; precipitation;
temperature; Bayesian paradigm; uncertainty post-processor; poorly-gauged basin

1. Introduction

The Karakoram Range is characterized by extreme-altitude remote areas and hosts very large
glaciers, such as the Siachen, Masherbrum, Panmah, Baltoro, Biafo, Chogo Lungma, Batura, Hispar and
Rimo glaciers. These glaciers account for nearly 3% of the total global ice reserves outside Greenland
and Antarctica [1,2]. The state and fate of these glaciers are important global climate change indicators.

The rivers draining the southern slopes of the Karakoram Range carry meltwater from these
glaciers and snow-covered areas and feed the Upper Indus River, which impounds water at Tarbela
Reservoir at the outlet of the Upper Indus Basin (UIB). Tarbela is the origin of the western branch of
the extensive Indus Irrigation System and serves hydropower production. Snow and ice accumulation
during the Monsoon season and melting during the summer months are the drivers behind runoff
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generation [3–8]. The current and future states of the Karakoram glaciers have serious implications on
water availability at the reservoir. During the last decade, glacier mass balance analysis has become
the focus of numerous investigations [9–11], which aim at estimating possible glacier mass imbalances
due to climatic change in the UIB mountain ranges. Several of these studies rely heavily on satellite
altimetry [12,13] or space-borne gravimetry [14] for glacier mass balance estimation, while the analyses
based on a hydrological mass balance [15] are very few.

One of the principal factors hampering the hydro-glaciological analysis of this system is the
inherent scarcity of ground observations needed for the validation of water balance analysis. As shown
in Figure 1, the UIB is monitored by a very sparse network of precipitation, temperature and flow
gauging stations with respect to its size (165,000 km2), which precludes the elaboration of reliable
spatial maps of meteorological forcing across the basin necessary for hydro-glaciological mass balance
studies. Moreover, precipitation and temperature are elevation dependent and, thus, characterized by
strong spatial gradients over the steep surface relief. For this reason, precipitation and temperature
products, which are generally derived by spatial interpolation of observations at valley stations,
tend to systematically underestimate the actual meteorological variables, thus enhancing the risk of
erroneous hydrological balance estimates. For example, studies of area-averaged precipitation for UIB
derived from Climate Research Unit (CRU) TS3.21 [16] or the Global Precipitation Climatology Centre
(GPCC) [17] precipitation analysis products have been shown [18,19] to underestimate mean annual
precipitation in the UIB by approximately a factor of two.

Figure 1. The Upper Indus Basin area upstream of Tarbela reservoir and Shigar Basin as an excerpt.
The blue triangles indicate stream gauging stations operated by the Pakistani Water and Power
Development Authority (WAPDA), and the green bullets indicate meteorological stations operated by
the Pakistani Meteorological Department (PMD), except the station at Leh, which is operated by the
Indian Meteorological Department (IMD).

Satellite-observed precipitation is an alternative to spatially-interpolated in situ observations.
The main advantage offered by satellite measurements is the coverage of large areas and their
repeatability in time. Nevertheless, satellite observations require validation against ground observations,
as they may be strongly biased. For example, high-altitude applications of the TRMM 3B43 product for
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the wet season in the Peruvian [20] and Ecuadorian Andes [21] indicate precipitation underestimation in
the order of 50%.

In view of the above-mentioned difficulties of precipitation estimation for the region of interest,
the only viable alternative options for sourcing spatially- and temporally-continuous precipitation
data for vast and poorly-gauged basins are atmospheric reanalyses [22]. Reanalysis data are obtained
by performing runs of Global Circulation Models (GCM) at pre-defined spatial resolutions, whereby
prognostic atmospheric state variables, such as temperature, wind speed, pressure and water vapor
observed on the land surface or from satellites, are used to correct model simulations by means of data
assimilation [23]. Through the adoption of variational principles [24] or stochastic methods [25], the
atmospheric model output is adjusted so as to minimize the difference between computed variables
and observations at selected time steps and measurement points. Depending on the specific reanalysis
project, the atmospheric models are run over several consecutive decades, starting from the 1950s
or earlier, until the present. Data assimilation has undergone progressive improvement from 1979
onwards, when satellite observations became more continuously available.

The additional benefits of using a group of atmospheric reanalyses for precipitation and
temperature estimation in poorly-gauged areas arise from the simultaneous availability of multiple
independent predictions, effectively an ensemble of estimators of the true atmospheric variables.
Reanalyses are re-forecasts (in meteorology, also known as hindcasts) of past weather, which are
inherently uncertain. A multi-model ensemble offers the possibility to quantify the Predictive
Uncertainty (PU) [26,27] of the reanalysis output. Predictive uncertainty is the quantitative assessment
of the predictive capability of one or multiple forecasting models to correctly estimate an observed
predictand. The concept of PU applies to precipitation, temperature or any variable (re-)forecast by
atmospheric reanalysis. In this context, a recent application has been presented [28] in which consistent
datasets of Land Surface Temperature (LST) were generated and data gaps closed with respective
uncertainty estimates by combining multiple satellite LST estimates with LST reanalyses in a Bayesian
framework. Missing data were filled with the aid of the National Centre of Environmental Prediction
(NCEP) Climate Forecast System Reanalysis (CFSR) product [29] by using reanalyzed LST as the predictor.

In the present application, we apply similar concepts to a different, albeit parallel setting.
The unknown predictands are spatial averages of mean monthly precipitation and temperature
in a poorly-gauged basin in Central Karakoram, UIB. The only supporting observations are daily
precipitation and temperature observations from a single nearby ground station. The estimates of the
predictand are given by series of atmospheric reanalysis data produced by independent models.

The main goals of this study are: (1) to assess the predictive uncertainty of the ensemble of
atmospheric model outputs in predicting selected forcing variables; (2) to investigate to what extent the
uncertainty in predicting the variable can be contained by including multiple model predictions;
and (3) to perform educated gap-filling of missing ground observations. For this purpose, we
adopt the Model-Conditional Processor (MCP) [30,31], which we calibrate using in situ observations.
The proposed approach constitutes a systematic procedure of combining multiple atmospheric
predictor variables in poorly-gauged basins to gain added information on a predictand. The specific
Karakoram application presented here aims at obtaining educated guesses of basin average monthly
precipitation and temperature, which can be used for improved hydrological mass balance studies, as
opposed to just using unprocessed reanalyses unrelated to in situ data. As we are actually aggregating
multiple model output cells to basin average variables at monthly time steps, we prefer to separate the
proposed approach from statistical downscaling of GCM output to local scales [32]. While the study
area we have chosen is poorly monitored and in situ observations are sparse, the methodology remains
generally valid and is expected to deliver increasingly less uncertain results if ground observations
become denser.

A recent study [33], which uses glacier mass balances in the UIB to inversely determine
high-altitude precipitation, performed an uncertainty analysis on precipitation. Monte Carlo analysis
was applied to an assumed vertical precipitation gradient model of spatially-interpolated in situ
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observations (APHRODITE, [34]) with prior assumptions on the statistical properties of the gradient
model parameters. Such an approach requires the statistical properties and, thus, the uncertainty of
precipitation to be assumed beforehand. We use reanalyses instead, which are bias-corrected and
combined by weighting them on the basis of how they correlate with deterministic observations.
The conceptual advantage of the latter approach is the absence of any need for making prior
assumptions on the statistical properties of variables and the uncertainty, as these are a direct outcome
of the Bayesian processing, as we show below.

The present contribution is structured as follows: In Section 2, we describe the study site and
the data used, then we give a brief overview of the Bayesian methods of uncertainty assessment
that are relevant in the context of this study. Section 3 is devoted to presenting the application
of the Model-Conditional Processor (MCP) to Shigar Basin and Section 4 to discussing the results.
The implementation details of the processor are reported in the Appendix.

2. Materials and Methods

2.1. Study Site

In this study, we focus exclusively on the northern region of UIB that includes the Karakoram
Range. The main ridge of the Karakoram Range forms the hydrological and political divide between
Pakistan and China, while the Eastern part of the study area is crossed by the Line Of Control (LOC)
and is administered by India. The main tributaries originating in the area and feeding into the Upper
Indus River are the rivers Hunza draining Karakoram West, Shigar draining the Central Karakoram
and Shyok dewatering Karakoram East. The respective watersheds are characterized by a large portion
of their area above 3500 m and are all heavily glaciated. The basin boundaries and respective areas are
derived by topographic analysis of the 90 × 90 m digital elevation model derived from the Shuttle
Radar Topography Mission (SRTM) dataset. The constituent major drainage units of UIB are shown
in Figure 1. The glaciated areas are obtained from the Randolph Glacier Inventory Version 5.0 [35].
In the present study, we focus on the 7040-km2 Shigar Basin, which lies between the Hunza and
the Shyok basins and drains the Central Karakoram. Shigar Basin is home to the large Biafo and
Baltoro glaciers with a total glaciated area of 2100 km2. The hypsometric curve of Shigar Basin is given
as follows: 267 km2 (3.8 %) between 2000 and 2500 m, 650 km2 (9.3 %) between 2500 and 3500 m,
1960 km2 (27.9 %) between 3500 and 4500 m, 3245 km2 (46.2 %) between 4500 and 5500 m, 811 km2

(11.4 %) between 5500 and 6500 m and 103 km2 (1.4 %) above 6500 m. The average altitude of the basin
is 4579 masl.

2.2. Seasonal Precipitation and Temperature Variability in the Karakoram

The weather patterns that control precipitation in UIB and over the Karakoram are very particular.
The Karakoram and Western Himalayan ranges receive heavy snowfalls during winter due to the
advection of the moisture-laden mid-latitude westerly circulation and cyclonic storms from the
Mediterranean, Black and Caspian seas [36,37]. These advected air masses have a major influence on
regional distributions of glaciers and snow cover. About 67% of high altitude snow accumulation on
central Karakoram glaciers occurs in winter [9,10,38]. Even though sub-tropical westerly jet streams
cause the chief seasonal snowfall during winter with maxima in March, heavy summer snowfall
at high altitudes is also prevalent in the UIB due to the incursion of monsoonal air masses from
the Indian Ocean. About 33% of high altitude snow accumulation on central Karakoram glaciers
occurs during the Indian monsoon period of July–September [9,10,39]. Snowfall also occurs in early
summer by frontal storms drawing moisture from the Arabian Sea [40]. Since the Karakoram is
located at a considerable distance from the seas and ocean, most of the moisture is transported from
the west and southwest in the middle troposphere by winter westerlies. As a result, the bulk of
precipitation in the Karakoram falls out at elevations higher than 4000–5000 m, in the elevation
range corresponding to the accumulation zone of the major glaciers. These westerlies provide the
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dominant nourishment for the local glacier systems. Furthermore, there is orographic enhancement of
precipitation. Although the valley floors are quite arid, precipitation amounts increase substantially
with altitude [40,41] and decrease again above approximately 5500–6000 m. Actual values of total
precipitation within the basin are not exactly known, but can be estimated to range between 200 mm in
the arid valley bottoms (e.g., at Skardu) up to 1900 mm of water equivalent in the highest precipitation
zone between 4600 and 5500 m [39,42].

At high elevations, the 2-m air temperature is sub-zero most of the year, and hence, precipitation
falls there as snow. Low-end values between −20 and −30 ◦C of mean monthly temperature are
reached in January and maxima between +5 and +10 ◦C in August at mid-altitudes around 4500 m.
Due to the high elevation of the basin, the air is very dry and clear. In the rarefied atmosphere,
the power of the solar radiation is very high and can cause rock surfaces to warm up to multiple
tens of ◦C due to exposure to direct radiation [43], while the 2-m air temperature remains below
zero. This indicates a potentially strong divergence between the 2-m air temperature and LST at high
altitudes in the basin. In the valley bottoms, the monthly mean temperature can vary between
−10 ◦C in January and approximately +28 ◦C in August. We also note that given the extreme
topography, local temperature is subject to strong spatial variability attributable to temperature
inversions and micro-scale meteorological processes, which we will disregard in the following analysis,
as we are working with monthly mean values. To give an impression of the value range of mean
monthly precipitation and the 2-m air temperature in Shigar Basin in absence of within-basin in situ
observations, we report the monthly climatology of precipitation and temperature spatial averages for
raw unprocessed reanalysis outputs at Shigar Basin for 1979–2014 in Figures 2 and 3. The processing
of these reanalyses will be addressed further below.

Shigar precipitation climatology, 1979-2014
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Figure 2. Precipitation climatology derived from the six selected reanalysis products listed in Table 1
for Shigar Basin.

Shigar temperature climatology, 1979-2014
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Figure 3. Temperature climatology derived from the six selected reanalysis products listed in Table 1
for Shigar Basin. CFSR, Climate Forecast System Reanalysis.
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Table 1. Overview of the six reanalyses indicating the product name, source agency, the data range
used for the analysis, model grid projection, output resolution for the analyzed fields and no. of cells
used for Shigar basin. The air temperature is indicated at 2 m above ground. MERRA, Modern-Era
Retrospective Reanalysis.

Dataset Origin Data Range Grid Type Spatial Res. Temporal Res. Cells

ERAI ECMWF 1979–2014 N128 Gaussian 0.75◦ × 0.75◦ monthly means 5Reanalysis (∼79 km) of daily means

NCEP/NCAR NCEP/ 1979–2014 1.875◦ × 1.875◦ 1.875◦ × 1.875◦ monthly 2R1 NCAR (∼209 km)

NASA-MERRA NASA 1979–2014 1/2◦ × 2/3◦ 1/2◦ × 2/3◦ monthly means 7(∼55 × 73 km)

NCEP CFSR NCEP 1979–2009 T382 Gaussian 0.313◦ × 0.313◦ monthly 17(∼38 km)

55-y Japanese Jp.Met. 1979–2014 TL390L60 1.25◦ × 1.25◦ monthly means 4Reanalysis Agency (∼135 km)

ERA 20C ECMWF 1979–2010 N80 Gaussian 1.0◦ × 1.0◦ monthly means 4Reanalysis (∼125 km) of daily means

2.3. Precipitation and Temperature Estimation in Poorly-Gauged Basins

The main challenge in performing sound hydro-glaciological assessments in poorly-monitored
basins is the scarcity of reliable in situ observations. This situation is encountered in many parts of the
developing world. As already indicated, satellite estimates of precipitation, such as those by TRMM,
which cover a region of 50◦ latitude north and south of the Equator, are in principle suited to provide
continuous precipitation information, but are much less reliable than for, instance, satellite-based
LST estimates for our area of interest. Different studies [19,44] for the UIB indicate considerable
precipitation underestimation when using satellite or interpolated ground observations. Low-density
observation networks also hamper any extensive correction of TRMM precipitation measurements.
Examples of satellite precipitation estimates in the UIB [45,46] with the product TRMM 2B31 yield mean
annual precipitation values of 300 mm/year, which have been shown to be too low for a consistent
closure of the basin water balance. Furthermore, other precipitation analysis studies in the UIB [47]
reached the conclusion that TRMM measurements are a quantitative indicator of monthly rainfall
abundance rather than a measure of absolute magnitude because of systematic underestimation of
cumulative precipitation by 40%–60%. A comparison with atmospheric reanalyses [19] suggests that
the actual mean annual precipitation for the whole UIB is more than double the TRMM estimate,
ranging between 600 mm/year and 800 mm/year.

Alternatively, ensembles of atmospheric reanalyses can be used as predictors to derive the highest
probability (in terms of a posterior probability distribution) estimates of area-averaged precipitation
and temperature for a poorly-gauged region, such as Shigar Basin (Figure 1). The availability of
an ensemble of predictors allows one to estimate and subsequently reduce the uncertainty on the
predictand. This has a two-fold advantage: firstly, one obtains the most probable values to fill data
gaps in the observed series; secondly, a posterior estimate of the predictand is obtained by weighting
the predictors on the basis of their assessed information content. In other words, non-informative
predictors are attributed less or no importance with respect to those with higher informative value.
If a nearby observing station is available with the help of which an uncertainty processor can be
calibrated, the suggested approach can be used to determine precipitation and temperature for
a sparsely-gauged region. In the following section, we briefly discuss the most-commonly adopted
methods of (re-)forecast uncertainty processing and quantification.
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2.4. Approaches to Predictive Uncertainty Assessment

The use of the Bayesian paradigms for inference and prediction has become common in assessing
and decreasing the uncertainty on model predictions of true variables in the fields of meteorology
and weather forecasting [26,27] and more recently also river flow forecasting [48]. In this context the
Predictive Uncertainty (PU) is defined as a conditional probability density:

PU = f (y|ŷ1,to , ŷ2,to , ŷ3,to , ...., ŷn,to ) (1)

where f is a conditional probability density function, y is the predictand at a given time t and
ŷi,to , i = 1, ...., n are n predictor variables at time t for a forecast starting at time to, which implicitly
depend on a set of model parameters, θ, i.e., ŷi,to = ŷi,to (θ), over which we as prediction users have no
influence. In a forecasting context, the chief interest lies in the assessment of PU for prediction times
t > to. A re-forecast, on the other hand, as used here, reproduces the past, and thus, to = t at each time,
which is equivalent to using a lag-zero stochastic process description. Consequently, we omit the time
indexing and simplify notation.

(1) The Bayesian Hydrological Uncertainty Processor (HUP) introduced by Krzysztofowicz [48,49]
derives the PU as the conditional uncertainty of a predictand, conditional on a single model forecast by
applying Bayes’ theorem in terms of a prior distribution (derived from climatology or a lag-n Markov
chain model) and a likelihood function, which probabilistically describes model performance against
observations. One of the strengths, but at the same time also a limitation of the HUP, is the analytical
structure, which makes the HUP fast for operational settings, but effectively limits the application of
the processor to the use of a single forecasting model. An extension of the HUP to include multiple
models as predictors is not immediate within the original conceptual framework.

(2) A Bayesian uncertainty processor, which allows one to combine multiple predictors is Bayesian
Model Averaging (BMA) [50,51]. In contrast to the HUP, BMA does not seek to determinate the
predictive uncertainty explicitly, but evaluates an approximation of the latter in terms of a mixture
of densities:

f (y|ŷ1, ŷ2, ...., ŷn) = E{ f1(y|ŷ1), f2(y|ŷ2), ...., fn(y|ŷn)} ≈
n

∑
j=1

wj f j(y|ŷj) (2)

The mixture of densities is effectively the BMA mean, expressed as a linear combination of the
conditional densities for individual models, where the weights wi are estimated by formulating the
problem as the maximization of the log-likelihood. Once the weights are known, it is possible to
estimate the predictive mean on n models as:

E [y|ŷ1, ŷ2, ...., ŷn] =
n

∑
j=1

wj f j(y|ŷj) (3)

and the predictive conditional variance as a combination of the empirical mean and variance for
individual models:

Var [y|ŷ1, ŷ2, ...., ŷn] ≈
n

∑
j=1

wjVar(y|ŷj) +
n

∑
j=1

wj[ŷj −
n

∑
k=1

wkE{y|ŷk}]2 (4)

The original version of BMA assumes a normal dependency structure between variables, but
this assumption has been relaxed and successfully extended to allow for log-normal and gamma
distribution dependency models [52].

(3) The third Bayesian approach to uncertainty assessment is the Model-Conditional Processor
(MCP) [30]. By applying the formal definition of the conditional posterior distribution directly,
the MCP includes most features of the previously-mentioned Bayesian approaches, while aiming
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at parsimonious parameterization. The prior distributions of both predictand and predictors are
assumed equal to their climatological distributions and are mapped to the Gaussian space by means
of the Normal Quantile Transform (NQT) [49]. In the normal space, the interdependency structure
of predictand and predictors is assumed multivariate normal. Coccia and Todini [31] proposed
an extended version of the MCP, which allows for the inclusion of multiple forecasting models
with heteroscedastic dependency structures. This is relevant when dealing with variables that show
residuals with varying dispersion in relation to a linear regression. Heteroscedastic dependency is
typical for certain variables, such as precipitation and discharge, which exhibit non-constant variance
as the magnitude of the variable increases to extreme values. A more detailed recapitulation of the
MCP is provided in the Appendix.

(4) Finally, we mention uncertainty quantification by Quantile Regression (QR), an originally
non-Bayesian approach, which was first used in the field of econometrics [53]. QR tries to represent the
heteroscedasticity of the residuals by assuming linear or non-linear-type variation of the quantiles of
the predictive uncertainty distribution, which vary with the magnitude of the predictors. The principal
restriction of the QR approach is the number of parameters to be estimated, which can become large,
especially when using many quantile classes. QR generally performs well if heteroscedasticity can be
represented with a linear model, i.e., the residuals change linearly with the magnitude of the variable,
but performs sub-optimally if this relation is non-linear, a case frequently encountered in practice at
the upper and lower end of the variable range.

2.5. Atmospheric Reanalyses

For reasons given in the Introduction, we resort to an ensemble of numerical reanalyses to obtain
predictors for monthly precipitation and temperature in Shigar Basin. We use the output of ongoing
or recently-terminated reanalysis projects over past decades. In this analysis, we use the following
six reanalysis products: (1) ERA-Interim [22]; (2) ERA20C [54]; (3) Japanese 55-year reanalysis [55];
(4) NCEP-NCAR reanalysis R1 [29]; (5) NCEP-CFSR [56]; and NASA Modern-Era Retrospective
Reanalysis (MERRA) [57] (6). The products and their most important characteristics are summarized in
Table 1. In this analysis, we focus on two output variables: 2-m air temperature, a prognostic variable,
as well as precipitation, a diagnostic variable. We have selected the most contemporary reanalysis
products developed by source organizations, which apply different models and data assimilation
procedures to obtain a six-member ensemble of independent physically-based estimates of the variables
of interest. For reasons of consistency, only data from 1979 onwards are used. Most atmospheric
reanalyses reach as far forward as the second decade of the 21st century or are still ongoing.

The meteorological data, precipitation and 2-m air temperature are spatially averaged over
the Shigar Basin area, indicated with a yellow boundary and magnified in the excerpt in Figure 1.
The reanalysis outputs have different spatial resolutions and, therefore, involve a varying number of
grid cells. The averaging procedure requires the calculation of the weighted mean of the respective
variable X using the sub-basin mask to identify the relevant model cells. All reanalysis cells that
overlap with the area enclosed by the mask are used to perform the averaging. The average X̄ is given
by the area-weighted average precipitation:

X̄ j =
∑n

i=1 X j
i · Ai

Atot
(5)

where the index i indicates cell i, j indicates the monthly time step, Ai is the basin area portion covered
by the i-th reanalysis pixel, Atot is the sub-basin area and n is the total number of cells found within
the sub-basin mask. The resulting series of basin average data for each reanalysis series are assumed
to hold approximately at the basin centroid with elevation 4579 m.
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2.6. Meteorological In Situ Observations

Only a few precipitation and temperature gauges are operated continuously in UIB and are located
mainly in the valleys, in the proximity of settlements. Most of the remote mountainous high-altitude
areas are not covered by any observing networks. Few precipitation stations have been operated
at relatively higher elevations. These so-called “high-altitude stations” have been operational only
since 1994 or later years. In addition, some special research projects led to the temporary dispatch
of automatic weather stations, which were removed after a few seasons and the wrap-up of the
project [39,58–60]. Such data are important to assess local precipitation and temperature distributions
over altitude, but cannot be employed for any trend analysis on water flow or ice mass development
due to the brevity of the records. In the present example of Shigar Basin, there are very few nearby
ground stations for temperature and precipitation available.

The most reliable station is Skardu situated in the Indus Valley, in the proximity of the Shigar-Indus
River confluence. The station has been operated with brief interruptions over more than a century
since 1894. We use the mean monthly precipitation and temperature records from 1951 onwards.
A second precipitation station is located at Shigar village within the basin. This station has a record
length of less than 20 years since 1996. A statistical analysis of mean monthly values has shown that the
series at Shigar village do not correlate with Skardu (Table 2), most likely due to the orography. Two
more stations are located at Sadpara lake (Deosai) and Hushey village. These stations, albeit close to
Skardu in straight-line distance, are situated in the Indus Valley and the Shyok Basin and have records
starting in 1995 and 1994, respectively. Sadpara (Deosai) correlates reasonably well with Skardu, while
Hushey correlates also very poorly (Table 2). Closer examination of the station in Hushey indicates
that the station does not deliver a reliable record, especially between 2001 and 2004.

Table 2. Position and elevation of recording stations for precipitation, record length and correlations
with Skardu station.

Station Position Elevation masl Period Correlation

Skardu 35◦17′01′′ N, 75◦38′32′′ E 2210 m 1952–2014 1.00
Shigar (village) 35◦25′19′′ N, 75◦44′20′′ E 2294 m 1996–2012 0.16

Sadpara (Deosai) 35◦14′40′′ N, 75◦38′07′′ E 2660 m 1995–2011 0.54
Hushey 35◦26′60′′ N, 76◦21′53′′ E 3148 m 1994–2010 0.26

We also performed a double mass curve analysis between Skardu and the three neighboring
stations with shorter records to examine the reliability of the stations for the 1996–2012 period.
The results are reported in Figure 4.

Given the evidently poor mutual consistencies in terms of cumulative recorded volume, especially
concerning Shigar station, we decided to discard the three shorter records and to retain the Skardu
record only. This record is also reasonably complete, with only 3% of data missing between 1979
and 2014. Skardu precipitation and temperature records require correction to values that reflect the
higher mean elevation of Shigar Basin. This can be achieved by applying vertical precipitation and
temperature gradients. Similar to [61], a precipitation gradient reported in the literature [60,62] for
the Central Karakoram can be applied. An empirical expression is given by the following power
law, which holds for the elevation range 2000–5500 m, beyond which precipitation starts to decline
with altitude:

Pz[mm/y] = 9 · 10−6 · z2.22 (6)

This relationship is integrated over the hypsographic curve of the basin for h ≤ 5500 m and yields
an areal annual increase of total precipitation equal to 907 mm/year:

∆Pcorr[mm/y] = 9 · 10−6 · 1
A

∫ hcentroid

hSkardu

z2.22dA(z) ≈ 9 · 10−6 · 1
A

n

∑
i=1

h2.22
i Ai (7)
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with Ai the area of a DEM pixel, hi its elevation with respect to Skardu and n the number of
pixels. Because the relationship is expressed as an annual increase, no distinction can be made
for individual months, and one obtains a uniform correction factor of 4.9 mm, which we apply to
Skardu mean monthly precipitation to account for orographic effects. However, if a time-varying
scaling relationship with different values for each month would be available, it could be used in
the proposed approach. In absence of such a relationship, we are forced to proceed with a constant
scaling coefficient. While this scaling approach may seem crude, we recall that we are working in
a poorly-monitored environment and focus on mean monthly values. The precipitation climatology
and the corrected monthly precipitation for each month are summarized in Table 3.
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Figure 4. Double Mass curve analysis of Skardu vs. Sadpara (Deosai), Hushey, Shigar. The strong and
sudden deviation from the bisection after a short recording period (>1000 mm/month accumulated
precipitation) exposes the inconsistency of the short-term record stations with respect to Skardu.

Table 3. Monthly precipitation climatology at Skardu, 1951–2012, the fraction of annual mean
precipitation and corrected monthly precipitation to account for elevation change from 2210 m
to 4579 m.

J F M A M J J A S O N D Tot

P(mm) 30 29 39 33 30 9 11 13 10 8 5 17 233
P/Pyr 0.13 0.12 0.17 0.14 0.13 0.04 0.05 0.06 0.04 0.03 0.02 0.07 1.0

∆Pcorr (mm) 116 112 152 127 114 35 44 50 39 31 21 65 907
Pcorr (mm) 147 142 193 161 145 44 56 64 50 40 26 83 1152

For temperature, the adiabatic lapse rate can be integrated over the hypsographic curve to scale
from the ground elevation at Skardu to the altitude of the basin mean elevation:

dT/dz(◦C/km) = −6.4 (8)

In principle, the lapse rate varies between months, but also here, we need to resort to an mean
annual rate due to the lack of data. We note that the application of the temperature lapse rate at
Skardu is equivalent to bias-correcting the data with respect to the basin centroid by a constant shift.
As will become clear further below, the Model-Conditional Processor (MCP), which we use for the
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Bayesian combination of observations with reanalysis data in Section 3, neglects a bias between
observations and predictor variables, as correlations between variables are invariant to constant
shifts. Therefore, it suffices to correct the already processed temperature by adding a constant
value of −15.2 ◦C. This consideration does not apply to precipitation that needs to be rescaled by
multiplication with the correction factor ahead of processing. In this context, we also note that given
the coarse spatial resolution of the reanalysis data and the smoothing of the underlying elevation grid
of the atmospheric model, there is also some uncertainty as to which actual mean elevation basin
average data (see Equation (5)) they relate.

3. Application of the Model-Conditional Processor

3.1. Normalization of Variables

From the predictive uncertainty assessment approaches mentioned in Section 2.4, we resort to
the Multi-Conditional Processor (MCP) to derive the probability distribution for monthly mean areal
precipitation and temperature at Shigar given six reanalysis series. The series cover different lengths,
as indicated in Table 1. For our study, we select the period 1979–2009, adapting to the shortest available
series (CFSR) as our reference period. The processing of the data is executed in consecutive steps.
First, we transform the altitude-corrected series of monthly precipitation and temperature observed
at Skardu into the Gaussian normal space using the Normal Quantile Transform (NQT). The same is
done for the predicted series of the six reanalysis models. The transformed observations at time t are
denoted with η and the transformed model predictions with η̂i, where i = 1, ..., n is an index sweeping
the different atmospheric reanalysis outputs. Both transformed variables are standard normal N(0,1).

3.2. Precipitation: Normal Distributions

We refer to the notation introduced in the Appendix, which indicates realizations at time t of the
random process η and η̂i as η, respectively η̂i. Figure 5 shows the NQT-transformed empirical η − η̂i
relationships as scatterplots for all six reanalysis re-forecasts. One needs to envisage these scatterplots
as the projection of the multivariate-normal dependency (η, η̂i) , i = 1, ..., n onto the respective η − η̂i
plane as a bivariate-normal process (η, η̂i). We note that in all plots, there are no data points for
η < −1.36, because precipitation is always non-negative. The red solid line indicates the 50% quantile
or conditional median obeying the linear relationship η|η̂i(η̂i) = ρηη̂n · η̂i + µη with µη = 0, while
expectation and variance are equal to:

E(η|η̂i) = µη|η̂i
= ρηη̂n · η̂i (9)

Var(η|η̂i) = σ2
η|η̂i

= 1− ρ2
ηη̂i

(10)

where µη|η̂i
is the conditional mean and ρηη̂i

is the correlation. We note that in the normal space, the
conditional median coincides with the conditional mean and the conditional modal value. The red
dashed lines indicate the 90% credible interval and are at a parallel distance of two standard deviations
from the mean. The parametric conditional normal density for a single predictor η̂i is given by
the expression:

φ(η|η̂i) =
exp[− 1

2 (η − µη|η̂i
)2/(1− ρ2

ηη̂i
)]√

2π · (1− ρ2
ηη̂i

)
(11)

We note that the conditional variance σ2
η|η̂i

= (1− ρ2
ηη̂i

) is at the denominator, and thus, with

ρηη̂i
→ 1 and σ2

η|η̂i
→ 0, the conditional density curve becomes steeper with probability narrowly

concentrated. This is tantamount to minimizing the predictive uncertainty by using an increasingly
“optimal” model. As described in more detail in the Appendix, the conditional density can be extended
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to include all six reanalyses as conditioning variables, leading to the following parametric multi-normal
density of η, conditional on n potential predictors:

φ(η|η̂1, ...., η̂n) =
exp[− 1

2 (η − µη|η̂n)2/σ2
η|η̂n ]

√
2π · ση|η̂n

(12)

where conditional mean and variance are expressed in terms of the (n + 1)× (n + 1)-dimensional
variance-covariance matrix Cη,η̂n with sub-matrices Cηη̂n and Cη̂n η̂n :

µη|η̂n = Cηη̂n · C−1
η̂n η̂n · η̂n (13)

σ2
η|η̂n = 1− Cηη̂n · C−1

η̂n η̂n · CT
ηη̂n (14)
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Figure 5. Transformed observed monthly precipitation data η against transformed predictions η̂i for
all six models. The dashed lines indicate the 90% credible interval, the continuous line the median.
A two-piece truncated normal distribution has been fitted to all cases, except ERA Interim and ERA20,
because of the heteroscedasticity of the dependence (η, ηi).
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In Equation (12), the variance-covariance matrix combines n different models with observations.
The covariances are evaluated over a sufficiently long calibration period, for which predictions, as
well as observations are available, and specify the added value of the different forecast models by
weighting the predictor variables η̂n accordingly in the conditional variance σ2

η|η̂n . Model forecasts
that correlate poorly with the predictand are weighted lower with respect to those with higher
correlation. Equation (12) is the marginalization of the multi-normal density φ(η, η̂1, ...., η̂n) defined
in an (n + 1)-dimensional data space. In case a homoscedastic dependence structure (η, η̂i) can be
assumed between variables, Equations (12)–(14) apply over the entire value range of η̂i.

3.3. Precipitation: Multivariate Truncated Normal Distributions

For all subplots in Figure 5, we note a higher spread of the normalized data for lower precipitation
values, an indication that the assumption of homoscedasticity of the residuals between the normalized
data point and the linear regression does not hold. To address this issue, it is necessary to model the
relationship between transformed observations and predictions via a Multivariate Truncated Normal
Distribution (MTND) by subdividing the domain of the variable η̂i into two sub-domains, in which
the dependency between η and η̂i can be assumed approximately homoscedastic. The verification of
the homoscedasticity of the residuals needs to be performed separately between the observations and
the different models. For a given predictor, one identifies a threshold value η̂∗i = ai and two truncated
multi-normal distributions, which are valid for −∞ < η̂i ≤ ai and for ai < η̂i < ∞. In the multi-model
case, for which i = 1, ..., n, and the bisection of the interval, there are 2n MTNDs with separating
threshold values ai. The truncated conditional densities are normal N(µη , ση|η̂n), with mean and
variances given as follows [63]:

µη|η̂n=η̂n,∗ , η̂∗i >ai , i=1,...,n = µ + Cηη̂n · C−1
η̂n η̂n · (η̂n − µ̂n) (15)

σ2
η|η̂n=η̂n,∗ , η̂∗i >ai , i=1,...,n = Cηη − Cηη̂n · C−1

η̂n η̂n · CT
ηη̂n (16)

for the upper segment and:

µη|η̂n=η̂n,∗ , η̂∗i ≤ai , i=1,...,n = µ + Cηη̂n · C−1
η̂n η̂n · (η̂n − µ̂n) (17)

σ2
η|η̂n=η̂n,∗ , η̂∗i ≤ai , i=1,...,n = Cηη − Cηη̂n · C−1

η̂n η̂n · CT
ηη̂n (18)

for the lower segment. The quantities µ, µ̂n are, respectively, the sample means of η and η̂n, while
Cηη, Cη̂n η̂n and Cηη̂n are the components of the covariance matrix of η and η̂n. The values of the
thresholds ai are identified with an automated search procedure, in which the variance of the upper
segment, which corresponds to high precipitation values, is minimized. The search interval is limited
on both ends to ensure that the upper and the lower sample is of sufficiently large size to calculate
statistically-meaningful moments of the truncated distributions. For additional details on the MTDNs
application, the reader is referred to Coccia and Todini [31]. In the lower four subplots of Figure 3,
the change between the MTND is visible through the slope change of the median line and the more
adherent 90% confidence interval in the upper data samples. In the upper two plots, which show the
NQTs for ERAIand ERA20C, the processor did not succeed to break the interval into two components
while retaining sufficient sampling points in each. In this case, the dependence was modeled with
a simple multivariate normal.

3.4. Temperature: Multivariate Normal Distributions

Figure 6 shows the NQT-transformed temperature data. In this case, we note that the process
(η, η̂i), i = 1, ..., n is homoscedastic in all six cases. This is mainly due to the much higher
predictability of temperature as a prognostic variable by the atmospheric models with respect to
precipitation. Temperature is a primary variable governed by the energy conservation equation for air.
Precipitation, on the other hand, is derived diagnostically using water vapor and temperature to drive
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a parameterized cloud sub-model, which makes this variable considerably less predictable. Given the
evidently homoscedastic behavior of residuals, it is unnecessary to apply MTND because a uniform
conditional variance value holds over the entire data range.
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Figure 6. Transformed observed monthly mean temperature data η against transformed predictions η̂i

for all six models. The dashed lines indicate the 90% credible interval, the continuous line the median.
The relation of the variables can be modeled with a single multi-normal distribution, as the dependence
(η, η̂i) can be approximated as homoscedastic.

3.5. Inverse Transform and Correlation Analysis

As the next step, we perform the inverse NQT transformation of the normal densities back into the
original space. Explicitly, φ(η, η̂i) and φ(η|η̂i) are transformed back into f (y, ŷi) and f (y|ŷi). We note
that in the original space, median, mode and mean no longer coincide. To examine the performance of
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the processor, we calculate the correlations of individual predictions against observations. These are
summarized in Table 4 for precipitation (Line 1) and temperature (Line 3) observations and raw
unprocessed model predictions by individual models. For precipitation and raw model output, the
correlation varies among models and is highest for JRA55and ERAI. Recalling Table 2, we also note
that the observations at Skardu correlate better with all six raw reanalysis predictions than with
data recorded at neighboring stations, which further substantiates our decision to use only Skardu
observations to condition the processor.

Table 4. Correlations between observations vs. raw predictions and observations vs. the posterior
conditional mean; individual model predictions ŷi and the combination of predictions; precipitation
and temperature.

Variable Correlation ERAI ERA20C MERRA NCAR R1 CFSR JRA55 All Combined

P corr(y, ŷi) 0.65 0.56 0.63 0.58 0.62 0.67 -
P corr(y, E[y|ŷi]) 0.67 0.54 0.62 0.58 0.61 0.67 0.68
T corr(y, ŷi) 0.75 0.94 0.66 0.78 0.97 0.62 -
T corr(y, E[y|ŷi]) 0.90 0.96 0.94 0.93 0.98 0.95 0.98

After application of the processor, we calculate the correlation (Line 2) between observations
and the mean of the posterior distribution (i.e., predictive uncertainty) conditional on (1) individual
models and (2) on the Bayesian combination of the ensemble of all six models. In Case (1), the
correlation improves only minimally and notably most for ERAI. In the other cases, they remain equal
or deteriorate, indicating that the precipitation predictions are essentially of limited informative value.
For Case (2), in which all six models are combined, the correlation improves only slightly with respect
to the best performing individual model JRA55 to an overall maximum value of 0.68.

The picture for temperature is completely different and considerably brighter (Line 4). In this
case the processor yields an improved posterior correlation with the conditional mean. The prior
correlation between observations and raw predictions is highest for ERA20C (0.94) and CFSR (0.97).
In Case (1), the correlation with posterior conditional means improves notably for all temperature
predictions and is highest for CFSR with a correlation reaching a value as high as 0.98, while the
highest improvement has been achieved with JRA55 where the correlation jumps from 0.62 to 0.95
through processing. For Case (2), i.e., the Bayesian combination of all six models, the correlation does
not improve beyond the 0.98 already achieved for CFSR.

3.6. Reconstruction of Observation Gaps

We recall that approximately 3% of the data in the observations series of precipitation at Skardu is
missing, while the temperature series is complete. We can now use the expected value conditional on
model predictions, E[y|ŷi], i = 1, ..., n, in correspondence with the data gaps to perform an educated
missing value reconstruction. The processor delivers the most probable monthly mean value of
precipitation or temperature observed at Skardu, conditional on six independent reanalysis predictions,
including an estimate of the variance. This example shows how the processor serves as a powerful
application for educated data reconstruction by the Bayesian combination of model estimates as prior
information. Table 5, first row, lists the annual means for 1979–2009 raw predictions for individual
models and the Bayesian combination of all models in the last column of the table. The second row
shows the results of the processing of predictions, conditioned on elevation-corrected observations at
Skardu as annual means of conditional mean precipitation at the basin centroid, 4579 m.
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Table 5. Mean annual precipitation for 1979–2009 observed at Skardu, individual model predictions
and the combination of predictions. The first row contains annual means of Skardu observations and
unprocessed predictions. The second row contains annual means of conditional means. We note the
adjustment for elevation in the processed predictions and observations.

Pannual Skardu Obs. ERAI ERA20C MERRA NCAR R1 CFSR JRA55 All Comb.

< ŷi > 241 708 450 1034 594 1021 979
< E[y|ŷi] > 1116 1209 1026 1103 1041 1048 1072 1153

Figure 7 shows the entire gap-filled series of monthly altitude-adjusted precipitation observations
(red line), including reconstructed values (3% in total) in correspondence with the Shigar Basin centroid
at 4579 masl. The shaded area indicates the uncertainty band drawn from the conditional posterior
density of the combined reanalyses. Figure 8 is the analogous plot for temperature showing a much
narrower uncertainty bandwidth than precipitation. We note that for temperature, there are no
measurement gaps. Although uncertainty is much narrower for temperature than for precipitation,
it still remains very high, as uncertainty of up to 5 ◦C can have very important impacts on glacier
mass balance and snow cover, especially for temperatures around 0 ◦C. However, this becomes less of
an issue in the case that the combined series are used for trend analysis of temperature.
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Figure 7. Monthly mean observed and reconstructed precipitation values and their uncertainty for Shigar
Basin, 1979–2009. Altitude-adjusted observations are indicated with a solid red line and the median of
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4. Discussion

4.1. Performance Indicators

The performance of the processor and the added value by individual models towards reducing
predictive uncertainty needs to be examined by means of indicators evaluated in the normal space,
which quantify the skill of each single prediction and of the combination of all six predictions. As can
be seen from a visual inspection of Figures 5 and 6, the prediction of precipitation is much more difficult
than the one of temperature. This is visible from the wide spread and heteroscedastic dependence
structure of observations and predictions in the normal space.

A first quantitative indicator of performance is the intercomparison of the correlations of observed
and predicted monthly means shown in Table 4. A more in-depth analysis of processor performance
can be obtained by looking at the correlation and variance of the residuals. Table 6 shows an overview
of the correlations, the variance of the residuals (also called variance unexplained), the variance
explained, bias and RMSE. The first is an overall indicator of the Gaussian scatter around the linear
regression model, while the latter is the variance, which can be explained solely by the regression model.
In addition, we calculate the fractions of variance explained and variance unexplained, to show the
percentages of each. As can be seen in the table, all six models have a correlation with observations of
approximately 0.6. The combination of all models increases the correlations to a value of 0.72, proving
that there is a net added informative value in combining all six predictions. However, the fraction
of variance unexplained is in all cases higher or equal to 50% of total variance, which shows that the
precipitation is not reliably predicted by any of the six reanalysis models, nor their combination.

Table 6. Precipitation: summary of variance analysis after uncertainty processing for individual models
and the combination of all models.

Quantity Def. ERAI ERA20C MERRA NCAR R1 CFSR JRA55 All Comb.

correlation ρηη̂i 0.69 0.62 0.62 0.60 0.58 0.68 0.72
var.residuals 1− ρ2

ηη̂i
0.50 0.58 0.60 0.62 0.64 0.52 0.47

explained var. ρ2
ηη̂i

0.46 0.36 0.37 0.35 0.32 0.45 0.51
frac.var. unexpl. (1− ρ2

ηη̂i
)/σ2

η̂i
0.52 0.62 0.62 0.64 0.67 0.54 0.48

frac. var. expl. ρ2
ηη̂i

/σ2
η̂i

0.48 0.38 0.38 0.36 0.33 0.46 0.52
signal/noise ρ2

ηη̂i
/(1− ρ2

ηη̂i
) 0.94 0.63 0.63 0.57 0.50 0.88 1.10

bias −36.91 −59.13 −8.90 −46.38 −11.00 −14.79 0.05
RMS 9.96 10.33 9.66 10.10 9.68 9.77 9.26

Next, we report the “signal-to-noise” ratio, a decision-theoretic measure of the informativeness
of output [48] for individual models and the combination of all models. It shows values that are
minimal for R1 and CFSR and highest for JRA55 and ERAI. The combination of models brings the
ratio to a value of 1.10, indicating that the co-processing of all models leads to an improvement by
a factor of 2.2 with respect to the worst performing predictor (CFSR) when processed as a single model.
In the hypothetical case of a totally uninformative model, which would be completely uncorrelated
with observations, i.e., ρηη̂i = 0, the total variance becomes unexplained, and the signal-to-noise ratio
ρ2

ηη̂i
/(1− ρ2

ηη̂i
) drops to zero. To the contrary, if the model is “perfect”, ρηη̂i = 1, and the signal-to-noise

ratio→ ∞. Since for all individual models, the noise exceeds the signal, no robust conclusions can be
drawn from the results for individual models, and only slight gains are obtained for the combination
of all models. Given that we are using monthly precipitation, we can safely assume that the predictive
capacity of the models further decreases for sub-monthly temporal resolution.

The last two lines of the table report the bias and the root mean square error. We note that the
effect of the MCP is the removal of the bias, which reduces to near zero after processing. The RMSE
however remains nearly unchanged as high before and after processing, which in this case is due to
poor predictability of precipitation.
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The same performance indicators for temperature are reported in Table 7. As to be expected, the
values of the correlations are above 0.9, showing an excellent correspondence between observations
and predictions for all models. The fraction of variance of residuals is in the order of 10% and, thus,
relatively small. For the combination of all models’ cases, the signal exceeds noise by a factor of
approximately 15. In this case, JRA55 and CFRS turn out to be the most reliable predictions, while
NCEP/NCAR R1 is the least reliable. The low performance of the latter could among other reasons be
related to the much coarser spatial resolution of the R1 model grid with respect to the other products
(see Table 1). For temperature, the bias is much lower and reduces to near-zero after processing. As to
be expected, for temperature, the RMSE is also low for all cases.

Table 7. Temperature: summary of the variance analysis of the normal standard transformed variables
after uncertainty processing for individual models and the combination of all models.

Quantity Def. ERAI ERA20C MERRA NCAR R1 CFSR JRA55 All Comb.

correlation ρηη̂i 0.95 0.94 0.95 0.92 0.96 0.95 0.97
var. residuals 1− ρ2

ηη̂i
0.10 0.11 0.09 0.15 0.08 0.09 0.06

explained var. ρ2
ηη̂i

0.88 0.86 0.89 0.83 0.89 0.88 0.91
frac. var. unexpl. (1− ρ2

ηη̂i
)/σ2

η̂i
0.10 0.11 0.09 0.15 0.09 0.09 0.06

frac. var. expl. ρ2
ηη̂i

/σ2
η̂i

0.90 0.89 0.91 0.85 0.91 0.81 0.94
signal/noise ρ2

ηη̂i
/(1− ρ2

ηη̂i
) 8.99 7.77 9.84 5.53 10.61 10.05 15.05

bias −24.36 −22.84 −20.27 −19.71 −20.13 −19.20 0.092
RMSE 1.51 1.87 1.54 1.74 1.51 1.52 1.26

4.2. Residuals and Reliability

Finally, we examine the probability distribution of residuals for the combination of all models
in the normal space. We compare the empirical distribution with the parametric normal distribution
N(0,1− ρ2

ηη̂i
). The results for precipitation are reported in the left pane of Figure 9, while those of

temperature in Figure 8. We see that both empirical distributions provide a near-perfect match with
the parametric model in absence of any bias. Only the distribution of residuals of precipitation is
departing slightly from the parametric curve in the lower-end tail, which is exclusively caused by
the high spread of predicted precipitation in the low range, also visible in the scatterplots of Figure 5.
For temperature, the match with the parametric curve is near-perfect.

-4 -2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Residuals cumulative distribution function

standard normal
Transformed predicted data

0 20 40 60 80 100

0
20

40
60

80
10

0 Reliability diagram

Uncertainty band around the mean [%]

O
bs

er
ve

d 
da

ta
 fa

lli
ng

 in
si

de
 th

e 
ba

nd
 [%

]

-4 -2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Residuals cumulative distribution function

standard normal
Transformed predicted data

0 20 40 60 80 100

0
20

40
60

80
10

0 Reliability diagram

Uncertainty band around the mean [%]

O
bs

er
ve

d 
da

ta
 fa

lli
ng

 in
si

de
 th

e 
ba

nd
 [%

]

(a) (b)

Figure 9. (a) verification of the normality of residuals for precipitation against the distribution N(0,0.48),
uncensored data, all six models, 1979–2009; (b): reliability diagram with the percentage of observations
that fall inside the uncertainty band at various 10% probability intervals. The continuous line represents
perfect behavior.
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The performance of the processor can also be presented in synthetic fashion through reliability
diagrams or quantile-quantile plots shown for precipitation and temperature in the right panes of
Figures 9 and 10, respectively. These diagrams are the most important rapid-assessment tool for
validating the correctness of the approach. The diagrams show 5% percentage bins of monthly
precipitation and temperature observations y against the 5% credibility quantiles around the expected
value E[y|ŷi], i = 1, ..., n estimated by the processor for all models combined. Perfect behavior
corresponds to red dots lying on the bisection line, indicating a perfect match of the percentages
of observations that fall within each uncertainty quantile bin. In the case of precipitation, we see
a clear departure from the bisection in the 20% quantile, while the behavior improves for higher
quantiles. This is mainly attributable to poor reanalysis results in the low monthly precipitation range.
For temperature, the points are reasonably well and symmetrically aligned with the bisection line,
indicating much better correspondence between processed predictions and observations.
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Figure 10. (a): verification of the normality of residuals for temperature against the distribution
N(0,0.06), uncensored data, all six models, 1979–2009; (b): reliability diagram with the percentage of
observations that fall inside the uncertainty band at various 10% probability intervals. The continuous
line represents perfect behavior.

Finally, we note that our samples are uncensored. By censoring the raw precipitation data
and eliminating heavy outliers, an improved performance of the processor can be achieved.
To further improve processor performance, we can separate the raw precipitation data into months
or three-monthly seasons with their specific precipitation regime. For instance, in the Karakoram,
precipitation falls mainly in winter and during the summer monsoon season. This recurring pattern
can be used as guidance to separate the original sample. On the other side, given the relatively short
period of monthly data, splitting the original sample leads to even shorter sub-samples, which reduce
the reliability of the statistics.

5. Conclusions

In this study, we have applied the Bayesian paradigm for prediction to quantitatively assess
the uncertainty of precipitation and temperature estimates in a poorly-gauged basin in Central
Karakoram by a six-member ensemble of independent reanalysis outputs. To this end, the
Bayesian Model-Conditional Processor (MCP) has been used to estimate the predictive uncertainty
for two meteorological variables required in regional hydro-glaciological mass balance analysis.
The processor has been conditioned on monthly precipitation and temperature observations at a single
observing station located in the proximity of the basin, which were mapped to the elevation of the basin
centroid via an empirical scaling relationship and the adiabatic lapse rate. The reanalysis predictions
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were elaborated with the processor to remove the bias due to the different reference elevations of the
atmospheric model vs. basin centroid elevation and to weight them according to their correlation with
observations. The results show that the combination of the model predictions in the processing leads to
a considerable reduction of the predictive uncertainty and an improved signal-to-noise ratio. The gain
is more pronounced for temperature than for precipitation. Already, the use of a single reanalysis
model, conditioned on observations, leads to noticeable improvements, but maximum benefit is
obtained by the Bayesian combination of multiple independent predictions, six in our case. It needs to
be emphasized that the combined result is only as good as the conditioning observations. Nevertheless,
the obtained mean annual precipitation values summarized in Table 5 allow for a meaningful closure
of the water balance. The continuous series of mean monthly precipitation and temperature and their
variance can be used for specifying the uncertainty of atmospheric forcing in regional hydrological
mass balance studies.

For the specific study region, which is characterized by extreme topographic relief and
temperature excursions, there is a considerable difference in predictive capability between individual
reanalysis products; JRA55 and NCEP-CFSR perform best for temperature, while JRA55 and
ERA INTERIM outperform for precipitation. In general, the predictions of monthly precipitation,
a diagnostic variable, are much more uncertain than those of temperature, a prognostic quantity.
The study suggests that the use of reanalysis data for precipitation with sub-monthly resolution is to
be considered as not adequate for hydrological studies in the region of interest. Future improvement
of the sub-grid cloud and precipitation schemes in the atmospheric models are necessary for these
products to become useful for applications with sub-monthly temporal resolution. The MCP also
provides a solid conceptual basis for probabilistic reconstruction of missing observations and delivers
the least uncertain atmospheric forcing data for poorly-gauged basins from atmospheric reanalysis
data given conditioning observations.
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Appendix

The Model-Conditional Processor (MCP) had been first presented [30] in the context of flood
forecasting as a Bayesian uncertainty processor, which uses the output of a single forecasting model
for water levels or flows to estimate the Predictive Uncertainty (PU) on the respective values to
be observed:

PU = f (y|ŷ) (A1)

where f is a conditional probability density function, y is the random time series vector of observations,
which is to be predicted, and ŷ the random model output vector acting as the predictor. As for instance
shown by Krzysztofowicz and Kelly [49], the empirical probability distributions of predictand and
predictor can be mapped into the Gaussian or normal space by applying the non-parametric Normal

http://jra.kishou.go.jp/
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http://srtm.csi.cgiar.org/
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Quantile Transform (NQT) through probability matching. The transformed standard normal variables,
N(0, 1), are indicated with η and η̂, and can be modeled by respective parametric expressions of
normal distributions.

In the normal space, the joint distribution of the two variables, Φ(η, η̂), can be assumed
as a bivariate normal distribution, for which the predictive density in the normal space φ(η|η̂)
can be evaluated analytically by marginalizing the parametric joint density with respect to η̂.
After marginalization, the conditional density can be back-transformed from the normal to the original
space, yielding the empirical conditional density of the predictive uncertainty Equation (A1). The work
in [64] provided a proof of the close relationship between the MCP [30] and the Bayesian HUP [48,49].

The single-model case can be extended by analogy to include multiple models as predictors [31].
Based on the properties of the multi-normal distribution [65], the MCP allows one to evaluate the
density of the predictand conditional on the forecasts by n models via multiple regression in the
normal space.

The derivation of the predictive density is performed by first converting observations y and the
forecasts by the n models, ŷn = (ŷ1, ŷ2, ...., ŷn), into the Gaussian space by NQT. The transformed
variables are denoted with the Greek letter η. If m is the number of data in the observed series, y and
its transform η are vectors of length m, while the predictions ŷn and their respective transforms η̂n

are organized in m × n matrices. In the normal space, the predictand and predictor are assumed
to be linearly related through a joint probability distribution with vector of means µη,η̂n and
variance-covariance matrix Cη,η̂n . Because the transformed variables are standard normal, the vector
of means is equal to the null vector:

µη,η̂n =

0
...
0

 (A2)

and the variance-covariance matrix is structured as follows:

Cη,η̂n =

[
Cηη Cηη̂n

CT
ηη̂n Cη̂n η̂n

]
(A3)

Moreover, as the standard normal variance is equal to one, the covariances coincide with the
correlations, and those in turn with multi-linear regression coefficients. Consequently, Cηη = 1,
Cηη̂n = [ρηη̂1

, . . . , ρηη̂n
] is a 1× n vector of correlations, while:

Cη̂n η̂n =


1 ρη̂1η̂2

. . . ρη̂1η̂n

ρη̂2η̂1

. . . . . .
...

...
. . . . . . ρη̂n−1η̂n

ρη̂n η̂1
. . . ρη̂n η̂n−1

1

 (A4)

is a n× n matrix of correlations. The joint observations-forecast probability density is the multi-normal density:

φ(η, η̂n) =
exp(− 1

2 · [(η, η̂n)− µη,η̂n ]T · C−1
η,η̂n · [(η, η̂n)− µη,η̂n ])√

(2π)(n+1) · |Cη,η̂n |
(A5)

from which we obtain an analytical expression of the predictive density by exploiting the properties of
the normal distributions [65] and dividing by the marginal density:

φ(η|η̂n) =
φ(η, η̂n)

φ(η̂n)
=

φ(η, η̂n)∫ ∞
−∞ φ(η, η̂n) φ(η) dη

=
exp[− 1

2 (η− µη|η̂n)2/σ2
η|η̂n ]

√
2π · ση|η̂n

(A6)
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where the mean and variance of the conditional density are given as follows:

µη|η̂n = Cηη̂n · C−1
η̂n η̂n · η̂n (A7)

σ2
η|η̂n = 1− Cηη̂n · C−1

η̂n η̂n · CT
ηη̂n (A8)

We observe that Equations (A5)–(A7) are vectorial, with each vector position referring to a given
observing and prediction time t. The predictive density at time t can be obtained by evaluating the
respective expressions for “realizations” of the random observation η and model forecast η̂n processes
at t. The realizations at a given time are denoted with η and η̂n. After the predictive density in
the normal space has been obtained, it is back-transformed into the original space by applying the
inverse NQT.

At this stage, we note that the variance given by Equation (A8) is a scalar value, which is constant
over the entire value range of the random variables. This is a consequence of the implicit assumption
that the dependency (η, η̂n) is homoscedastic. However, for many random variables, such as flow
levels, discharges or precipitation, such an assumption is not appropriate. Very low or high flows
or water levels in a river can show higher variances than their mid-range. Similar characteristics are
observed for precipitation. In such cases, it is inaccurate to apply a single linear regression model
assuming homoscedastic behavior. A proven solution is to apply Truncated Normal Distributions
(TND), which are fitted to the variables over smaller sub-domains of the whole value range, in which
homoscedasticity can be assumed. This approach has been shown [31] to yield satisfactory results in
typical situations of heteroscedastic variables with a subdivision of the random variable into two or at
most three sub-domains.

References

1. Bolch, T.; Kulkarni, A.; Kääb, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.;
Scheel, M.; et.al. The state and fate of Himalayan glaciers. Science 2012, 336, 310–314.

2. Cogley, G.C. Climate science: Himalayan glaciers in the balance. Nature 2012, 488, 468–469.
3. Archer, D.R.; Fowler H.J. Spatial and temporal variations in precipitation in the Upper Indus Basin, global

teleconnections and hydrological implications. Hydrol. Earth Syst. Sci. 2004, 8, 47–61.
4. Fowler, H.J.; Archer, D.R. Conflicting Signals of Climatic Change in the Upper Indus Basin. J. Clim. 2006, 19,

4276–4293.
5. Forsythe, N.; Kilsby, C.G.; Fowler, H.J.; Archer, D.R. Assessment of runoff sensitivity in the Upper Indus Basin

to interannual climate variability and potential change using MODIS satellite data products. Mt. Res. Dev.
2012, 32, 16–29.

6. Mukhopadhyay, B.; Khan, A. A quantitative assessment of the genetic sources of the hydrologic flow regimes
in Upper Indus Basin and its significance in a changing climate J. Hydrol. 2014, 509, 549–572.

7. Mukhopadhyay, B.; Khan, A. Rising river flows and glacial mass balance in central Karakoram. J. Hydrol.
2014, 513, 192–203.

8. Mukhopadhyay, B.; Khan, A. Are-evaluation of the snowmelt and glacial melt in river flows within the
Upper Indus Basin and its significance in a changing climate. J. Hydrol. 2015, 527, 119–132.

9. Hewitt, K. The Karakoram Anomaly? Glacier Expansion and the Elevation Effect, Karakoram Himalaya.
Mt. Res. Dev. 2005, 25, 332–340.

10. Hewitt, K. Tributary glacial surges: An exceptional concentration at Panmah Glacier, Karakoram, Himalaya.
J. Glaciol. 2007, 53, 181–188.

11. Kehrwald, M.N.; Thompson, L.G.; Tandong, Y.; Mosley-Thompson, E.; Schotterer, U.; Alfimov, V.; Beer, J.;
Eikenberg, J.; Davis, M.E. Mass loss on Himalayan glacier endangers water resources. Geophys. Res. Lett.
2008, 35, L22503.

12. Gardelle, J.; Berthier, E.; Arnaud, Y. Slight mass gain of Karakoram glaciers in the early 21st century.
Nat. Geosci. 2012, 5, 322–325.

13. Kääb, A.; Berthier, E.; Nuth, C.; Gardelle, J.; Arnaud, Y. Contrasting patterns of early twenty-first-century
glacier mass change in the Himalayas. Nature 2012, 488, 495–498.



Water 2016, 8, 263 23 of 25

14. Jacob, T.; Wahr, J.; Pfeffer, W.T.; Swenson, S. Recent contributions of glaciers and ice caps to sea level rise.
Nature 2012, 482, 514–518.

15. Bhutyani, M.R. Mass-balance studies on Siachen Glacier in the Nubra valley, Karakoram Himalaya, India.
Ann. Glaciol. 1999, 45, 112–118.

16. Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic
observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2013, 34, 623–642.

17. Schneider, U.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Ziese, M.; Rudolf, B. GPCC’s new land surface
precipitation climatology based on quality-controlled in situ data and its role in quantifying the global
water cycle. Theor. Appl. Climatol. 2013, 115, 15–40.

18. Immerzeel, W.W.; Pellicciotti, F.; Shrestha A.B. Glaciers as a proxy to quantify the spatial distribution of
precipitation in the Hunza Basin. Mt. Res. Dev. 2012, 32, 3–38.

19. Reggiani, P.; Rientjes, T.H.M. A reflection on the long-term water balance of the Upper Indus Basin.
Hydrol. Res. 2015, 3, 446–462.

20. Condom, T.; Rau, P.; Espinoza, J.C. Correction of TRMM 3B43 monthly precipitation data over the
mountainous areas of Peru during the period 1998–2007. Hydrol. Process. 2011 25, 1924–1933.

21. Ward, E.; Buytaert, W.; Peaver, L.; Wheater, H. Evaluation of precipitation products over complex
mountainous terrain: A water resources perspective. Adv. Water Resour. 2011, 34, 1222–1231.

22. Dee, D.P.; Balmaseda, M.; Balsamo, G.; Engelen, R.; Simmons, A.J.; Thepaut, J.N. Toward a Consistent
Reanalysis of the Climate System. Bull. Am. Meteorol. Soc. 2014, 95, 1235–1248.

23. Blum, J.; Le Dimet, F.X.; Navon, I.M. Data assimilation for geophysical fluids. In Computational Methods
for the Atmosphere and the Oceans, Handbook of Numerical Analysis; Ciarlet, P.G., Temam, R., Tribbia, J., Eds.;
Elsevier Science: Amsterdam, The Netherlands, 2008; Volume 14, pp. 385–442.

24. Kalnay, E.; Li, H.; Miyoshi, T.; Yang, S.C.; Ballabrera-Poy, J. 4-D-Var or ensemble Kalman filter? Tellus A 2007,
59, 758–773.

25. Evensen, G. The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn.
2007, 50, 343–367.

26. Glahn, H.R.; Lowry, D.A. The use of model output statistics (MOS) in objective weather forecasting.
J. Appl. Meteorol. 1972, 11, 1203–1211.

27. Wilks, D.S. Statistical Methods in the Atmospheric Sciences: An Introduction; Academic Press: London, UK,
1995; p. 467.

28. Coccia, G.; Siemann, A.L.; Pan, M.; Wood E.F. Creating consistent datasets by combining remotely-sensed
data and land surface model estimates through Bayesian uncertainty post-processing: The case of Land
Surface Temperature from HIRS. Remote Sens. Environ. 2015, 170, 290–305.

29. Kistler, R.; Kalnay, E.; Collins, W.; Saha, S.; White, G.; Woollen, J.; Chelliah, M.; Ebisuzaki, W.; Kanamitsu, M.;
Kousky, V.; et al. The NCEP-NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation.
Bull. Am. Meteorol. Soc. 2001, 82, 247–267.

30. Todini, E. A model conditional processor to assess predictive uncertainty in flood forecasting. Int. J. River
Basin Manag. 2008, 36, 3265–3277.

31. Coccia, G.; Todini, E. Recent developments in predictive uncertainty assessment based on the Model
Conditional Processor approach. Hydrol. Earth Syst. Sci. 2011, 15, 3253–3274.

32. Wilby, R.L.; Wigley T.M.L. Downscaling general circulation model output: A review of methods and limitations.
Prog. Phys. Geogr. 1997, 21, 530–548.

33. Immerzeel, W.W.; Wanders, N.; Lutz, A.F.; Shea, J.M.; Bierkens, M.F.P. Reconciling high-altitude precipitation
in the upper Indus basin with glacier mass balances and runoff. Hydrol. Earth Syst. Sci. 2015, 19, 4673–4687.

34. Yatagai, A.; Yasutomi, N.; Hamada, A.; Kitoh, A.; Kamiguchi, K.; Arakawa, O. APHRODITE: Constructing
a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges.
Geophys. Res. Abstr. 2012, 14, 1401–1415.

35. Pfeffer, W.T.; Arendt, A.; Bliss, A.; Bolch, T.; Cogley, J.; Gardner, A.; Hagen, J.; Hock, R.; Kaser, G.; Kienholz,
C.; et al. The Randolph Glacier Inventory: A globally complete inventory of glaciers. J. Glaciol. 2014, 60,
537–552.

36. Singh, P.; Ramashastri, K.S.; Kumar, N. Topographic influences on precipitation distribution in different
ranges of the western Himalayas. Nord. Hydrol. 1995, 26, 259–284.



Water 2016, 8, 263 24 of 25

37. Palazzi, E.; von Hardenberg, J.; Provenzale, A. Precipitation in the Hindu-Kush Karakoram-Himalaya:
Observations and future scenarios. J. Geophys. Res. Atmos. 2013, 118, 85-100.

38. Young, J.G.; Hewitt, K. Hydrology Research in the Upper Indus Basin, Karakoram, Himalaya, Pakistan; IAHS Publ.
No. 190; IAHS Press: Wallingford, UK, 1990; pp. 139–152.

39. Wake, C.P. Glaciochemical investigations as a tool for determining the spatial and seasonal variation of snow
accumulation in the central Karakoram, northern Pakistan. Ann. Glaciol. 1989, 13, 279–248.

40. Hewitt, K. Glacier change, concentration, and elevation effects in the Karakoram Himalaya,
Upper Inreus Basin. Mt. Res. Dev. 2011, 31, 188–200.

41. Dreyer, N.; Nikolayeva, G.; Tsigelnaya, T. Maps of stream flow resources of some high mountain areas in
Asia and North America. Int. Assoc. Hydrol. Sci. 1982, 138, 203–208.

42. Hewitt, K.; Wake, C.P.; Young, G.J.; David, C. Hydrological investigations at Biafo Glacier, Karakoram Range,
Himalaya; an important source of water for the Indus River. Ann. Glaciol. 2011, 13, 103–108.

43. Douie, J. The Panjab, North-West frontier province, and Kashmir. In Provincial Geographies of India;
Holland, T., Ed.; Cambridge University Press: Cambridge, UK, 1916.

44. Kaser, G.; Grosshauser, M.; Marzeion, B. Contribution of glaciers to water availability in different
climate regimes. Proc. Natl. Acad. Sci. USA 2010, 107, 20223–20227.

45. Bookhagen, B.; Burbank, D.W. Toward a complete Himalayan hydrological budget: Spatiotemporal
distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res. 2010, 115, F03019.

46. Immerzeel, W.W.; Droogers, P.; de Jong, S.M.; Bierkens, M.F.P. Large-scale monitoring of snow cover and
runoff simulation in Himalayan river basins using remote sensing. Remote Sens. Environ. 2009, 113, 40–49.

47. Forsythe, N.; Fowler, H.J.; Kilsby, C.G.; Archer, D.R. Opportunities from Remote Sensing for
Supporting Water Resources Management in Village/Valley Scale Catchments in the Upper Indus Basin.
Water Resour. Manag 2011, 26, 245–251.

48. Krzysztofowicz, R. Bayesian theory of probabilistic forecasting via deterministic hydrologic model.
Water Resour. Res. 1999, 35, 2739–2750.

49. Krzysztofowicz, R.; Kelly, K.S. Hydrologic uncertainty processor for probabilistic river stage forecasting.
Water Resour. Res. 2000, 35, 2739–2750.

50. Raftery, A.E. Bayesian model selection in structural equation models. In Testing Structural Equation Models;
Bollen, K.A., Long, J.S., Eds.; Sage: Newbury Park, CA, USA, 1993; pp. 163–180.

51. Raftery, A.E.; Gneiting, T.; Balabdaoui, F.; Polakowski, M. Using Bayesian model averaging to calibrate
forecast ensembles. Mon. Weather Rev. 2005, 133, 1155–1174.

52. Vrugt, J.A.; Robinson, B.A. Treatment of uncertainty using ensemble methods: Comparison of sequential
data assimilation and Bayesian model averaging. Water Resour. Res. 2007, 43, W01411.

53. Koenker, R. Quantile Regression. In Econometric Society Monographs; Cambridge University Press: New York,
NY, USA, 2005.

54. Stickler, A.; Brönnimann, S.; Valente, M.A.; Bethke, J.; Sterin, A.; Jourdain, S.; Roucaute, E.; Vasquez, M.V.;
Reyes, D.A.; Allan, R.; et al. ERA-CLIM: Historical Surface and Upper-Air Data for Future Reanalyses.
Bull. Am. Meteorol. Soc. 2010, 95, 1419–1430.

55. Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.;
Endo, H.; et al. The JRA-55 Reanalysis: General Specifications and Basic Characteristics. J. Met. Soc. Jpn.
2015, 93, 5–48.

56. Saha, S.; Moorthi, S.; Pan, H. L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.;
Behringer, D.; et al. The NCEP Climate Forecast System Reanalysis. Bull. Am. Meteorol. Soc. 2010, 91,
1015–1057.

57. Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.;
Takacs, L.; Kim, G.K.; et al. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications.
J. Clim. 2011, 24, 3624–3648.

58. Cramer, T. Geländeklimatologische Studien im Bragottal, Karakorumgebirge, Pakistan; GEO Aktuell Forschungsarbeiten:
Göttingen, Germany, 2000; Volume 3. (In German)

59. Kuhle, M. The maximum ice age glaciation between the Karakorum main ridge (K2) and the Tarim basin
and its influence on global energy balance. J. Mt. Sci. 2005, 2, 5–22.

60. Winiger, M.; Gumpert, M.; Yamout, H. Karakoram-Hindukush-Western Himalaya: Assessing high-altitude
water resources. Hydrol. Process. 2005, 19, 2329–2338.



Water 2016, 8, 263 25 of 25

61. Bocchiola, D.; Diolaiuti, G.; Soncini, A.; Mihalcea, C.; D’Agata, C.; Mayer, C.; Lambrecht, A.; Rosso, R.;
Smiraglia, C. Prediction of future hydrological regimes in poorly gauged high altitude basins: The case study
of the upper Indus, Pakistan. Hydrol. Earth Syst. Sci. 2011, 15, 2059–2075.

62. Miehe, G.; Wininger, M.; Böhner, M.; Yili, Z. The climatic diagram map of High Asia. Erdkunde 2001, 55,
94–97.

63. Tallis, G.M. The moment generating function of the truncated multi-normal distribution. J. R. Stat. Soc. 1961,
23, 223–229.

64. Todini, E. From HUP to MCP: Analogies and extended performances. J. Hydrol. 2012, 477, 32–43.
65. Mardia, K.V.; Kent, J.T.; Bibby, J.M. Multivariate Analysis. Probability and Mathematical Statistics; Academic Press:

London, UK, 1979.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Materials and Methods
	Study Site
	Seasonal Precipitation and Temperature Variability in the Karakoram
	Precipitation and Temperature Estimation in Poorly-Gauged Basins
	Approaches to Predictive Uncertainty Assessment
	Atmospheric Reanalyses
	Meteorological In Situ Observations

	Application of the Model-Conditional Processor
	Normalization of Variables
	Precipitation: Normal Distributions
	Precipitation: Multivariate Truncated Normal Distributions
	Temperature: Multivariate Normal Distributions
	Inverse Transform and Correlation Analysis
	Reconstruction of Observation Gaps

	Discussion
	Performance Indicators
	Residuals and Reliability

	Conclusions

