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Abstract: Regular monitoring of water quality is increasingly necessary to keep pace with rapid
environmental change and protect human health and well-being. Remote sensing has been suggested
as a potential solution for monitoring certain water quality parameters without the need for in situ
sampling, but universal methods and tools are lacking. While many studies have developed predictive
relationships between remotely sensed surface reflectance and water parameters, these relationships
are often unique to a particular geographic region and have little applicability in other areas. In order
to remotely monitor water quality, these relationships must be developed on a region by region basis.
This paper presents an automated method for processing remotely sensed images from Landsat
Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) and extracting corrected
reflectance measurements around known sample locations to allow rapid development of predictive
water quality relationships to improve remote monitoring. Using open Python scripting, this study
(1) provides an openly accessible and simple method for processing publicly available remote sensing
data; and (2) allows determination of relationships between sampled water quality parameters and
reflectance values to ultimately allow predictive monitoring. The method is demonstrated through a
case study of the Ozark/Ouchita-Appalachian ecoregion in eastern Oklahoma using data collected
for the Beneficial Use Monitoring Program (BUMP).
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1. Introduction

The Clean Water Act (CWA) of 1972 [1] was enacted to make the waters of the United States
fishable, drinkable, and swimmable in recognition of their vital role for industry, recreation, and
food production. As part of this mandate, federal, state, and tribal partners are required to regulate
and monitor waterways to ensure compliance. Monitoring public waters can be difficult, though, as
field sampling campaigns are labor and time intensive, often requiring additional laboratory costs
for sample analysis. In many cases, only a handful of samples are collected and averaged from each
water body, which homogenizes any variation in parameters across the lake. Remote sensing offers
a potential solution to the obstacles of in situ monitoring since publicly available data are collected
at regional scales and temporal resolutions (i.e., repeat collection time) that are much more frequent
than field sampling campaigns. Extracting water quality measurements directly from satellite imagery
can also allow rapid identification of impaired waters, potentially leading to faster responses by
water agencies.

Monitoring water quality through remote sensing involves first determining a reliable relationship
between light reflectance (at certain wavelength bands) and water parameters collected in situ. The
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primary factors influencing the spectral reflectance of water are chlorophyll, dissolved organic matter,
and suspended minerals [2,3], which comprise the main components mandated for sampling [4],
as well as physical factors such as wind-induced mixing and restratification. Historically, aerial
photographs provided the reflectance component to determine these relationships [5], but modern
research utilizes satellite imagery. Specifically, studies focus on determining which waveband, or band
combinations, correlate with certain water quality parameters such as chlorophyll, total suspended
matter, suspended sediment concentration, turbidity, and Secchi disk depth [6–21].

Some studies have achieved reliable, predictive relationships (R2 > 0.8) between reflectance and
turbidity, suspended sediments, and Secchi disk depth [10–12], thus supporting the further use of
remote sensing for water quality monitoring. However, most studies focus on a single geographic
region and/or a single water quality parameter. Since relationships between reflectance and water
quality will vary across ecoregions, lake taxonomy, seasons, and are impacted by local environmental
conditions including weather events [14,22,23], universal predictive models to extract water quality
parameters from remote sensing data are difficult to develop [8,12,15,24].

For that reason, these relationships must be developed independently for each region of interest,
which can be a hindrance for agencies without expertise in remote sensing or without the time to
dedicate to the extensive image processing. The objective of this study is to develop an automated
method to extract remotely sensed reflectance values from Landsat imagery based on water sample
point locations that can be applied universally provided a database of water sampling parameters,
with locations, exists. Subsequently, correlations between sample sampled parameters and reflectance
bands can allow development of regional predictive algorithms for monitoring water quality remotely.
The method and workflow are demonstrated through a case study of the Ozark/Ouchita-Appalachian
ecoregion in eastern Oklahoma using water samples collected for the Beneficial Use Monitoring
Program (BUMP).

2. Study Area

Eastern Oklahoma has a range of water issues including high sediment loads and anthropogenic
phosphorus, which can cause undesirable algal growth. The Oklahoma Water Resources Board (OWRB)
is tasked with monitoring Oklahoma water bodies to ensure compliance with CWA regulations. OWRB
collects water quality samples for approximately 25 percent of the lakes in the state in any given year.
Due to labor, time, and cost limitations, each lake is sampled, at minimum, once every five years. This
sampling frequency allows detection of long-term trends and basic impairment but is insufficient to
monitor short-term shifts such as influx from storms or seasonal algal blooms, which can be highly
localized and temporally brief but highly destructive. Additionally, on average, only four samples are
collected in each lake during each sampling event, which limits the ability to detect localized issues.

The Ozark/Ouachita-Appalachian Forest ecoregion (OOAF) is located in eastern Oklahoma
(Figure 1). The Neosho River, with sources in Kansas, Missouri, and Arkansas, is the longest water
system. Important uses of the watersheds in this region include the freshwater supply for Tulsa,
Oklahoma (a metropolitan area of about 1 million people), the largest recreational lake in Oklahoma
(Lake Eufaula), and tourism along the Illinois River, which is an Oklahoma Scenic River. Since the
ecoregion boundary bisects many of the major lakes in the region, the boundary was modified slightly
to encompass these water bodies (Figure 1–inset).

Common water impairments in this region include high total phosphorus and low dissolved
oxygen due to consumption by algae [4], with some waters experiencing eutrophication. The area is
also of political interest and the focus of several scientific studies due to intensive agricultural activities
upstream (i.e., poultry farming) [1,4,5,7–9,25–27]. Recently, the state of Oklahoma sued the EPA and
several Arkansas municipalities in defense of its waters, resulting in the establishment of separate Total
Maximum Daily Loads (TMDL) on phosphorus for Oklahoma’s designated Scenic Waterways, which
are enforceable at the Oklahoma border [28]. The ability to remotely monitor these waters frequently
is critical to enforce these standards.
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3. Material and Methods

3.1. Datasets

To utilize the automated method described below, users need the following datasets: (1) a database
of water quality samples collected in situ after 1 March, 1984 (Landsat 5 Thematic Mapper ™ launch
date); (2) Landsat TM or Enhanced Thematic Mapper Plus (ETM+) images downloaded from the
United States Geological Survey (USGS) Earth Explorer Global Visualization Viewer (GloVis) site [29],
acquired within a specified time window of sample collection (e.g., one day), and covering the lake(s)
of interest; (3) lake boundary shapefiles, which can be downloaded from the National Map [30]. These
datasets are described in detail for the case study below.

3.1.1. BUMP Water Quality Samples

The BUMP database contains water samples from 1998 to present for 130 lakes in Oklahoma (40 in
the OOAF ecoregion), but the case study is limited to the 10-year period between October 2003 and
October 2012. Sampled water quality parameters include nitrogen, phosphorus, turbidity, dissolved
metals, salinity, chlorophyll, and water depth. Data are collected by the OWRB using a combination of
digital mensuration tools, field measurements, and lab analysis [31]. While nitrogen and phosphorus
are becoming increasingly important for water quality monitoring, chlorophyll is often used as a
proxy for those nutrients [32,33], and this is the case with the BUMP data. We focus specifically on
chlorophyll-α (hereafter, chlorophyll) and turbidity, which is a proxy for suspended sediment, since
these parameters are widely noted to be of concern in both the study area and the literature. It should
be noted though that the methodology described below can be applied to any water quality parameters
provided sufficient data exist.

OWRB measures chlorophyll (µg/L) by collecting water samples in a flask at each sample site
and sending samples to a lab for extraction. Turbidity, which is a composite of suspended sediments,
chlorophyll, dissolved organic matter, and air bubbles, is measured using a digital turbidity meter
(Hach, Loveland, CO, USA) that calculates the amount of light passing through the water column.
Perfectly clear water (i.e., no turbidity) will produce a reading of 0 NTU (Nephelometric Turbidity
Units), whereas water with high amounts of sediment and other matter will produce turbidity values
as high as 1600 NTU.

As with many sampling programs, BUMP sampling frequencies and configurations are not
systematic. Larger lakes typically comprise more sampling sites and are sampled more frequently than
smaller water bodies. Additionally, the entire suite of sampling parameters is not always collected
for each lake depending on time and cost constraints. Despite these limitations, the BUMP database
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contains several thousand entries (226 sample locations for the 40 lakes in the ecoregion sampled
multiple times over the 10-year study period), which is sufficient for building statistical relationships.
The processing methodology and associated Python code (discussed in detail below) are tailored
specifically for the BUMP shapefile data format [28], but users can adjust the code to ingest other
geospatial formats.

3.1.2. Remote Sensing Imagery

Landsat is widely-used for water quality studies and was therefore selected as the foundation for
this method. The processing methodology described here is applicable for Landsat 5 TM and Landsat 7
ETM+ imagery. Additionally, users can utilize Landsat 8 Operational Land Imager (OLI) and Thermal
Infrared Sensor (TIRS) imagery by modifying the code to bypass the radiometric correction steps. Since
the spectral bands of Landsat 8 (OLI) are very similar to TM and ETM+, it is also possible to develop
statistical relationships using TM and ETM+ imagery and then apply those relationships to current
and future OLI data collections. Since the sampling methodology utilizes small, 3 ˆ 3 windows placed
around sample points (discussed below), it is possible to employ ETM+ images collected after the scan
line corrector failed (SLC-off) in 2003 as the analysis will utilize any and all viable pixels in the window.

Users must download scenes prior to running analyses from the USGS Earth Explorer GloVis
site [29]. When selecting images for water quality correlation studies, research suggests that imagery
should be acquired within one day of an in situ collection event [11,13]. This conservative window
limits the availability of cloud-free, Landsat images, and for certain stable parameters (e.g., Secchi
disk depth), longer windows up to seven days may be acceptable [13]. However, local environmental
conditions, such as wind forces that may cause resuspension of material, may warrant much shorter
viable windows. Therefore, the determination of appropriate time window for each study is left to
the discretion of the user. For our case study, we elected to only include images collected within
one day of (before or after) an in situ sampling event due to the highly variable weather patterns in
Oklahoma. When selecting imagery for download, users must also determine an acceptable cloud
cover percentage. We included all images with less than 100 percent cloud cover because small lakes
may not be occluded by clouds, even in cloudy images, and the atmospheric correction steps will detect
and mask out cloud pixels. However, choosing a more stringent cloud threshold can reduce processing
time and potentially eliminate unnecessary processing for lakes occluded by clouds. Lastly, since all
bands including thermal, are needed for image preprocessing, we retain all bands for analysis. Most
water quality studies utilize only the visible and near infrared (NIR) portions of the electromagnetic
spectrum, so users may elect specific bands to analyze after processing has concluded.

3.2. Image Processing Methodology

The automated image processing method is built in the open Python scripting language [34].
Image manipulation is performed in Python using ArcMap (Esri, Redlands, CA, USA) [35] via the
arcpy module. Arcpy is a version of Python built by Esri (Redlands, CA, USA) that can access ArcMap
functions and includes the NumPy package. The Arcpy module is utilized to control ArcMap from
outside the program, thus allowing ArcMap functions to be called in the same manner Python functions
are called. These script tools were developed in Python specifically to allow easy distribution, access,
and use by others [36]. However, the use of Arcpy requires an Esri ArcMap™ license with the Spatial
Analyst extension. The Python script presented below is available in the Supplementary materials.
Python software can be downloaded from www.python.org.

The processing methodology (Figure 2) includes four stages: (1) minimum value extraction
and image subsetting; (2) radiometric correction including water and cloud masks; (3) extraction
and averaging of spectral reflectance values in sample point windows; and (4) statistical analysis
(i.e., regression). The first three stages are automated through the Python script. Once reflectance
values have been extracted, statistical correlations and regressions can be built by the user to determine
relationships between water quality parameters and surface reflectance. It should be noted that Landsat
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surface reflectance products can be substituted for raw imagery when available, which eliminates the
need to perform Step 2. This step can easily be skipped in the processing code by toggling it off.

Water 2016, 8, 257 

5 

relationships between water quality parameters and surface reflectance. It should be noted that 
Landsat surface reflectance products can be substituted for raw imagery when available, which 
eliminates the need to perform Step 2. This step can easily be skipped in the processing code by 
toggling it off. 

 
Figure 2. Methods flowchart. 

3.2.1. Step 1: Value Extraction and Image Subsetting 

Once images are downloaded and unzipped by the user, the Python script extracts the lowest 
pixel digital number (DNmin) occurring throughout the image at least 100 times to use later on during 
radiometric correction. This value needs only be assessed once for each scene, and is saved so that 
lakes and associated sampling events sourced from the same Landsat scene will utilize the same 
DNmin value. Once the DNmin value has been extracted, images are clipped to the rectangular extent 
of the lake. Since water levels fluctuate, and complex lake boundary vectors are computationally 
expensive for clipping, the script reprocesses lake outlines to rectangles bounding the outer extent of 
the shoreline, which expedites the process. Non-water areas within the rectangle are masked out on 
a per image basis in Step 2. 

3.2.2. Step 2: Radiometric and Atmospheric Correction 

COST-DOS, or cosine of the solar zenith angle correction dark object subtraction, is a radiometric 
correction method for mitigating atmospheric effects recorded by satellite remote sensing 
instruments [37]. COST-DOS correction can account for scattering, absorption, and refraction of light 
from atmospheric particles such as water vapor and particulate matter. This method is built from two 
parts: dark object subtraction (DOS) accounts for additive radiometric error through histogram 
shifting, while the cosine of solar zenith (COST) addresses multiplicative error by accounting for the 
variation in sun angles throughout the year [37]. COST-DOS atmospheric correction does not require 
field radiometric measurements, which makes it ideal for correcting historical imagery. However, the 
method does require a seasonally invariant dark object, such as a clear lake or manmade structure, 
to be present within the image, so researchers should take care to ensure this assumption is satisfied 
prior to implementing the method. The inputs for COST-DOS include DNmin, which was collected in 
Step 1 from the complete Landsat scene before subsetting. Additional inputs are the solar zenith angle 
and distance between the earth and sun, which are automatically obtained from the image header 
file (metadata), and the scene’s pixel values, which are recalculated to the top of atmosphere (TOA) 
values originally captured by the sensor, using Equation (1) [38]: 

Figure 2. Methods flowchart.

3.2.1. Step 1: Value Extraction and Image Subsetting

Once images are downloaded and unzipped by the user, the Python script extracts the lowest
pixel digital number (DNmin) occurring throughout the image at least 100 times to use later on during
radiometric correction. This value needs only be assessed once for each scene, and is saved so that
lakes and associated sampling events sourced from the same Landsat scene will utilize the same
DNmin value. Once the DNmin value has been extracted, images are clipped to the rectangular extent
of the lake. Since water levels fluctuate, and complex lake boundary vectors are computationally
expensive for clipping, the script reprocesses lake outlines to rectangles bounding the outer extent of
the shoreline, which expedites the process. Non-water areas within the rectangle are masked out on a
per image basis in Step 2.

3.2.2. Step 2: Radiometric and Atmospheric Correction

COST-DOS, or cosine of the solar zenith angle correction dark object subtraction, is a
radiometric correction method for mitigating atmospheric effects recorded by satellite remote sensing
instruments [37]. COST-DOS correction can account for scattering, absorption, and refraction of light
from atmospheric particles such as water vapor and particulate matter. This method is built from
two parts: dark object subtraction (DOS) accounts for additive radiometric error through histogram
shifting, while the cosine of solar zenith (COST) addresses multiplicative error by accounting for the
variation in sun angles throughout the year [37]. COST-DOS atmospheric correction does not require
field radiometric measurements, which makes it ideal for correcting historical imagery. However, the
method does require a seasonally invariant dark object, such as a clear lake or manmade structure,
to be present within the image, so researchers should take care to ensure this assumption is satisfied
prior to implementing the method. The inputs for COST-DOS include DNmin, which was collected in
Step 1 from the complete Landsat scene before subsetting. Additional inputs are the solar zenith angle
and distance between the earth and sun, which are automatically obtained from the image header file
(metadata), and the scene’s pixel values, which are recalculated to the top of atmosphere (TOA) values
originally captured by the sensor, using Equation (1) [38]:
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Lλ “ Mρ ˚QCAL` Aρ (1)

where Lλ is TOA reflectance, QCAL are the quantized calibrated pixel values in DN, Mρ is the
multiplicative rescaling factor, and Aρ is the additive scaling factor. Equation (1) converts DN to TOA
reflectance but does not account for atmospheric effects. COST-DOS calculates rescaling factors from
the minimum and maximum calibration values and includes DOS correction and sun angle correction
in this process. The generic and expanded forms of this equation are described in Equations (2)–(4):

Lhaze “ HLmin ´ L1% (2)

where:

HLmin “ Lmin `DNmin
pLmax ´ Lminq

pQCALmax ´QCALminq
(3)

L1% “
´

0.01` ESUNλ ˚ cos p∅s π { 180q2
¯

{

´

d2π
¯

(4)

Most of the input data for Equations (2)–(4) are contained in the Landsat metadata file, which
accompanies the image when downloaded from the USGS site [29]. Lmax and Lmin are maximum and
minimum spectral radiances values scaled to QCALmax and QCALmin by band. The difference between
QCALmax and QCALmin for 8-bit imagery is 254 and has been this value [(255–1)] since a recalibration
in 2004. DNmin is the lowest pixel value (originally in DN but converted to TOA reflectance in HLmin)
with at least a count of 100 in the raw scene. ESUNλ is the solar spectral irradiance at TOA. These
are known values published for each satellite [39,40]. ∅s is the solar zenith angle in degrees, which is
calculated from the sun elevation included in the metadata minus 90. Finally, the distance between the
Earth and sun, d, can be determined using the Julian acquisition date contained within the Landsat
file name. The outcome, Lhaze, is the rescaled and corrected DNmin value, which is used to correct the
rescaled image values during their correction process (Equation (5)):

Pλ “
π pLλ ´ Lhazeq d2

ESUNλcos pπ { 180 θsq
(5)

The atmospherically corrected reflectance (Pλ) is the final outcome using the TOA reflectance (Lλ)
minus the rescaled and corrected DNmin value, correcting for variations in the angle, distance, and
brightness of the sun throughout the year.

The thermal band is eventually used to produce a cloud cover detection algorithm and ultimately
mask out any cloud areas so they do not influence results (see below). Radiometric correction of
the thermal band involves first converting values to spectral radiance using Equation (1) and then
converting spectral radiance to surface temperature using Equation (6). This conversion requires two
calibration constants: K1 and K2 [40]. The output of Equation (6) is temperature in kelvin for every
pixel in the image:

T “
K2

ln
´

K1
Lλ ` 1

¯ (6)

3.3. Cloud Mask

A cloud cover map is not available for each Landsat scene, but the process used to compute cloud
cover by USGS is mimicked in this script to generate a cloud cover map for the purpose of excluding
cloud pixels from data extraction. The process, detailed by Irish [41], consists of a two-pass process
using thresholds and indices to check for dense clouds and filter out sand and snow, both of which
exhibit similarities to cloud reflectance. Cirrus clouds are not detected by this method due to their lack
of a strong thermal response [41].
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The first pass comprises eight filters, which progressively differentiate pixels as either “cloud” or
“not cloud”. Pixels identified as “not cloud: that can be positively labeled as snow or sand are noted
for later use. Pixels classified as ambiguous proceed to the second pass where they are reevaluated
using basic statistics computed from pixels detected as ‘clouds’ during the first pass. If an excess of
brightly illuminated desert pixels are detected in the first pass, the second pass is not executed. If snow
is present in the scene, cloud pixels are divided into warm and cold classes with the statistics of each
used to evaluate ambiguous pixels during the second pass; otherwise, the entire cloud class is utilized.
The cloud statistics set minimum and maximum classification thresholds for reevaluating ambiguous
pixels to determine if they are cloud or not cloud. The final result of this process is a binary raster
where pixels coded 1 are cloud free and can be extracted for analysis.

3.4. Water Mask

The final radiometric/atmospheric correction step is to mask out pixels that do not contain
water. Due to seasonal fluctuations in water level and longer-term impacts such as drought, sample
locations may not always be located over water. It is necessary to exclude these pixels so they do not
influence results. The Normalized Difference Water Index (NDWI) [42] was designed to detect water
content of leaves, and has been modified to better highlight water information in Landsat bands [43]
(Equation (7)). The result of the modified NDWI (MNDWI) is a binary mask with values of 1 for pixels
containing water. Pixels with values of 1 are extracted for analysis:

MNDWI “
Green´ SWIR1
Green` SWIR1

(7)

3.4.1. Step 3: Data Extraction

To extract reflectance data for analysis, the script selects the pixel containing the x, y location
of the in situ sample point and identifies a 3 ˆ 3 pixel window centered on that point. The selection
of a nine-pixel window is based on the assumption that water is heterogeneous and often in flux
due to seasonal, solar, and meteorological factors, so a larger window will capture some of that
variance. Additionally, neither GPS points nor water samples will be collected in precisely the same
position every sampling event given they are typically collected from a vessel in moving water. More
importantly, Kloiber, et al. [13] investigated various pixel window sizes, up to 25ˆ 25, for water quality
analysis and found that windows larger than 3 ˆ 3 pixels were not statistically advantageous. In this
study, we utilize a 3 ˆ 3 pixel window, but the window size is customizable. The script extracts viable
reflectance values from within the 3 ˆ 3 window based on the cloud and water masks and averages
those reflectance values to produce mean values for each band for each respective sample point. Since
a sample window may have less than nine viable pixels (due to clouds, non-water, or SLC-off voids:
Figure 3), the script also generates a ratio of the number of viable pixels used to compute each sample,
by band, so users can independently determine an acceptable minimum value threshold for each
individual study by sorting results based on this field and eliminating any windows with a lower
completion ratio than desired.
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corrector off (SLC-off) voids, Bottom images show; (c) a fully intact nine-pixel sample window; (d) a
partially occluded sample window; and (e) a fully occluded sampling window.

3.4.2. Step 4: Statistical Analysis

We perform statistical analyses here to demonstrate how the aforementioned data processing
methodology can be used to develop relationships between reflectance and in situ sample data to allow
prediction of water quality remotely. However, it is important to note that these relationships will
change based on the geographic location, ecoregion, lake type, and season in which sampling occurs,
so relationships must be calibrated for the specific region under investigation. It is also important to
note that, due to the variabilities and uncertainties of water quality parameters, developing robust
prediction algorithms may not be possible in all ecoregions.

We computed mean reflectance values for each sample point and correlate various band and band
combinations with turbidity and chlorophyll. Since each sample location was visited multiple times
across the 10-year study period, we treat each event as an independent sample since the water sampled
was undoubtedly different despite coming from a relatively similar position in the lake. We performed
regression analyses using the Statistical Package for the Social Sciences (SPSS; IBM, Armonk, NY,
USA) [44], but users may opt for any statistical software program since this step must be performed
after the automated processing script has finished.

We first performed basic data explorations (e.g., summary statistics, normality tests, etc.) to
determine possible candidate models for predicting water quality (chlorophyll/turbidity) from
reflectance. Transformed and raw reflectances were then correlated with water quality parameters by
individual band, band pairs, and other band combinations using Pearson’s r. We tested all possible
combinations of bands for band ratios. Since seasonality affects water quality in this region, we also
examined correlations by season: winter (Jan–Mar), spring (Apr–Jun), summer (July–Sept), and fall
(Oct–Dec). Correlations from each season with significant and meaningful r values were tested with
linear bivariate regression.
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4. Results and Discussion

4.1. Processing Methodology and Code

The processing code is available in the Supplementary electronic materials. Image processing
was performed on an Intel i5 processor (Santa Clara, CA, USA) and took approximately 35 min to
process a large lake with 14 images with 34 sample points. The design of this tool around the OWRB’s
water quality database and lake shapefiles allows rapid reapplication of this methodology across
Oklahoma, and with minor changes, it can easily be applied to other water sample databases. While
the code was written specifically for Landsat 5 and 7, it can integrate Landsat 8 with minor adjustments.
In the development of these scripts, portions of the code were adopted from Gómez-Dans [45] and
Kochaver [46]. These scripts provided insight that expedited the development of this tool, and our
intent is that public release of this script will aid in future water research.

4.2. Case Study Results

Over the ten-year study period, 130 Landsat scenes coincided within one day of a BUMP sampling
event. After verifying that each sample window contained lake surface reflectance and was complete
for all bands, we extracted 9369 sample locations, which gave us 347 paired pixel extracts and BUMP
samples (n = 347). We elected to use all sample windows, even those with less than 100 percent viability
(<9 pixels with reflectance values). For the most part, data presented bimodal distributions, which is
typical for lakes with the two modes corresponding to deep water and shallow water. Chlorophyll
and turbidity, the two variables examined, both exhibited a logarithmic distribution, so the data were
natural log transformed to improve normality. Correlations for both the raw and log-transformed
parameters are presented.

Significant results (α < 0.01) for chlorophyll and lnChlorophyll (Table 1) show positive correlations
between reflectance and chlorophyll during winter, with a negative relationship during spring. While
r values are not particularly high, all reported values are significant. Interestingly, all significant
band combinations for chlorophyll included at least one of the short wave infrared bands (SWIR), yet
most water quality studies to this point have not included SWIR bands. These results suggest there
may be a relationship between SWIR reflection and algae/plant production, which deserves further
investigation. It is possible that ratios between either chlorophyll absorption bands (red and blue) or
chlorophyll reflectance bands (green and NIR) with either of the two SWIR bands may accentuate
the portion of the spectrum affected by chlorophyll, thereby making estimated values more readily
correlated with actual sample values. Chlorophyll was not significantly correlated with any bands or
band combinations during summer, which is surprising given the propensity for algal formations in
the study region. However, algae blooms can be temporally brief, and may not have aligned with the
eight to 16-day temporal resolution of the images.

Significant results (α < 0.01) for turbidity and lnTurbidity (Table 2) show individual band
correlations were strongest for SWIR1 and log-transformed SWIR2 for lnTurbidity. The addition
of red and NIR bands to ratios with the SWIR bands improved r values. In winter, several band
combinations containing a SWIR band were significant. A linear regression composed of Red/SWIR1
and Blue/SWIR1 produced a moderately high r2 value (0.648) suggesting that the SWIR1 bands in
combination with the chlorophyll absorption bands (red and blue), may hold value for detecting
turbidity. This combination is not surprising since turbidity is a composite of suspended sediments,
chlorophyll, and other dissolved organic matter; SWIR bands are specifically designed to detect
reflectance from minerals (i.e., sediments), and the blue and red bands are suitable for detecting
chlorophyll. Previous research has indicated possible relationships between turbidity and red
reflectance [13] and NIR reflectance [11], but, to our knowledge, this is the first study noting strong
relationships between turbidity and SWIR bands.
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Table 1. Significant (α < 0.01) relationships between reflectance bands/band combinations and
chlorophyll, by season.

Significant Results (n) Band/Band Combinations Pearson’s r Values

All data (347)
Chlorophyll SWIR2/NIR ´0.154

lnChlorophyll SWIR2/NIR ´0.155
Winter (74)

Chlorophyll
SWIR1/SWIR2

Blue/SWIR2
SWIR2/Green

0.498
0.273
0.238

lnChlorophyll SWIR1/SWIR2 0.379
Spring (94)

Chlorophyll None N/A

lnChlorophyll

NIR/SWIR1
Green/SWIR1
Red/SWIR1

Green/SWIR2
NIR/SWIR2

´0.356
´0.346
´0.319
´0.306
´0.303

Summer (99)
Chlorophyll None N/A

lnChlorophyll None N/A
Fall (80)

Chlorophyll None N/A
lnChlorophyll None N/A

Table 2. Significant (α < 0.01) relationships between reflectance bands/band combinations and turbidity,
by season.

Significant Results (n) * Band/Band Combinations Pearson’s r Values

All data (347)

Turbidity None N/A

lnTurbidity

SWIR1
SWIR2

Red/SWIR1
NIR/SWIR1
Red/SWIR2

´0.142
´0.145
0.421
0.409
0.431

Winter (74)

Turbidity Green/SWIR1
Green/SWIR2

0.455
0.523

lnTurbidity
Red/SWIR1
NIR/SWIR1
Red/SWIR2

0.510
0.503
0.470

Spring (94)

Turbidity None N/A

lnTurbidity

Green/Red
Blue/Red

SWIR2/NIR
SWIR2/Blue

´0.464
-0.422
0.329
0.273

Summer (99)

Turbidity * Red/Green 0.359

Turbidity *

Red/SWIR1
Red/SWIR2
NIR/SWIR1
NIR/SWIR2

0.411
0.354
0.43

0.362

lnTurbidity*
Red/SWIR1
NIR/SWIR1
NIR/SWIR2

0.496
0.494
0.422

lnTurbidity* Red/SWIR2
SWIR2/NIR

0.427
´0.417
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Table 2. Cont.

Significant Results (n) * Band/Band Combinations Pearson’s r Values

Fall (80)

Turbidity Green/Red ´0.383
Turbidity Red/B5 0.281
Turbidity NIR/SWIR1 0.335
Turbidity NIR/SWIR2 0.303

lnTurbidity *
lnTurbidity *
lnTurbidity *
lnTurbidity *
lnTurbidity *

Green
NIR

SWIR1
SWIR2

NIR/SWIR1

´0.442
´0.443
´0.464
´0.449
0.461

Note: * Only top five correlations, in terms of r value, shown.

In summer, there were eight significant Turbidity relationships ranging from 0.252 to 0.43, and
lnTurbidity had 14 significant correlations ranging from 0.277 to 0.496. Significant band correlations
included various combinations of the Red, NIR, and SWIR bands. Lastly, during fall, lnTurbidity
was significantly correlated with all six individual bands, their natural log transformations, and ten
independent band ratios. Correlations varied from ´0.292 to 0.461. Interestingly, all band ratios
included an infrared band: NIR, SWIR1, or SWIR2. Controlling for excessive influence of the green
band in a stepwise regression of the significantly correlated variables, r2 = 0.555 and included the NIR,
lnRed, and lnBlue bands. However, multicollinearity was present between the lnRed and lnBlue bands.

Linear regressions were run for the best performing samples to determine predictive relationships
from multiple variables. lnTurbidity showed the best significant (α < 0.01) regression relationship
(r2 = 0.521) in winter using several band ratios:

lnTurbidity “ 6.7` 0.62
Red
NIR

´ 0.882
NIR
Blue

´ 3.22
Green
Blue

(8)

While our case study was primarily intended to demonstrate how the automated processing
methodology can be used to develop relationships between surface reflectance and water quality
samples, it is useful to compare our results with prior studies that have used Landsat imagery for water
quality prediction in an effort to develop globally applicable algorithms. For example, Hicks et al. [11]
generated Pearson correlation coefficients between ´0.46 and 0.96 for turbidity for lakes in New
Zealand using Landsat 7. They reported strongest relationships (>0.90) for single bands Blue, Red, and
NIR. We also uncovered a significant relationship between lnTurbidity and the single NIR band in fall
(Table 2) but did not find any strong relationships for the individual Blue and Red bands. Similarly,
Allen et al. [6] generated correlation coefficients as high as 0.944 for chlorophyll using the band ratio
Blue/Red from Landsat 7, also for a lake in New Zealand, where conditions vary extensively from
the study area examined here. Interestingly, neither study incorporated the SWIR bands, which were
found in this study to be significant, both as individual predictors and as components of band ratios.
Every significant predictor ratio in our study for chlorophyll included a SWIR band, which suggests
that regional environmental differences may warrant use of SWIR bands. Jiazhu [12] produced more
moderate correlation coefficients, similar to the values observed in this study, with absolute values
ranging from 0.018 to 0.826 for Taihu Lake in China, which experiences high degrees of eutrophication
and pollution. That study, which used Landsat TM imagery, also found seasonal differences between
prediction strength, which is in line with the findings from this study. Specifically, we found similar
moderate regression relationships for turbidity during winter, when lake water quality in Oklahoma is
most stable. Together, these results suggest that reflectance relationships, particularly for eutrophic
lakes, may be season-dependent.

In general, our results were likely not as strong as prior studies due to the unique lake morphology
and water composition in eastern Oklahoma, which is vastly different from the oligotrophic lakes
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studied by Allan, et al. [6] and Hicks, et al. [11]. However, the main contribution of this research is that
the automated processing methodology allowed us to process and analyze hundreds of samples across
all seasons while many prior studies have relied on a much smaller number of samples collected during
one or a few sampling campaigns. Weak correlations, particularly in spring and summer, may also
be due to the lake turnover effect, when the equalization of the thermal gradient in the lake induces
mixing of surface and bottom waters, making remote monitoring difficult due to instability. Further
analysis of the specific boundaries when strong relationships are found may help improve prediction
capabilities by providing researchers with bounded time periods (according to region), during which
remote monitoring is feasible. We implemented a conservative, one-day window surrounding BUMP
sample events, but increasing that window would yield more images and ultimately increase the
number of sample pairs. Since physical parameters such as turbidity stabilize during low influx
times of the year [16], this is a plausible alternative. Any reduced correlation strength for additional
observations would be offset by the increase in the number of observations [13].

5. Conclusions

This study developed an automated method for processing remotely sensed Landsat images
and extracting reflectance measurements from sample location windows. These reflectance values
can, in turn, be used to develop predictive water quality monitoring relationships. The processing
methodology can be adjusted by the user based on image window preference (i.e., time before and
after sampling event) and sample window (i.e., number of pixels surrounding sample GPS point).
We tested the method on a set of lakes in eastern Oklahoma and found that reflectance in the SWIR was
significantly correlated with both chlorophyll and turbidity through ratios with other bands. These
relationships were particularly strong in winter when lake water is stabilized. It is hoped that the
methodology and automated script made available in this study can be used by others to develop
similar relationships for water quality parameters across geographic regions.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/8/6/257/s1.
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